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Chapter 1

Introduction

1.1 General aspects: shape optimization and modelization

In this memoir I present various results concerning shape optimization problems, i.e. op-
timization problems where the variable is a shape. A typical formulation for such problems is
given by

min
Ω∈Uad

J(Ω), (1.1)

where Uad represents the class of admissible shapes denoted by Ω, including possible constraints.
When studying shape optimization problems, many classical questions like the existence and

regularity of optimal shapes are not straightforward. Such results depend on the proper choice
of a topology on the class of admissible shapes Uad. Classical monographs [71], [52], [2], [36]
show how to handle such difficulties. Ideally one would like to find explicit solutions to problems
of the form (1.1), however this can rarely be done. Therefore, finding numerical approximations
of optimal shapes is of great interest from both theoretical and practical reasons. My work deals
with a diverse range of aspects regarding shape optimization problems, as underlined below.

Theoretical aspects presented in my work include results regarding the existence of op-
timal shapes (for example [A1], [A2], [A3], [A25]) and regularity of optimal shapes [A4]. The
computation of shape derivatives is also an essential aspect, with theoretical and numerical im-
plications [A3], [A5], [A6]. In particular, in [A7] I worked on the computation of first and second
shape derivatives on polygonal domains, together with other theoretical aspects, motivated by
the Polyà-Szegö conjecture (more details are given in Chapter 5).

Numerical simulations play an important role when dealing with shape optimization
problems. From a practical or industrial point of view, optimization algorithms can improve
a given design by decreasing the objective function, usually related to manufacturability or
final usage constraints. From a theoretical point of view, simulations may indicate qualitative
properties of the optimal shape or even suggest meaningful conjectures that can lead to new
proof strategies.

Modelization aspects play a fundamental role for rendering theoretical and numerical as-
pects from shape optimization useful from an industrial point of view. A key aspect for develop-
ing a successful modelization strategy is the constant interaction with the industrial partners. I
had the opportunity to experience this in the SOFIA project (described in Section 2.2), regroup-
ing multiple industrial and academic partners around topics related to metal additive manufac-
turing techniques. The research work that resulted from this experience will be presented in
Chapter 2.

In my research work after my PhD defense I dealt with various aspects related to shape
optimization problems. In the following, two classifications of my works are provided, under-
lining the associated contributions. The first classification is related to the final purpose of
the methodology, while the second is related to more concrete aspects underlining the discrete
representation of shapes in numerical practice.

7



8 CHAPTER 1. INTRODUCTION

1.2 First classification: final purpose of the methodology

I. Improve a given design preserving practical constraints. From an industrial point
of view, this is a meaningful objective, as the cost function to be minimized is often related
to fabrication costs. One may also underline that numerical shape and topology optimization
methods are used in this context even when there exists no optimal shape. This aspect leads
to potential numerical difficulties, as the optimal design obtained numerically often depends on
the initialization and on the mesh used to describe the shape. Classical aspects related to such
ideas are presented in [7], [2], [21].

I started working on this type of problems during my postdoc in the SOFIA project super-
vised by Grégoire Allaire. The SOFIA project dealt with various aspects related to metal based
Additive Manufacturing (AM) processes. I worked on the optimization of support structures.
One particularity of this work was the strong connection with the industrial partners. The reg-
ular exchanges with these partners helped us tune our models and propose solutions that were
in accord with the desired fabrication constraints.

I collaborated on this subject with G. Allaire, Martin Bihr (PhD student in co-supervision
with G. Allaire) and Matias Godoy-Campbell (postdoc in the SOFIA project in co-supervision
with G. Allaire) and these collaborations lead to the following publications: [A8], [A9], [A5],
[A10], [A11].

II. Find new directions for theoretical study, confirm and propose conjectures.
Imposing convexity of admissible shapes often leads to straightforward proofs of existence of
optimal shapes. However the complete analytic descriptions of such optimal shapes are often
unavailable. Numerical optimization algorithms can efficiently approximate such optimal shapes
and give concrete ideas motivating the theoretical study.

