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Abstract

This article proposes a new discrete framework for approximating solutions to
two dimensional shape optimization problems under convexity constraints. The nu-
merical method, based on the support function or the gauge function, is guaranteed
to generate discrete convex shapes and is easily implementable using standard op-
timization software. The framework can handle various objective functions ranging
from geometric quantities to functionals depending on partial differential equations.
Width or diameter constraints are handled using the support function. Functionals
depending on a convex body and its polar body can be handled using a unified
framework.
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1 Introduction

Shape optimization problems involve the minimization or maximization of functionals
having geometric shapes as variables. Given a shape optimization problem, multiple
non-trivial aspects can be investigated: existence of optimal shapes, study of optimality
conditions, regularity and qualitative properties of the optimal shapes. The monographs
[16], [11] give an overview of challenging aspects and methods used in this field. Cases
where the optimal shape can be explicitly identified are quite rare. When dealing with
convex sets the proof of existence of optimal shapes is often straightforward, due to the
classical Blaschke selection theorem [26, Theorem 1.8.7]. However, as the recent works
[20, 21] show, studying optimality conditions under convexity constraints may be quite
challenging. The optimal shapes for the problems considered are not explicitly known,
in general. This motivates the development of numerical methods for approximating
solutions to shape optimization problems among convex shapes. The content of this
paper is focused on two dimensional problems.

The convexity constraint poses difficulties in the numerical implementation since it
restricts the class of admissible domain perturbations. The recent work [5] shows how to
handle the convexity constraint by working with deformed meshes and constraining the
admissible deformations. In [7] and [2] the authors use a truncated spectral decompo-
sition of the support function and handle a wide variety of constraints. One drawback
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of using truncated spectral decompositions for the support function is the smoothness
of the support function in the discrete setting. It is well known [26, Section 1.7] that
smooth support function correspond to strictly convex shapes. In particular, segments
in the boundary are only captured in an approximate way using truncations of spectral
decompositions. This is a fundamental aspect, since imposing a convexity constraint can
naturally produce optimal shapes having segments in the boundary. In the paper [25] the
authors use a finite difference method for parametrizing the support function, allowing
discontinuities in the first derivative and capturing efficiently segments in the boundary
of the convex domains. In this article we further develop ideas that help solve numerically
shape optimization problems for convex sets, including discontinuities in the derivative of
the support function, corresponding to segments in the boundary of the optimal shape.
For the discretization of the support funciton a more rigorous method, compared to [25], is
proposed and studied in detail. In addition, a numerical framework using the gauge func-
tion is also proposed. Various applications are presented and the code used for producing
the numerical results is freely available.

Other works in the literature deal with numerical aspects related to the convexity con-
straint. We mention [19] where the authors propose a parametrization using supporting
half-spaces. In [22] the discretization of optimization problems with convexity constraints
is investigated. In [24] the author proposes a Galerkin approximation theory for convex
sets.

A convex body K ⊂ Rd is a compact convex set with non-void interior. The support
function hK : Sd−1 → R of a convex body K ⊂ Rd is defined by

hK(u) = max
x∈K

(x · u) (1)

or alternatively, hK(u) is the distance from the origin to the supporting plane orthogonal
to the direction u ∈ Sd−1. An illustration for the two dimensional case is given in Figure
1. It is also possible to define the support function on the whole space HK : Rd → R by

HK(u) = max
x∈K

x · u, (2)

and note that hK = HK(u/|u|) when u 6= 0. In other words, HK is the positive 1-
homogeneous function which coincides with hK on the unit sphere. The concept of support
function is classical in convex geometry and the reader can consult [26] for more details
and properties. In Section 2 all aspects of support functions that are relevant to this work
are recalled.

The definition above shows, in particular, that the support function is well adapted for
dealing numerically with width or diameter constraints. This was already observed in the
previous works [2], [7], [8] or [25]. In [26, Section 1.7] it is shown that the support function
HK in (2) is sublinear (positive 1-homogeneous verifying f(u+ v) ≤ f(u) + f(v), ∀u, v ∈
Rd) and for every sublinear function f : Rd → R there exists a convex body K ⊂ Rd

such that HK = f . In dimension two, in the case K is of class C1, a necessary and
sufficient condition for hK ∈ C1 to be a support function of a convex body is to verify
hK(θ) + h′′K(θ) ≥ 0 (in the sense of distributions) for all θ ∈ [0, 2π] (see [26, Chapter 1]
or [7] for example). In higher dimensions the characterization of the constraint becomes
more complex as shown in [2], for the three dimensional case.

In Figure 2 two examples of shapes and their associated support functions are shown,
for the classical Reuleaux triangle and a stadium like shape. It can clearly be seen that
segments in the boundary of the stadium correspond to points where the support function
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Figure 1: Illustration of the support function of a convex body.

Figure 2: Two examples of convex shapes together with their support and gauge functions.
Segments in the boundary correspond to singular points for the support function. Angular
points generate singularities for the gauge function.

has a discontinuous derivative. In [26, Cor 1.7.3] it is shown that at all points where the
supporting plane intersects K at exactly one point, the support function is differentiable.
In particular, segments in the boundary of a two dimensional convex domain produce
discontinuities in the first derivative of the associated support function. Therefore, the
discretization of the support function should allow such discontinuities in the derivative
in order to capture segments in the boundary. In [25] a numerical method was introduced
which does not impose any regularity assumptions on the discretization of the support
function. The method consists in considering the values of the support function in dimen-
sion two at a uniform discretization of the unit circle. All differential quantities involved
in the computations are approximated using finite differences. In this paper we propose
an alternative method, which in addition to being consistent, is guaranteed to produce
discrete convex shapes in the optimization process. From a numerical point of view, the
proposed numerical method has the same complexity as the one shown in [25].

Another natural parametrization of convex sets can be achieved using radial functions
with respect to an interior point. In dimension two it turns out that the inverse of the
radial distance to a fixed origin has properties which allows again the use of efficient
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numerical methods for discretizing convex shapes. Given K ⊂ Rd a convex set containing
the origin, consider ρK : [0, 2π] → R+ to be a radial function for K. In other words,

θ 7→ ρK(θ)

(
cos θ
sin θ

)
is a parametrization for ∂K. This allows us to define the associated

gauge function γK : [0, 2π]→ R+ by

γK(θ) = 1/ρK(θ). (3)

The gauge function is related to the support function via the polar body. Given a convex
body K, the polar body is K◦ = {y ∈ Rd : x · y ≤ 1,∀x ∈ K}. The gauge function of the
body K is equal to the support function for K◦. See [26] for more details. Compared with
the support function, the gauge function has singularities at corners (instead of segments).
Two examples are shown in Figure 2 illustrating the smoothness of the gauge function for
segments in the boundary and singularities coming from angular points. Details regarding
the usage of the gauge function in numerical simulations are presented in Section 5.

The paper is structured as follows. In Section 2 we describe the discretization of the
support function and we analyze the behavior of the resulting numerical method. In
Section 3 we describe how the gradient of a general shape functional can be computed
in terms of the parameters describing the support function. Section 4 illustrates how
the proposed discretization using the support function approximates solutions to various
shape optimization problems. Section 5 presents the discrete framework based on the
gauge function and shows a few applications.

The main purpose of this paper is to provide new, rigorous and flexible numerical
tools for studying shape optimization problems among convex sets. In addition to the
presentation of the numerical methods, various applications are shown. Many of these are
classical, nevertheless, here are some new results that may motivate further theoretical
study:
� For 1 ≤ k ≤ 10, the shape which maximizes the k-th eigenvalue of the Dirichlet-Laplace

operator among constant width shapes is the Reuleaux triangle. (Problem 5)
� For 1 ≤ k ≤ 10, the shape which maximizes the k-th eigenvalue of the Dirichlet-Laplace

operator among convex shapes having a given minimal width is the equilateral triangle.
(Problem 6)

Some of the codes that were used to produce the numerical results in the paper are
provided:

https://github.com/bbogo/ConvexSets

These codes can be used to approximate solutions to other shape optimization problems
among convex sets by simply changing the evaluation of the objective function and the
associated shape derivative, as indicated in Section 3.

