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OPTIMAL PARTITIONING
Problem: Find a partition of a domain D

which optimizes a certain quantity. Usually,
the number of components of the partition
is fixed, but there are problems where this
number is unknown.

Examples: The hexagonal bee hive struc-
ture has the least cost in terms of the length
of walls. This is a basic example of an opti-
mal partitioning problem.

Difficulties: It is difficult to represent the
sets of a partition in a general way. Any at-
tempt in parametrizing the boundaries leads
to troubles when dealing with the behavior
of triple points.

Density representation: Instead of
searching to parametrize the boundaries,
we could relax the problem in the following
way: we consider a family of functions with
values in [0, 1] having their sum equal to 1.

2. MINIMAL PERIMETER PARTITIONS ON THE SPHERE

Problem: Find partitions of the sphere
into N regions of equal areas, which mini-
mize the total perimeter.

Interest: Despite of the fact that the prob-
lem is easy to state, theoretical results are
known only for N ∈ {2, 3, 4, 12}.

Previous works: Cox and Fikkema did
numerical computations for N ≤ 32, using
the software Evolver.

Our method: We approximate the spheri-
cal perimeter with the functional

Fε(u) = ε

∫
S2
|∇τu|2 +

1

ε

∫
S2
u2(1− u)2.

Numerical approach: We construct a uni-
form triangulation of the sphere, and use the
rigidity and stiffness matrices given by the
P1 finite elements associated to this triangi-
lation in order to compute Fε(ui) for every
component of the partition. Then we preform
a gradient descent algorithm.

Advantages: 1. The starting point is ran-
dom; no initial assumption is made on the
topological structure of the partition.

2. The method is really fast. It takes less
than 5 minutes to compute numerically the
optimal partition for N = 32.

Numerical results for N ∈ {7, 10, 12, 32}

MORE DETAILS PLUS OTHER TOPICS

http://www.lama.univ-savoie.fr/~bogosel/

1. ANISOTROPY
The shortest path from point A to point

B is a straight line, but if between A and B
there is a steep hill, then it might be shorter
to go around. The anisotropic perimeter
quantifies this aspect: a direction may be
more costly than another.

The isoperimetric problem says that
the disk minimizes the perimeter at fixed
area. If instead of the classical perime-
ter we consider an anisotropic perimeter
which favorizes horizontal and vertical di-
rections, then the shape which minimizes
this anisotropic perimeter at fixed area is a
square.

The anisotropic perimeter can be approx-
imated using the following functional,

Perϕ(u) = ε

∫
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u2(1− u)2,

inspired by the Modica-Mortola theorem.
Using this representation, we can find

numerical optimal partitions into equal area
cells for various anisotropies ϕ:

Numerical results: The first three pic-
tures ϕ(x) = |x1| + |x2|, in the last picture, a
three directional anisotropy was considered.

3. SPECTRAL MINIMAL PARTITIONS ON THE SPHERE

Problem: Find partitions of the sphere
into N regions which minimize the sum of
their Laplace-Beltrami eigenvalues.

Interest: Little is known for these optimal
partitions for N ≥ 3. For N = 3 Bishop con-
jectured that the optimal partition consists of
3 lens of angle 2π/3.

Previous works: Elliott and Ranner
performed numerical computations us-
ing finite elements on surfaces for N ∈
{3, 4, 5, 6, 7, 8, 16, 32}

Our method: We compute the eigenvalue
of ω ⊂ S2 by solving the penalized problem

−∆τu+ µu = λu on S2,

where µ >> 1 in the complement of ω.
We discretize the problem using a method

based on fundamental solutions:

• Choose (xi) a family of points on S2 and
(yi) a family of centers outside S2.

• Consider the harmonic functions
φi(x) = 1/|x− yi|

• Search for a solution in the form u =
α1φ1+...+αnφn. Note that for harmonic
functions φ we have

−∆τφ =
∂φ

∂n
+
∂2φ

∂n2
.

Numerical approach: We consider (xi) at
the vertices of a uniform triangulation of the
sphere, and (yi) on each normal correspond-
ing to (xi). We compute the eigenvalues us-
ing the procedure presented above. We im-
pose the partition condition that the sum of
all density functions is equal to one.

Advantages: The method of fundamental
tolutions offers great computation accuracy.
We were able to perform numerical compu-
tations for all N ∈ {3, 4, 5, ..., 23, 24, 32}. Visit
my website (link below) to see all the results.

Numerical results (left to right): N = 4: regular tetrahedron partition, N = 12: regular pen-
tagons tesselation, N = 32: density method and refined method. For N = 32 we find the C60

fullerene structure (like a soccer ball: 12 regular pentagons and 20 equal hexagons)