A first example illustrating this concept is the article [A12] in collaboration with Antoine
Henrot and Ilaria Lucardesi, where we study two dimensional shapes minimizing the k-th eigen-
value of the Dirichlet-Laplace operator when a diameter constraint is imposed. During our
study, multiple back-and-forth exchanges between numerical computations and theoretical ob-
servations helped us advance towards the goal. The diameter constraint, contrary to well studied
volume [35], [102] and perimeter constraints [51], [A13], is non-local and the disk becomes a lo-
cal minimum for a larger number of indices k. A similar approach is employed for the Steklov
eigenvalues in the paper [A2] in collaboration with A. Al Sayed, A. Henrot and F. Nacry.

Motivated by the interest researchers have in the use of numerical tools for approximating
convex optimal shapes, together with Pedro Antunes we worked in [A1] on a two and three
dimensional numerical framework where the support function of a convex set is approximated
using a truncated spectral decomposition. The numerical framework was generalized even further
in [A14] (only in dimension two), where arbitrary convex shapes, including those having segments
in the boundary, can be efficiently approximated.

III. Prove that a given shape is optimal. Using numerical tools to prove a shape is
not optimal, generally amounts to finding a counter example: an optimization algorithm needs
to find a shape with a smaller value than the conjectured one. Unfortunately, the opposite
situation occurs most of the time: the numerical optimization algorithm finds the conjectured
shape. Confirming such conjectures validates and motivates the theoretical ideas, but is not
enough to prove that the shapes obtained numerically are optimal.

It is possible, nevertheless, to imagine a strategy that could prove that a given shape is
optimal with the aid of numerical tools. Suppose that the shape S∗n depends on n real parameters.
Consider the following steps:

� Prove that S∗n is a local minimizer: compute analytically the associated Hessian matrix and
conclude that it is positive definite (in a proper sense that takes into account the eventual
constraints). If no theoretical proof of positivity of the Hessian is available, numerical
tools can be employed.

� Prove that shapes far away (in a sense to be defined) from S∗n cannot be minimizers. This
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is usually a consequence of explicit theoretical bounds on various geometric quantities of
potential minimizers.

� Identify precisely the bounded region which is not covered by the previous two steps and
devise a strategy to show through a finite series of validated numerical computations that
no minimizer exists in this region.

All computations involved in the above strategy should be validated, in the sense that all errors
need to be accounted for: discretization errors related to numerical PDE approximation methods
(finite elements), errors related to machine representation (use of interval arithmetics).

Together with Dorin Bucur we show in [A7] that such a strategy can be used for a well
known conjecture due to Polya and Szegö:

The regular n-gon minimizes the first eigenvalue of the Dirichlet-Laplace operator among
n-gons having fixed area.

Despite its simplicity, this question is still unanswered for n ≥ 5. In [A7] we make a se-
ries of initial steps towards a hybrid proof, including the computation of the Hessian matrix
when considering vertex coordinates as variables, the computation and validated numerical ap-
proximation of the eigenvalues of the Hessian matrix, formal reduction of the proof to a finite
number of validated numerical computations. This initial work opens the way to a series of new
perspectives from both theoretical and numerical points of view.

1.3 Second classification: choice of discretization method

From a numerical point of view, the variable shapes Ω in (1.1) need to be described starting
from a finite number of parameters. The choice of discretization should be rich enough to allow
the representation of a family of shapes that is as large as possible. Moreover, the constraints
that are present make some choices of representation more advantageous than other ones. Below
I give a short description of the discretization methods used in my work.

(a) Explicit parametrization. Having a precise and explicit parametrization of the bound-
ary gives access to the complete geometric information regarding the given shapes. This allows
the use of precise numerical approximation techniques (for example, fundamental solutions for
solving PDEs) and of more advanced numerical optimization algorithms (LBFGS, IPOPT). On
the other hand, such parametrizations are available only when the admissible shapes are simple
enough. For example, when considering star-shaped domains [A13], [A3], [A6] or convex domains
[A12], [A1].

(b) Density functions. Explicit parametrizations described previously limit the complex-
ity of the shapes that can be represented. Explicit representations become too tedious when
dealing with optimal partitioning problems. In order to capture arbitrarily complex shapes one
may consider a bounding domain D and represent a shape ω ⊂ D using its characteristic func-
tion χω : D → {0, 1}. In practice it is more convenient to relax the parametrization and allow
a transition zone using density functions ϕ : D → [0, 1]. In addition to the arbitrary complexity
of the shapes (depending on the mesh or discretization of the bounding box D), partitioning
conditions are straightforward in this case: the sum of the associated densities is identically
equal to 1.