2 Support function and its discretization

For a convex compact body K ⊂ R2 consider the associated support function hK
defined by (1). Let us briefly recall some of the basic properties of the support function.
For a complete exposition with proofs the reader can consult [26, Section 1.7]. The support
function hK can be identified with a continuous 2π periodic function p : [0, 2π]→ R. For
θ ∈ [0, 2π] denote the associated normal and tangential vectors r(θ) = (cos θ, sin θ) and
t(θ) = (− sin θ, cos θ). The set H(K, θ) = {x ∈ R2 : x · r(θ) = p(θ)} is called the support
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line of K at θ. The set F (K, θ) = K ∩H(K, θ) is called the support set of K at θ. In [26,
Section 1.7] it is shown that p is differentiable at θ if and only if the associated support
set F (K, θ) contains only one point. An immediate consequence is that segments in the
boundary of K correspond to parameters θ where the support function has a discontinuity
in the first derivative. In particular, constant width shapes have support functions at least
of class C1, since they do not contain non-trivial segments in their boundaries. The proof
is straightforward and can be found, for example, in [18, Exercise 7-3]. More precise
aspects regarding the regularity of support functions can be found in [26, Section 1.7]. In
particular:
� The support function HK extended to the whole space by 1-homogeneity as in (2) is

a sublinear function. Conversely, every sublinear function is the support function of a
convex body [26, Theorem 1.7.1].

� The subdifferential of the support function at a point θ equals the support set F (K, θ)
of K at θ [26, Theorem 1.7.4].
In view of the discussion above, the support function p of a strictly convex shape

K ⊂ R2 is of class C1. It is classical (see [7], [2] and references therein) that in this
case, a parametric representation of ∂K is given by x(θ) = p(θ)r(θ) + p′(θ)t(θ) or, more
explicitly, {

x1(θ) = p(θ) cos θ − p′(θ) sin θ,

x2(θ) = p(θ) sin θ + p′(θ) cos θ.
(4)

It is straightforward to see that at points where the support function p is C2, the tangent
vector at the curve with the parametrization (4) is given by (p(θ) + p′′(θ))t(θ). The
parametrization (4) is well defined at smooth points for p provided p′′+ p ≥ 0. In [7], the
convexity of K is characterized by

p(θ) + p′′(θ) ≥ 0 for every θ ∈ [0, 2π]. (5)

At points where p is at least C2, the condition above is clear. As underlined in [6], [7],
when p is of class C1,1, the constraint may also be interpreted in the sense of distributions,
including points where p′′ is not defined. Moreover, if p satisfies p+ p′′ ≥ 0 in the sense of
distributions then p is the support function of a convex body K. The quantity % = p+ p′′

is the curvature radius of ∂K. In particular, at regular points x(θ) of ∂K the curvature
is given by 1/(p(θ) + p′′(θ)). In the following, we use the notation θ(x) to represent the
angle in [0, 2π] associated to the point x ∈ ∂K. Equivalently, θ(x) is the angle the normal
at x ∈ ∂K makes with the positive x1-axis.

Suppose θ0 is an isolated point where p′ is not defined, corresponding to a segment S0

in ∂K. Then the endpoints of the segment S0 can be identified by

q− = lim
θ→θ0,θ<θ0

x(θ), q+ = lim
θ→θ0,θ>θ0

x(θ),

where x(θ) = (x1(θ), x2(θ)) is given by (4). It is straightforward then that the length of
S0 is given by p′(θ+)− p′(θ−) > 0 (using the usual notation for half limits). This shows,
in particular, that such a singularity for p′ cannot correspond to a local maximum of p.

The support function is particularly useful when dealing with numerical aspects related
to the convexity constraint in shape optimization. In the works [1], [2], [7] the authors
use truncated Fourier series to parametrize support functions of convex sets. As already
underlined in the previous paragraphs, this excludes the possibility of having segments
in the boundary. Therefore, alternate discretization options are needed to handle such
cases which arise quite often in practical situations. In view of the discussion above,
discontinuities in the first derivative should be allowed by the choice of the discretization.
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2.1 Convexity constraint – finite differences.

In view of the expression for parametrization (4) and the continuous convexity con-
straint, any discretization strategy depends on the choice of the approximations of p′

and p′′. For N ≥ 3, consider an equidistant partition of [0, 2π] given by θj = 2πj/N ,
j = 0, ..., N − 1. The indices are considered periodic modulo N whenever necessary.
Denote h = 2π/N the distance between the points in the discretization and pj approxi-
mations of values p(θj) of the support function taken at θj. The values p = (pj)

N−1
j=0 will

be the optimization variables for the problems presented in the first part of this work.
This work was generated by an attempt to rigorously justify the approach proposed in

[25], in particular investigating the convexity of the shapes obtained in the discretization
process. In [25] the first derivatives are approximated using centered finite differences

p(θi) ≈ (pi+1 − pi−1)/(2h), i = 0, ..., N − 1. (6)

At points where p is of class C2, finite differences are again used for approximating p′′

giving the following inequalities characterizing the discrete convexity constraint:

pi +
pi+1 − 2pi + pi−1

h2
≥ 0, i = 0, ..., N − 1. (7)

On the other hand, if p is not smooth at θi then inequality (7) simply states that
pi+1−pi

h
− pi−pi−1

h
≥ −hpi, i.e. the difference between the right and left derivatives at θi

is not too negative. Although the approach worked well in practice, as underlined by
the results of [25], the discrete inequality (7) does not guarantee the convexity of the
resulting discrete shapes as underlined in the sequel. From a practical point of view (7)
can be formulated as a set of N linear inequality constraints, and easily be incorporated
in standard optimization algorithms.

Remark 2.1. If one chooses to parametrize the support function using piecewise affine
functions on intervals [θi, θi+1] then the constraint (5) implies that∫ 2π

0

(p+ p′′)ϕ ≥ 0 for any ϕ ≥ 0.

Suppose ψi, i = 0, ..., N − 1 is the classical basis for P1 finite elements. Then expressing
the inequality above using the decompositions of p and ϕ in this basis one gets that the
coefficients p = (pi) of p, given again by pi = p(θi) verify

pMϕ− pKϕ ≥ 0, ∀ϕ ≥ 0. (8)

The matrices M = (mij)
N−1
i,j=0 and K = (kij)

N−1
i,j=0 are the mass and, respectively, rigidity

matrices defined by

mij =

∫ 2π

0

ψiψj, kij =

∫ 2π

0

ψ′iψ
′
j, 0 ≤ i, j ≤ N − 1.

In the case of P1 finite elements with periodic boundary conditions, using equidistant
intervals [θi, θi+1] leads to the inequalities

2

3
pi +

1

6
(pi+1 + pi−1) +

pi+1 − 2pi + pi−1
h2

≥ 0, for every i = 0, ..., N − 1. (9)

6



A1

A2
A3

p1

p2

p3

q1

q2

q3

Figure 3: Construction of the triangle A1A2A3 given by (11)
.

One can immediately note the similarity with (7) and the fact that the two inequalities
are equivalent up to first order in h.

Nevertheless, any non-constant P1 support function admits local maxima where the
derivative is discontinuous. As a consequence, no such function is the support function
of a convex set.

We consider pi the values of the support function evaluated at θi and qi the chosen
values for the approximation of p′(θi). In the following we investigate the convexity
properties of the discrete shape obtained using the proposed discretization of the support
function. Without loss of generality, we look at points for θ1, θ2, θ3 of the discretization.
Then if

ri = (cos θi, sin θi), ti = (− sin θi, cos θi) (10)

are the normal and tangent vectors corresponding to θi, the boundary points given by the
parametrization (4) of ∂K are given by

Ai = piri + qiti, i = 1, 2, 3. (11)

An example is shown in Figure 3. The convexity property in the discrete setting amounts
to the positivity of the oriented area of the triangle ∆A1A2A3 for the points given in
(11). The oriented area (in the trigonometric sense) in terms of the coordinates (A1

i , A
2
i )

of Ai, i = 1, 2, 3, is obtained with the cross product formula

Area(∆A1A2A3) =
1

2

(
(A1

2 − A1
1)(A

2
3 − A2

2)− (A1
3 − A1

2)(A
2
2 − A2

1)
)
. (12)

Choosing qi = (pi+1 − pi−1)/(2h) corresponding to the approximation of the derivatives
using centered finite differences (6) the area given in (12) can be expressed in terms of pi.
The precise formula is not included, since it is quite lengthy and is not used in the rest
of the paper. On the other hand, since we impose constraints on the discrete curvature
radii defined by

%i =
pi+1 − 2pi + pi−1

h2
+ pi ≥ 0 (13)

it is more convenient to express this area in terms of pi and %i, i = 1, 2, 3. In particular,
we obtain

Area(∆A1A2A3) =
1

48
[6%1%2 + 12%1%3 + 6%2%3 + (p1 − p3)(%1 − %3)]h3 +O(h5), (14)
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as h→ 0. The Mathematica script performing the symbolic computation is given in the
Appendix. Observing that %1 − %3 = p0 − p4 + (1− 2/h2) (p1 − p3), the coefficient of the
leading term h3 is given by

6%1%2 + 12%1%3 + 6%2%3 + (p1 − p3)(p0 − p4) + (1− 2/h2)(p1 − p3)2.

Therefore, in general, the positivity of %1, %2, %3 does not imply the positivity of the area
of (12) as h → 0. As a consequence, although this method was successfully used in [25],
the resulting discrete shapes may not be convex for h small.

Another drawback that the classical finite differences discretization of the parametriza-
tion (4) and of the convexity constraint (7) are not invariant with respect to translations
of the domain. This aspect is the key observation that allows us to propose an alternative
discretization procedure which is consistent and which produces convex discrete shapes.

2.2 Rigorous discrete convexity condition

It is well known that if p is the support function of the convex body K ⊂ R2 then
p = p+ a cos θ + b sin θ is the support function of the translated body (a, b) +K. This is
a straightforward consequence of definition or of the parametrization (4). One may note
that the classical centered finite differences are not exact when considering discretizations
of translations given by pi = pi + a cos θi + b sin θi.

To remedy this we propose the following choices for approximating the first derivatives
p′(θi) and the discrete curvature radii p(θi) + p′′(θi):

p′(θi) ≈
pi+1 − pi−1

2 sinh
:= qi, p(θi) + p′′(θi) ≈ %i = pi +

pi+1 − 2pi + pi−1
2− 2 cosh

. (15)

The observations below show that this discretization choice for first derivatives and cur-
vature radii has multiple advantages:
� As h→ 0 we have sinh = h+O(h3), 2− 2 cosh = h2 +O(h4). Therefore, when h→ 0,

at points where p is smooth, the discretizations proposed in (15) converge to p′(θi) and
p+ p′′(θi), respectively. Therefore, the proposed discretization is consistent.

� Formulas (15) are linear in pi and they are exact for support functions of the form
p(θ) = c + a sin θ + b cos θ. A first consequence is that the discretization process
commutes with translations: the numerical representations of two translated convex
bodies are related by the same translation. Secondly, translated discretized convex
bodies have the same discrete curvature radii given by (15).

� Using qi = (pi+1 − pi−1)/(2 sinh) in (11) and computing the area of the triangle given
in (12) we obtain

Area(∆A1A2A3) = [%2(%1 + %3) + 2%1%3 cosh] sin2(h/2) tan(h/2). (16)

The Mathematica script performing the symbolic computation is given in the Ap-
pendix. Assuming the discrete radii of curvature are non-negative implies that the
area of ∆A1A2A3 is non-negative. Therefore, discrete shapes constructed using (15)
in the parametrization (4) are convex, provided

%i = pi +
pi+1 − 2pi + pi−1

2− 2 cosh
=
pi+1 + pi−1 − 2pi cosh

2− 2 cosh
≥ 0, i = 0, ..., N − 1. (17)

The constraints (17) are linear in the variables (pi)
N−1
i=0 and can be easily implemented

in optimization software. These constraints are used in all the numerical simulations
presented in the following.
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pi+1−pi−1

2 sinh

pi+1+pi−1

2 cosh

O

X(pi−1, θi−1)

X(pi, θi)

X(pi+1, θi+1)

pi−1

pi

pi+1

Ai

Figure 4: Geometric justification of the convexity constraint and of the discretization.

Remark 2.2. In view of the previous observations when variables (pi)
N−1
i=0 verify the con-

straints (17) the discrete shape constructed using (11) and (15) is convex. Therefore,
even though the ideas regarding this discretization used the first and second derivatives of
the support function, the resulting discrete framework does not depend on the regularity
of the support function p.

2.3 Convex geometry aspects.

In the following we show further geometric arguments motivating the discretization
(15) and the discrete convexity constraints (17).

Let us fix the following notations:
� X(r, θ) = (r cos θ, r sin θ), O is the origin, θj = 2jπ/N , 0 ≤ j ≤ N − 1, N ≥ 5,
h = 2π/N .

� `(r, θ) is the line going through X(r, θ) which is orthogonal to OX(r, θ).
� α(r, θ) is the halfplane determined by `(r, θ), containing the origin O.
� the Hausdorff distance between two convex bodies K1, K2 is defined by dH(K1, K2) =

max{supx∈K1
d(x,K2), supy∈K2

d(y,K1)}, where d(x,K) = infy∈K d(x, y).

Lemma 2.3. 1. `(pi, θi) intersects α(pi−1, θi−1)∩α(pi+1, θi+1) if and only if pi+1 + pi−1−
2pi cosh ≥ 0.

2. The point Ai = piri + qiti belongs to α(pi−1, θi−1) ∩ α(pi+1, θi+1) for every pi such
that pi+1 + pi−1 − 2pi cosh ≥ 0 if and only if qi = (pi+1 − pi−1)/(2 sinh).

Proof: Without loss of generality, suppose that pi−1, pi, pi+1 > 0. The proof is self
explanatory looking at the Figure 4. We sketch the main lines below.

1. Working in radial and tangential coordinates with respect to the direction θi, the
point `(pi−1, θi−1) ∩ `(pi+1, θi+1) has the radial coordinate (pi+1 + pi−1)/(2 cosh). The
statement follows.

2. The only tangential coordinate which guarantees that the point Ai belongs to
α(pi−1, θi−1) ∩ α(pi+1, θi+1) is the tangential coordinate of the intersection `(pi−1, θi−1) ∩
`(pi+1, θi+1), which is exactly (pi+1 − pi−1)/(2 sinh). �

Remark 2.4. The result of Lemma 2.3 gives a geometric motivation for the choice of
discretization (15) and the convexity constraint (17).
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In the following, for simplicity, we assume that N ≥ 5 so that 2π/N is an acute angle
and the supporting lines at θi±1 intersect the line through the origin with orientation θi
on the side having positive orientation. As a direct consequence we have the following:

Proposition 2.5. Let K be a convex body with support function p : [0, 2π] → R. For
N ≥ 5, denote by pj = p(2jπ/N) the samples of the support function at θj, 0 ≤ j ≤ N−1.
Then (pj)

N−1
j=0 verify inequalities (17).

Proof: The result is straightforward, following Lemma 2.3. Notice that ∂K∩`(pi, θi) 6=
∅ and K ⊂ α(pi−1, θi−1) ∩ α(pi+1, θi+1). �

Next, we show that the set of discrete convex shapes obtained with the proposed
discretization is dense in the class of convex sets. Namely, we have the following result:

Theorem 2.6. For N ≥ 5, denote by KN the following class of convex polygons:

KN = {A0...AN−1 : Aj = pjrj +
pj+1 − pj−1

2 sin 2π
N

tj,

pj+1 + pj−1 − 2pj cos
2π

N
≥ 0, ∀j = 0, ..., N − 1}.

Let K be an arbitrary convex body. Then for every ε > 0 there exists N large enough
and a convex polygon PN ∈ KN such that dH(K,PN) < ε.

Proof: Without loss of generality, suppose the origin is inside K. Consider pj =
p(θj) > 0, j = 0, ..., N − 1. Proposition 2.5 implies that (pj)

N−1
j=0 verify (17). Denote

by QN the polygon
⋂N−1
j=0 α(pj, θj). Then obviously QN is convex and K ⊂ QN . Pick

Xj ∈ `(pj, θj)∩K,Xj+1 ∈ `(pj+1, θj+1)∩K and denote Yj ∈ `(pj, θj)∩ `(pj+1, θj+1). Note
that Yj, j = 0, ..., N − 1 are the vertices of QN . The angle XjYjXj+1 is equal to π − 2π

N
,

therefore the distance from Yj to [XjXj+1] ⊂ K is at most 1
2
XjXj+1 tan(π/N). This

implies that dH(QN , K) ≤ 1
2
diam(K) tan(π/N).

By construction, the polygon PN :=A0...AN−1 associated to (pj)
N−1
j=0 , from the defi-

nition of KN shown above, verifies Ai ∈ `(pi, θi) and A0...AN−1 ⊂ QN . More precisely,
using the previous notations, we have Aj ∈ [Yj−1Yj], implying that A0...AN−1 is convex.
Indeed, the vertices of PN lie, respectively, on consecutive sides of the convex polygon
QN . Moreover, since K is convex, we have

max
j=0,...,N−1

d(Ai, K) ≤ max
j=0,...,N−1

d(Yj, K) = dH(QN , K) ≤ 1

2
diam(K) tan(π/N),

which implies

dH(PN , K) ≤ 1

2
diam(K) tan(π/N).

As N →∞ the conclusion follows. �
In the numerical applications a large enough N is chosen and discrete convex shapes

are constructed following the definition of KN . In particular, the set KN is characterized
by a family of N linear inequality constraints. For N large enough, Theorem 2.6 implies
that any convex shape can be sufficiently well approximated using a polygon in KN .

In the following, consider polygons defined from (pj)
N
j=0, as in the statement of The-

orem 2.6. We investigate the cases where the discrete curvature radius vanishes and we
describe how segments in the boundary and overlapping points behave in the discretiza-
tion process. These degenerate cases correspond to three consecutive vertices generating
a triangle having zero area according to (16).
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Proposition 2.7 (Degenerate cases). 1. If %i = 0, or equivalently pi+1+pi−1−2 cosh pi =
0, then Ai is the intersection of the supporting lines `(pi−1, θi−1) ∩ `(pi+1, θi+1).

2. We have the equivalence: %i = %i+1 = 0 if and only if Ai and Ai+1 coincide.
3. If %i > 0 and %i−1 = %i+1 = 0 then Ai−1,Ai,Ai+1 are colinear and form a segment in

the boundary having length %i(2−2 cosh)/ sinh and having normal vector with orientation
θi.

Proof: 1. is a direct consequence of Lemma 2.3. It is immediate to observe that %i = 0
implies that the point Ai has the radial and tangential coordinates of the intersection of
`(pi−1, θi−1) ∩ `(pi+1, θi+1).

2. From the previous point Ai ∈ `(pi−1, θi−1) ∩ `(pi, θi) ∩ `(pi+1, θi+1) and Ai+1 ∈
`(pi, θi)∩`(pi+1, θi+1)∩`(pi+2, θi+2). Therefore both Ai and Ai+1 belong to the intersection
of `(pi, θi) ∩ `(pi+1, θi+1). These two lines are not parallel and do not coincide, therefore
Ai and Ai+1 coincide.

Conversely, if Ai,Ai+1 coincide then Ai,Ai+1 belong to `(pi, θi) ∩ `(pi+1, θi+1). From
the definition of Ai and Lemma 2.3 follows that ρi = ρi+1 = 0.

3. Following the previous points, %i−1 = %i+1 = 0 implies that Ai−1,Ai+1 ∈ `(pi, θi).
By definition we also have Ai ∈ `(pi, θi). Therefore Ai−1,Ai,Ai+1 are colinear and lie on
`(pi, θi).

Lemma 2.3 and ρi > 0 implies that the segment is non-degenerate. Moreover, its
length can be computed by noticing the following:
� Ai−1 ∈ `(pi−1, θi−1) ∩ `(pi, θi), Ai+1 ∈ `(pi+1, θi+1) ∩ `(pi, θi)
� the distance from Ai−1Ai+1 to `(pi−1, θi−1)∩ `(pi+1, θi+1) is equal to pi+1+pi−1−2 cosh pi

2 cosh
=

2−2 cosh
2 cosh

%i.
We find that |Ai−1Ai+1| = 2−2 cosh

sinh
%i. �

2.4 Width and inclusion constraints.

The second type of constraints that are of interest in this work are related to the width
or the diameter of the convex set K. Such constraints can easily be formulated in terms
of the support function using the quantity w(θ) = p(θ) + p(θ + π). Geometrically, w(θ)
measures the distance between the two supporitng lines to K orthogonal to the direction
given by θ. From a discrete point of view we consider N even so that for any θi in the
discretization, the antipodal point is also present θi+N/2 = θi + π. In practice upper or
lower bounds on width constraints can be imposed using

wi ≤ pi + pi+N/2 ≤ Wi, i = 0, ..., N/2− 1.

Let us list some particular cases of interest:
� wi = Wi = w > 0 for all i = 0, ..., N/2− 1 gives the discrete constant width constraint.
� Wi = d for 0 ≤ i ≤ N − 1, w0 = d imposes a diameter constraint. An upper bound

on the width is considered for every direction and a lower bound is imposed for exactly
two antipodal points. In this way the diameter of the set K is fixed.
Inclusion constraints can be achieved by imposing pointwise inequality constraints

on the discrete values pi of the support function. Indeed, if the set K0 has the support
function p0 the inclusion constraint K ⊂ K0 simply reads p ≤ p0 on [0, 2π]. In cases
where K0 is a polygon, it suffices to impose a finite number of constraints for orientations
θi that are orthogonal to the edges of K0.
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3 Parametric gradient of the objective function

To optimize numerically a function in an efficient way, gradient information should be
used whenever available. In this section we detail the computation of the discrete gradient
for various functionals used in the applications part. Given a shape K and a Lipschitz
vector field V ∈ W 1,∞(R2,R2) we consider the perturbed shape (I + V )(K). We say that
a shape functional J is shape differentiable if the following expansion holds

J((I + V )(K)) = J(K) + J ′(K)(V ) + o(‖V ‖W 1,∞).

For more details the classical references [16], [11], [27] should be consulted. Moreover,
under the assumption that the shape K is convex, in all cases handled in the following,
it is possible to write the shape derivative in the form

J ′(K)(V ) =

∫
∂K

f V · n dσ, (18)

where f is an integrable function on ∂K and V · n is the normal component of the
perturbation vector. Alternative volume integral expressions for the shape derivatives can
be given. The choice to work with boundary integrals in this work is further motivated
in Remark 3.2.

In the previous section the discretization of the support function using finite differences
was introduced using the values (pi)

N−1
i=0 at N equidistant sample points in [0, 2π]. In the

following, we present the computation of partial derivatives of general functionals with
respect to the corresponding parameters pi, i = 1, ..., N .

3.1 General functionals.

For generic shape functionals J(K), under suitable regularity assumptions which are
generally valid when K is convex, the corresponding shape derivative can be expressed
in the form (18). Throughout this section we assume K is a convex polygon. Since the
discrete shape K depends on the parameters p = (pi)

N−1
i=0 , we can write the dependence

in the form K(p). The normal vectors to the sides of the polygon can easily be found,
however we use a different convention motivated as follows:
� As underlined in Proposition 2.7 some consecutive vertices in K(p) may coincide when

the convexity constraint is saturated. In practice, it is useful to have a normal vector
defined even in this case.

� Again, following Proposition 2.7, long segments in the boundary (corresponding to
%i > 0, %i−1 = %i+1 = 0) should have the correct normal orientation.

� In practice, a mesh will be used to describe K(p) and having the normal defined at the
vertices of the mesh is useful.
Since K(p) is defined starting from values pi of support function at angles θi, for

simplicity, the normal at vertex i will be assumed equal to ri = (cos θi, sin θi), i =
0, ..., N − 1. In the numerical simulations we work with large N and this assumption
induces errors at most equal to h = 2π/N in terms of the exact orientation of the normal
to the polygon sides. Following the results of Proposition 2.7, long segments in the
boundary will have the correct normal vector, according to this convention. Moreover,
we are also able to identify a normal direction in cases where two consecutive vertices
overlap.

12



For δp ∈ RN , |δp| � 1 there is a vector field V (δp) ∈ W 1,∞(R2;R2) such that
V (0) = 0 and K(p + δp) = (I + V (δp))(K(p)). Such a vector field is piecewise affine on
∂K(p) and can be extended to the whole R2, since K(p) is a convex polygon. Assuming
V is differentiable at 0 and using the chain rule we obtain

dJ(K(p + δp))

dδp
(δq) = J ′(K(p))

(
dV (δp)

dδp
(δq)

)
.

Therefore, in order to compute the sensitivity of J(K(p)) with respect to the parameter
pi it is enough to compute the associated perturbation V (δpi), differentiate this vector
field with respect to pi and plug it in the shape derivative formula (18).

Note that perturbing the parameter pi with a small value δpi only changes points
xi−1,xi,xi+1 in the discretization, in view of (15). Denoting by ei the i-th vector in the
canonical basis of RN , we obtain the perturbation p 7→ p + δpiei := p + δpi. Denote
by V (δpi) = (Vj(δpi))

N−1
j=0 the resulting vector field. The explicit perturbations of the

boundary points using (11), (15) are given by:

pi 7→ pi + δpi =⇒


xi−1 7→ xi−1 + 1

2 sinh
δpiti−1 := xi−1 + Vi−1(δpi)

xi 7→ xi + δpiri := xi−1 + Vi(δpi)
xi+1 7→ xi+1 − 1

2 sinh
δpiti+1 := xi−1 + Vi+1(δpi).

The derivative V ′i = dVi(0)
dδp

(δpi) of this perturbation with respect to the parameter δpi
takes values 1

2 sinh
ti−1, ri, − 1

2 sinh
ti+1 at θi−1, θi, θi+1, respectively. Assuming normals at

θi−1, θi, θi+1 are given by ri−1, ri, ri+1, agreeing with the definition of the support function,
we find that V ′i has normal components equal to V ′i · n = δij (the usual Kronecker delta
symbol) at points xj, j = 0, ..., N − 1. In view of the polygonal nature of the discrete
convex shape, the normal component of the perturbation vector V ′i · n is piecewise affine
on the intervals [θi, θi+1] corresponding to the region between boundary points xi and
xi+1. In order to formalize this we introduce the hat functions ψi : [0, 2π]→ R which are
2π periodic, continuous and piecewise affine on intervals [θi, θi+1] such that ψi(θj) = δij.

With this convention, the parametric derivative of J with respect to pi becomes

∂J(K(p))

∂pi
=

∫
∂K(p)

f(x)ψi(θ(x))dσ, i = 0, ..., N − 1, (19)

where we denote by θ(x) the orientation of the normal at the boundary point x ∈ ∂K.
From a practical point of view it is necessary to transport the hat functions ψi from [0, 2π]
to ∂K and perform the numerical integrations given by (19) for i = 0, ..., N − 1.

In the case where ∂K is smooth, the parametrization (4) is non-degenerate which
allows us to conclude, via a change of variables, that

∂J(K)

∂pi
=

∫ 2π

0

f(x(θ))ψi(θ)(p(θ) + p′′(θ))dθ, i = 0, ..., N − 1. (20)

Remark 3.1. For angular points, the support of ψi(θ(x)) may be reduced to a point in
∂K(p). Then the associated partial derivative computed with (19) is zero. As underlined
previously, this will correspond to the saturation of the convexity constraint and some
points in the discretization will overlap as shown in Proposition 2.7. These points will
be naturally moved during the optimization process under the influence of the convexity
constraints (17).
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All computations are realized using the software FreeFEM [13]. Domains are meshed
starting from the variables (pi)

N−1
i=0 , using information given by the parametrization (4)

with approximations (15). A discrete polygon is constructed with vertices

Ai = piri +
pi+1 − pi−1

2 sinh
ti, i = 0, ..., N − 1

as described in Section 2. If the discrete curvature radii (17) are non-negative, the polygon
A0...AN−1 is convex. FreeFEM constructs the mesh starting from the polygonal line
A0...AN−1. The mesh is then improved using the command adaptmesh in order to make
it suitable for finite element computations. Finite element spaces are constructed for
solving the partial differential equations involved in the computations of the objective
function. In all the computations involving PDEs we use P2 finite elements in FreeFEM.
The various constraints involved in the problem definitions, whose discretizations are
mentioned in Section 2, are formulated as linear constraints on the variables (pi)

N−1
i=0 and

are used in the optimization toolbox IPOPT [28] included in FreeFEM. The sensitivity of the
objective function with respect to the parameters pi is evaluated using (19). The integrals
are evaluated using standard FreeFEM routines. Figures are realized using Metapost or
Matplotlib in Python.

For reproducibility purposes and in order to allow the easy adaptation of these ideas
to various other problems, the codes used in the numerical simulations are available at
the following repository: https://github.com/bbogo/ConvexSets

Remark 3.2. The structure theorem for shape derivatives (see [16, Chapter 5], [11, Chap-
ter 9]) implies that under certain regularity assumptions, shape derivatives can be written
as a linear form depending on the boundary perturbation as in (18). It is nevertheless
possible to obtain shape derivatives as volume integrals. Such formulas require less reg-
ularity assumptions at the price of having derivatives on the perturbation field. While
from a theoretical point of view, the two formulations (boundary vs volume integrals) are
equivalent, it is no longer the case when performing numerical approximations.

In [17] the authors compare the numerical errors when computing shape derivatives
with the two formulations and conclude that, under additional regularity assumptions on
the perturbation vector fields, the shape derivatives computed with volume integrals con-
verge faster. A similar analysis has been performed in [29] for the eigenvalue problems
associated to the Dirichlet-Laplace eigenvalues.

In this work we use boundary integrals for computing shape derivatives for multiple
reasons, recalled below:
� When dealing with convex sets, the boundary integrals defining the shape derivatives

are well defined for all problems under consideration. Convergence of the corresponding
finite element approximations is proved in [17] and [29].

� The optimization strategy presented in this work is not based on mesh perturbation tech-
niques like in [5]. The meshed domains in the numerical computations are constructed
from a set of parameters.

� The perturbation fields associated to discrete perturbations in the parameters (pi)
N−1
i=0

are not in W 2,∞, so according to [17, Remark 3.2] the result [17, Theorem 3.1] does not
apply.

3.2 Perimeter and Area.

In the following, the derivative of the perimeter with respect to parameters pi is
investigated. Let us suppose that K is a convex set, not containing segments in its
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boundary such that the associated support function p is at least of class C2. In this case,
in view of the parametrization (4), the perimeter is given by integrating the arclength

measure: Per(K) =
∫ 2π

0
(p(θ) + p′′(θ))dθ. If p is of class C2 we have

∫ 2π

0
p′′(θ)dθ = 0.

� Direct method. The perimeter of a smooth set can be expressed in terms of the
support function by the formula Per(K) =

∫ 2π

0
p(θ)dθ. Using the basic trapezoidal

quadrature rule for intervals [θi, θi+1], we have the approximation Per(K) ≈
∑N−1

i=0
2π
N
pi.

For this explicit approximation formula the gradient of the perimeter with respect to
pi is equal to 2π/N for every i = 0, ..., N − 1.

� Using the shape derivative. For a smooth shape K, the shape derivative of the
perimeter is given by Per(K)′(V ) =

∫
∂K
H V · n where H is the mean curvature of

∂K (equal to the curvature in dimension two). Considering, as recalled previously, the
vector field V corresponding to perturbation of a single variable pi in the discretization
we obtain

∂ Per(K)

∂pi
=

∫ 2π

0

H(x(θ))ψi(θ)(p(θ) + p′′(θ))dθ =
2π

N
, (21)

where we used a change of variable and the fact that H(x(θ)) = 1/(p(θ) + p′′(θ)) at
regular points θ ∈ [0, 2π].
Let us now consider the non-smooth case. Suppose that segments S1, ..., Sl in the

boundary of K exist and correspond to angles θi1 < θi2 < ... < θil ∈ [0, 2π]. Then the
same formula gives

Per(K) =

∫ 2π

0

p(θ)dθ +
l∑

j=1

(
p′(θij+)− p′(θij−)

)
,

corresponding to the length of the smooth parts and the sum of the lengths of all the
segments Sj, j = 1, ..., l. In the numerical computations, the integral of p is approximated
using a quadrature rule. The contribution of p′(θi+) − p′(θi−) is added to the objective
function and the gradient as soon as this difference exceeds a certain threshold, indicating
a singularity.

The derivative of the area functional with respect to the parameter pi is computed by
taking f ≡ 1 in (19). Alternatively, if the support function is of class C1, like in the case
of shapes of constant width, the parametric derivative may be written as

∂|K|
∂pi

=

∫ 2π

0

ψi(θ)(p(θ) + p′′(θ)). (22)

In practice, for h small, an approximation of (22) is given by %i, the discrete curvature
radius given in (17).

4 Applications using the support function

In the following we present a few applications which illustrate the numerical method
proposed in the previous sections. For all problems considered, the existence of solutions
is discussed briefly. The proof of existence is usually straightforward, using various re-
sults recalled in the Lemma 4.1 below. When needed, additional references containing
more details are provided. The appropriate notion of convergence for convex sets is the
convergence in the Hausdorff distance. Precise definitions and main properties of this
set distance are found in [16, Chapter 2] or [26, Section 1.8]. The numerical simulations
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are preformed using the discretization of the support function described in Section 2 to-
gether with the gradient expressions described in Section 3. In all computations below
the convexity constraint is imposed using the discrete inequalities (17).

The case where the convexity constraint is saturated, i.e. some of the discrete curvature
radii %i given in (15) are equal to zero, are naturally included in the discretization process.
In this case, as shown in Proposition 2.7, the polygon constructed using (15) may have
a number of consecutive vertices which overlap. Nevertheless, these degenerate cases are
handled in an automated manner by the optimization algorithm.

We recall below some results which allow to prove existence of solutions.

Lemma 4.1. 1. (Blaschke’s selection theorem.) Given a sequence {Kn} of closed convex
sets contained in a bounded set, there exists a subsequence which converges to a closed
convex set K in the Hausdorff metric. [26, Theorem 1.8.7]

2. Convexity is preserved by the Hausdorff convergence. (see [16, p. 35])
3. If {Kn} is a sequence of non-empty closed convex sets contained in a bounded set

then the Hausdorff convergence of Kn to K is equivalent to the uniform convergence of
the support functions pKn to p on Sd−1. (see [26, Lemma 1.8.14])

4. Suppose that the sequence of convex sets {Kn} converges to the convex set K in the
Hausdorff topology and that K has non-void interior. Then χKn converges to χK in L1,
|Kn| → |K| and Per(∂Kn)→ Per(K) as n→∞. (see [10, Prop 2.4.3])

5. If Kn are convex and converge to K in the Hausdorff metric then Kn γ-converges
to K and, in particular the eigenvalues of the Dirichlet-Laplace operator are continuous:
λk(Kn)→ λk(K). (see [16, p. 33])

6. Inclusion is stable for the Hausdorff convergence: if Ω is closed, Kn ⊂ Ω, Kn → K
implies K ⊂ Ω. (see [16, p. 33])

7. The diameter and width constraints are continuous with respect to the Hausdorff
convergence of closed convex sets. In particular if the sequence of closed convex sets {Kn}
converges to K in the Hausdorff metric and each Kn is of constant width w then K is
also of constant width w. (a direct consequence of point 3. above)

8. The perimeter of convex sets is monotone with respect to set inclusion as shown in
[10, Lemma 2.2.2].

4.1 Area and perimeter functionals

As a first example, the minimization of the area of a two dimensional set with minimal
width w is considered. In [18, Problem 6-2] it is proven that the solution of this problem
in the class of convex sets is the equilateral triangle. This problem is used as a benchmark
for the numerical algorithm since its solution in the class of convex sets is known.

Problem 1. Minimize the area of a two dimensional shape under minimal width con-
straint:

min{|ω| : ω convex, having minimal width w}

The minimal width constraint is modeled numerically by considering an even number
N of angles in the discretization of the support function and by imposing pi + pi+N/2 ≥ w
for i = 0, ..., N/2−1. The area and its gradient are computed using the formulas (19). The
result given by the optimization algorithm is the equilateral triangle. The shape found
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Figure 5: Minimizing the area under minimal width and constant width constraints

by the optimization algorithm is shown in Figure 5 (left). For this problem N = 240
discretization points were used. �

Another classical example of shape optimization problem in convex geometry for which
the solution is known is the minimization of the area under constant width constraint.
It is known that the solution to this problem is the Reuleaux triangle and a proof of
this fact can be found in [18, Problem 7-20]. Following the discussion in Section 2, the
support function of a shape of constant width does not have discontinuities in the first
derivative. Therefore, the proposed discretization is expected to handle this case without
any difficulty.

Problem 2. Minimize the area of a two dimensional convex shape of constant width w:

min{|ω| : ω is convex with constant width w}.

For an even number N of discretization points, the discrete constant width constraint
can be written in the form pi + pi+N/2 = w for i = 0, ..., N/2 − 1. For N = 240, the
result given by the numerical optimization algorithm is an approximation of the Reuleaux
triangle shown in Figure 5. Repeating the simulation using the gradient formulas for the
area given by (22) gives similar results. �

The following problem is inspired from [20]. The competition between area and perime-
ter implies that for some values of µ > 0 optimal shapes are polygons.

Problem 3. Given µ > 0 find solutions of

min{µ|ω| − Per(ω) : ω convex , diam(ω) = 1}.

Existence of solutions to this problem for µ > 0 follows from the Blaschke selection
theorem and the fact that a convex set of diameter 1 has an upper bound on the perimeter.
See Lemma 4.1, point 8.

Following the choice of the parameter µ, the solution changes. For µ > 0 small enough
the solution is the Reuleaux triangle, maximizing the perimeter for a given diameter and
minimizing the area. For µ large enough, the solution is a segment. For intermediary
µ, results of [20] imply that solutions are polygons. Implementing a numerical algorithm
for solving the problem is straightforward following ideas in Section 2. In particular, the
upper bounds on the diameter are imposed for all pairs of antipodal points, while the
lower bound is imposed for one pair of antipodal points. In Figure 6 results are shown
for µ ∈ {0.5, 1}. �
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Figure 6: Numerical approximations of solutions for Problem 3 for µ = 0.5, 1.

4.2 Dirichlet Laplace eigenvalues

Let us recall that for a Lipschitz domain ω the eigenvalues of the Laplace operator
with Dirichlet boundary conditions are defined by the equation{

−∆u = λu in ω
u = 0 on ∂ω

These eigenvalues form an increasing sequence 0 < λ1(ω) ≤ λ2(ω) ≤ .. ≤ λk(ω) → ∞.
When the shape ω is convex the first eigenvalue is simple, therefore we have λ1(ω) < λ2(ω).
Also it is classical that the Dirichlet-Laplace eigenvalues λk are decreasing with respect
to set inclusion: ω1 ⊂ ω2 implies λk(ω1) ≥ λk(ω2). Furthermore, the behavior of the
eigenvalues is well known for scalings: λk(tω) = λk(ω)/t2. See [16] for more details.
Using the scaling property one may note that minimizing λk(ω) under area constraint
is equivalent to minimizing λk(ω)|ω| without any constraints. Alternatively, minimizing
λk(ω) + |ω| we obtain optimal shapes that are the same (up to scalings) to the ones found
using the previous formulations.

An already classical optimization problem related to the Dirichlet Laplace eigenvalues
and the convexity constraint is the minimization of the eigenvalues under area and con-
vexity constraints. In particular, the minimization of the second eigenvalue was studied
in detail in [23], [15] and [4]. Therefore we formulate the following:

Problem 4. Minimize λk(ω)|ω| among convex sets.

Existence of solutions for problem (4) is proved in [14]. From the numerical point of
view, the convexity constraint is handled using the support function as shown previously
in Section 2. The gradient of the eigenvalues is computed with the formula (19) keeping
in mind that the shape derivative of a simple eigenvalue is given by

λ′k(K)(V ) =

∫
∂K

|∇uk|2V.n dσ

where uk is the L2 normalized eigenfunction associated to λk(ω). When the eigenvalue
λk is multiple, the shape derivative may not exist. However, when performing numerical
computations, eigenvalues are almost never multiple. Choosing the largest eigenvalue
from the approximate multiplicity cluster and using it in the shape derivative formula is
enough for our purposes. The above shape derivative formula is well defined for convex
sets since the corresponding eigenfunctions are in H2(K). The results of the numerical
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λ2 = 37.9855 λ4 = 65.2254 λ5 = 79.6561 λ6 = 88.5336

λ7 = 109.1017 λ8 = 119.2929 λ9 = 134.9261 λ10 = 142.9126

Figure 7: Minimization of the eigenvalues of the Dirichlet-Laplace operator under con-
vexity and volume constraints in dimension two.

minimization process using N ∈ {120, 180} are shown in Figure 7, together with the
optimal numerical value. It can be noted that the optimal shape for k = 2 presented here
is comparable to the one obtained in [4] and that the segments in the boundary are well
captured by the parametrization proposed here. In general, the values of the objective
function obtained with the current method are better than those in [2] since segments
in the boundary are better captured. The minimization of the third eigenvalue gives the
disk even without the convexity constraint as shown in [23], [3]. �

The minimization of the Dirichlet Laplace eigenvalues under diameter constraint was
considered in [8]. It can be proved that when restricting ourselves to the case of con-
stant width shapes, the maximization of these eigenvalues also makes sense. For more
theoretical aspects regarding the existence of solutions we refer to [2, 8].

Problem 5. Maximize λk(K) under constant width constraint:

max{λk(K) : p(θ) + p(θ + π) = w, p+ p′′ ≥ 0}

The existence of solutions for Problem (5) is proved as follows. In [18] Exercise 7-13
it is proved that the Reuleaux triangle minimizes the inradius among shapes having fixed
constant width. Denote this value by r > 0. Therefore, all shapes of constant width
contain a disk of radius r, showing that the Dirichlet-Laplace eigenvalues of shapes of
constant width have a finite upper bound. Coupling this with the Blaschke selection
theorem we obtain existence of solutions for Problem 5 for any k ≥ 1.

The computation of the Dirichlet-Laplace eigenvalues is realized using finite elements
and the convexity and constant width constraints are imposed as indicated in Section 2.
Numerical simulations indicate that the Reuleaux triangle is the solution to Problem 5
for 1 ≤ k ≤ 10. �

Sets of given minimal width w have an lower bound on the inradius [18, Exercise
6-2]. Therefore the corresponding Dirichlet-Laplace eigenvalues have an upper bound.
Restricting the sets to a closed bounded ball increases the Dirichlet-Laplace eigenvalues.
These considerations, together with the Blaschke selection lemma imply that the following
problem has solutions.
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Problem 6. Maximize λk(K) under minimal width constraint w:

max{λk(K) : p(θ) + p′′(θ + π) ≥ w, p+ p′′ ≥ 0}.

Numerical simulations, using the previously described numerical framework, show that
solutions to Problem 6 are equilateral triangles for 1 ≤ k ≤ 10. �

Numerical results regarding Problems 5 and 6 are in accord with extremality results
concerning the area functional, regarding the Reuleaux triangle in the class of shapes of
constant width and the equilateral triangle in the class of shapes with minimal width.
Exploiting the monotonicity of the eigenvalues with respect to inclusions might lead to a
theoretical proof of these new numerical conjectures.

4.3 General functionals

In this section we illustrate how the numerical framework applies to the problems
proposed in [5]. In the following Q is a compact convex subset of Rd. The problems of
interest are PDE constrained optimization problems of the form:

min

{
J(K) =

∫
K

j(x, u,∇u) : u ∈ H1
0 (K), −∆u = f in K, K convex, K ⊂ Q

}
, (23)

where j : Q × R × Rd → R satisfies suitable growth conditions. For d = 2, in [5, Prop.
3.1] it is proved that if |j(x, u, v)| ≤ a(x) + c(|u|p + |v|2) for c ≥ 0 and a ∈ L1(Q), p <∞
then problem (23) has solutions.

The theory regarding the shape derivatives of the functional appearing in (23) is
classical and recalled in [5]. In particular, it follows that

J ′(K)(V ) =

∫
∂K

(
j(x, u,∇u)− ∂u

∂n

∂p

∂n

)
V · n dσ, (24)

where u, p ∈ H1
0 (K) solve the problems −∆u = f and the adjoint problem −∆p =

−j′u(x, u,∇u) + div j′v(x, u,∇u). It is well known that for K convex the solutions u of
the state problem and p of the adjoint problem are in H2(K) [12]. This implies that the
integral in (24) is well defined.

In [5] the particular case j(x, u, v) = u was considered for the functions

f1(x1, x2) = 20(x1 + 0.4− x22)2 + x21 + x22 − 1 (25)

and

f2(x1, x2) = −1

2
+

4

5
(x21 + x2)

2 + 2
n−1∑
i=0

exp(−8((x1 − y1,i)2 + (x2 − y2,i)2))

−
n−1∑
i=0

exp(−8((x1 − z1,i)2 + (x2 − z2,i)2)) (26)

for n = 5, y1,i = sin((i + 1/2)2π/n), y2,i = cos((i + 1/2)2π/n), z1,i = 6
5

sin(i2π/n),
z2,i = 6

5
cos(i2π/n). This gives rise to the following:
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J(K∗) = -6.12084e-3 J(K∗) = -2.76243e-2

Figure 8: Solutions for Problem 7. The optimal shapes K∗ are represented and are
superposed with the corresponding function fi, i = 1, 2 defined in (25), (26).

Problem 7. Solve problem (23) for J(K) =
∫
K
u dx and f = fi, i = 1, 2 given in (25)

and (26).

Using the proposed numerical framework, it is straightforward to solve this problem
numerically. The finite element problems are solved using P2 finite elements in FreeFEM.
The resulting shapes together with the associated numerical optimal values are shown in
Figure 8. It can be observed that the functions f1, f2 are constructed such that the sets
{fi ≤ 0} are non convex. Minimizing the objective function forces K to be close to the
sets {fi ≤ 0}. On the other hand, the convexity constraint imposed on K is an obstacle
for this, which forces parts of the optimal sets K∗ to be segments. �

5 Alternative discretization: the Gauge function

A convex shape K with non-void interior is well characterized using a radial function
ρ : [0, 2π] → (0,+∞) with respect to an interior point O. The radial function verifies
ρ(θ) = |OXθ| where Xθ ∈ ∂K is the intersection of the line through O having direction
(cos θ, sin θ) with ∂K. Given a radial function ρ(θ) which is of class C2 at least, the
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curvature of K for the radial coordinate θ is given by

κ(θ) =
ρ2(θ) + 2(ρ′(θ))2 − ρ(θ)ρ′′(θ)

(ρ(θ)2 + (ρ′(θ))2)3/2
.

It can be readily checked that using the gauge function, defined by γ : [0, 2π]→ (0,+∞),
γ(θ) = 1/ρ(θ) the sign of the curvature κ(θ) is given by the sign of γ+γ′′. In other words,
if γ is of class C2 then γ is the gauge function of a convex set if and only if

γ(θ) + γ′′(θ) ≥ 0, for every θ ∈ [0, 2π]. (27)

As recalled in the introduction, the gauge function of a convex body is the support function
of the polar body K◦ = {y ∈ Rd : x · y ≤ 1,∀x ∈ K}.

As in the case of the support function, described in Section 2 we consider a discretiza-
tion θj = jh, 0 ≤ j ≤ N − 1, with h = 2π/N . The values of the gauge function at the
points θi are approximated by γi ≈ γ(θi). Note that by definition we have γi > 0. The
discretization of the convexity constraint (27) using centered finite differences gives

γi +
γi+1 − 2γi + γi−1

h2
≥ 0, for every 0 ≤ i ≤ N − 1. (28)

On the other hand, for three consecutive angles θi−1, θi, θi+1 we may consider the
triangle with vertices Ai = (1/γi)ri, with ri given in (10) and computing its oriented area
using (12) gives

Area(∆Ai−1AiAi+1) =
(γi−1 + γi+1 − 2γi cosh) sinh

2γi−1γiγi+1

. (29)

The Mathematica script performing the symbolic computation is given in the Appendix.
This implies that the rigorous convexity condition from the discrete point of view is

γi−1 + γi+1 − 2γi cosh ≥ 0, for every 0 ≤ i ≤ N − 1. (30)

In view of the equality 2 cosh = 2− h2 +O(h4), inequalities (28) and (30) are equivalent
up to a term of order O(h4). However, for small h (28) is a consequence of (30), but not
the other way around.

It can be observed that the rigorous discrete convexity constraint (30) is the same
as the rigorous discrete convexity constraint for the support function (17). Therefore,
given a set of parameters (pi)

N−1
i=0 = (γi)

N−1
i=0 , verifying the constraints (30), the discrete

shapes constructed using the proposed discretization for the support function and the
gauge functions are both convex.

The famous Mahler inequalities [9] study the bodies that minimize or maximize the
product of the volume of the body K with the volume of the polar body K◦. In view of
the previous observations, numerical tools can be constructed based on the support and
gauge functions, which can parametrize simultaneously a convex shape K and its polar
K◦ using a single set of parameters.

The aspects shown previously show that it is straightforward to implement the nu-
merical optimization of shapes with respect to the parameters γi, by imposing the linear
inequalities (30) in a numerical optimization software. A straightforward computation
shows that given the shape derivative formula (18) the sensitivity of the functional J with
respect to the parameter γi is given by

∂J(K)

∂γi
= − 1

γ2i

∫
∂K

f(x) ψi(θ(x))(n · ri)dσ. (31)
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λ2 = 37.986 λ5 = 79.644

Figure 9: Solutions for Problem 4 obtained using the gauge function together with optimal
numerical values at unit area.

The functions ψi are the same hat functions as the ones used in (19). In (31) θ(x) denotes
the angle of the point x in radial coordinates and n is the corresponding normal vector.

Remark 5.1. The characterization of discrete convex shapes using the gauge function
is more straightforward compared to the support function. However, diameter or witdh
constraints cannot be handled in a direct way as it was the case for support functions.

Recall that support function has singularities when segments are present in the bound-
ary. The gauge function is not singular on segments, but has singularities at corners.

We conclude this section with a few numerical examples. As in the case of the support
function, FreeFEM is used for solving the PDEs involved in the computation of the objec-
tive function and IPOPT is used for handling the optimization process and the constraints.

In Figure 9 solutions to Problem (4) for k ∈ {2, 5} obtained using the parametrization
based on the gauge function are presented. It can be observed that results are comparable
with those in Figure 7 and segments in the boundary are captured efficiently.

The recent article [21] shows that in the class of convex sets, the maximization of
the first Dirichlet-Laplace eigenvalue with inclusion constraints is well posed and any
maximizing set is polygonal in the free region. However, the optimal shapes are not
known in general. This motivates the numerical study the following problem.

Problem 8. Given open convex sets D1 ⊂ D2 and c ∈ (|D1|, |D2|) solve

max{λ1(ω) : ω convex , D1 ⊂ ω ⊂ D2, |ω| = c}.

The numerical setting is strictly similar as the one used in Problem 4. The discretiza-
tion of the shape is realized using the gauge function. We consider the case where D1 is
the unit disk centered at the origin and D2 is the disk of radius 2 centered at the origin.
We illustrate in Figure 10 results obtained for c ∈ {π+ 0.3, 3

√
3}. In particular, c = 3

√
3

corresponds to the equilateral triangle inscribed in D2 whose incircle is D1. Of course,
one can study in detail the behavior of the solutions with respect to the volume constraint
c, but this is not he main purpose of this article. �

In the following we consider problems involving functionals depending on the convex
body K and its polar K◦, that combine the usage of the support and the gauge function.
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Figure 10: Results for Problem 8 when c ∈ {π + 0.3, 3
√

3} and D1, D2 are concentric
disks of radii 1 and 2.

|K| · |K◦| = 6.750 |K| · |K◦| = 8.000

Figure 11: Numerical minimizers obtained for Problem 9.

Problem 9. Minimize |K| · |K◦| when
� K is convex and symmetric with respect to the origin.
� K is a general convex body containing the origin.

In view of the results shown in [9] the solutions to the problem above are parallelograms
and triangles having the centroid at the origin, respectively. In the numerical algorithm
the body K is parametrized using the support function as described in Section 2 while
its polar body K◦ is characterized using the gauge function with the same parameters.
The functional being scale invariant, pointwise upper and lower bounds are imposed
for every variable in the parametrization to improve the stability of the optimization
algorithm. The symmetry with respect to the origin is implemented by choosing an even
number N of equidistant parametrization angles and parameters which verify pi = pi+N/2,
i = 0, ..., N/2−1. The results given by the numerical algorithm are given in Figure 11 and
they coincide with the analytical ones discussed in [9]. In particular, the minimization
in the class of convex sets symmetric with respect to the origin gives a parallelogram,
while the minimization in the class of general convex bodies containing the origin gives a
triangle. �

6 Conclusions

This paper illustrates how the support function and the gauge function can be used
to approximate solutions to two dimensional shape optimization problems among convex
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sets. Compared to the previous works [2], [7], the methods proposed here can capture
well the presence of segments in the boundary. Compared to [25] a rigorous discrete
convexity condition is found and implemented. The only constraint for functionals to be
optimized with the proposed method is the existence of the shape derivative in the form
(18). Therefore, functionals involving solutions of partial differential equations can be
efficiently handled.

From a practical point of view the parametrizations involving the support function
and the gauge function have similar complexity, notably the discrete convexity condition
being the same. There are, however, some differences which we underline below:
� The support function allows to easily formulate width, constant-width and diameter

constraints. Inclusion constraints can be easily formulated using both parametrizations.
� Support functions have singularities for segments in the boundary, while gauge functions

have singularities at corners (or angular points).
While discontinuities in the derivative can be handled by the proposed method, the dis-
cretization method should be chosen to be best adapted to the problem studied. For
example: if the solution is not expected to have segments in the boundary, the sup-
port function can be used; if the solution is not expected to have angular points in the
boundary, the gauge function can be used.

A wide range of applications is given, illustrating the versatility of the method for the
study of two dimensional problems. Codes used for some of the problems illustrated in
the article are available at https://github.com/bbogo/ConvexSets.
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A Code for symbolic computations

In order to avoid writing the tedious computations leading to the formulas (14), (16),
(29), scripts performing the equivalent symbolic computations in Mathematica are pro-
vided below.

Mathematica script for the computation (14):

p0 := (\[Rho]1 - p1)*h^2 + 2 p1 - p2

p4 := (\[Rho]3 - p3)*h^2 + 2 p3 - p2

p2 := (p1 + p3 - \[Rho]2*h^2)/(2 - h^2)

x1 := p1*Cos[t - h] - q1*Sin[t - h]

y1 := p1*Sin[t - h] + q1*Cos[t - h]

x2 := p2*Cos[t] - q2*Sin[t]

y2 := p2*Sin[t] + q2*Cos[t]

x3 := p3*Cos[t + h] - q3*Sin[t + h]

y3 := p3*Sin[t + h] + q3*Cos[t + h]

q1 := (p2 - p0)/(2*h)

q2 := (p3 - p1)/(2*h)
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q3 := (p4 - p2)/(2*h)

S:= 1/2*((x2 - x1)*(y3 - y2) - (x3 - x2)*(y2 - y1))

A = Series[TrigReduce[S], {h, 0, 3}]

Mathematica script for the computation (16):

p0 := \[Rho]1*(2 - 2 Cos[h]) + 2*Cos[h]*p1 - p2

p4 := \[Rho]3*(2 - 2 Cos[h]) + 2*Cos[h]*p3 - p2

p2 := (p1 + p3 - \[Rho]2*(2 - 2 Cos[h]))/(2*Cos[h])

x1 := p1*Cos[t - h] - q1*Sin[t - h]

y1 := p1*Sin[t - h] + q1*Cos[t - h]

x2 := p2*Cos[t] - q2*Sin[t]

y2 := p2*Sin[t] + q2*Cos[t]

x3 := p3*Cos[t + h] - q3*Sin[t + h]

y3 := p3*Sin[t + h] + q3*Cos[t + h]

q1 := (p2 - p0)/(2*Sin[h])

q2 := (p3 - p1)/(2*Sin[h])

q3 := (p4 - p2)/(2*Sin[h])

S:= 1/2*( (x2 - x1)*(y3 - y2) - (x3 - x2)*(y2 - y1))

A = Simplify[TrigReduce[S]]

Mathematica script for the computation (29):

x1 := 1/\[Gamma]1*Cos[t - h]

y1 := 1/\[Gamma]1*Sin[t - h]

x2 := 1/\[Gamma]2*Cos[t]

y2 := 1/\[Gamma]2*Sin[t]

x3 := 1/\[Gamma]3*Cos[t + h]

y3 := 1/\[Gamma]3*Sin[t + h]

S:= 1/2*( (x2 - x1)*(y3 - y2) - (x3 - x2)*(y2 - y1))

A = Simplify[TrigExpand[TrigReduce[S]]]
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