Density based methods are classical and one may cite the famous SIMP method described
in [21]. One drawback of this method is the use of a penalization technique to extract a shape
from the optimal density function. One particularity of my work is that problems we studied are
self-penalized in the sense that the minimization in the class of relaxed densities with values in
[0, 1] or even R leads naturally to densities that are close to characteristic functions. This self-
penalization phenomenon is due to some double well potential terms appearing in Γ-convergence
approximations or to the concavity of the dependence of the objective functions in the density
ϕ.

I use density functions representations in the following works:
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� Minimization of sums and p-norms of the fundamental eigenvalues for the cells
of a partition. A first work in this direction is [A15] in collaboration with V. Bonnaillie-
Noël (while I was a postdoc at Ecole Normale Supérieure Paris) where we investigated the
behavior of optimal partitions up to 10 cells of some planar domains. One particularity
of this work, further investigated and improved in [A16], is the use a truncation of the
computational domain to accelerate the computation of the first eigenvalue associated to
a density ϕ : D → [0, 1]: only nodes and neighbors of the set {ϕ > ε} are used in the PDE
computation, significantly improving the convergence speed of the optimization algorithm
compared to the original algorithm in [32].

� The study of Cheeger sets and clusters. Together with D. Bucur and I. Fragalà
we worked in [A17] on a Γ-convergence approximation for α-Cheeger sets and clusters.
In particular, we obtain a variational method for investigating circle and sphere packings
which avoids the usual combinatorial difficulties of a direct approach.

� Maximiziation of the minimal perimeter of a partition. Together with E. Oudet, we
worked in [A3] on maximizing the minimal perimeter of a partition of a two or three dimen-
sional domain. During the optimization process, numerical optimal partitions minimizing
the total relative perimeter are computed at every iteration. The classical Modica-Mortola
Γ convergence result [97] is used for approximating the minimal total relative perimeter.

(c) Level-set representation. The use of density functions as a numerical representation
method leads to difficulties in identifying the actual boundary of the associated shape. A
penalization method [21] or some heuristical method, for example choosing a threshold of the
density, need to be used. The level-set method introduced by Osher and Sethian [101] and
used successfully in structural optimization [7] consists of considering a bounding domain D
and a function φ : D → R. The shape parametrized by φ is the level-set ω = {φ ≤ 0} (the
sign convention is a choice). Given a shape ω ⊂ D, one natural choice of level-set function is
the signed distance function dω, defined as the distance to the boundary ∂ω with positive sign
outside and negative sign inside. This choice allows to recover easily geometric information on
ω: ∇dω gives the normal vector, ∆dω gives the mean curvature, etc. Efficient algorithms were
devised in [113], [40], [50] for re-initializing a level-set function as a distance function and for
advecting a level-set function using a vector field.

I use level-set methods in all articles related to industrial applications for additive manufac-
turing [A8], [A9], [A10], [A11], [A5].

1.4 Co-advising of young researchers

PhD thesis of Martin Bihr: 2019-2022. [23] I co-advised this thesis together with G.
Allaire. This PhD thesis was a CIFRE1 thesis at Safran Tech. On the industrial side, the thesis
had the following advisors: X. Betbeder-Lauque, F. Bordeu, J. Querois from Safran.

The subject of the thesis is the optimization of the shape and support structures for designs
in additive manufacturing for SLM technologies. Various results obtained in this thesis are
presented in Sections 2.3, 2.5 and are the subject of publications [A9], [A5].

Postdoc – Matias Godoy: 2019-2022. This postdoc which I co-advised together with
G. Allaire was financed by the SOFIA project (described in Section 2.2).

The subject of the postdoc was the study of shape optimization problems for imperfect
interface problems, motivated by practical aspects related to support structures in additive
manufacturing. The work is described in Section 2.6 and is the subject of the papers [A10],
[A11].

Phd thesis of Richard Joly: 2022–. I am a co-advisor together with G. Allaire of this
CIFRE PhD thesis in collaboration with Total. The subject of the thesis is the optimization of

1Conventions industrielles de formation par la recherche
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batteries.
Summer internship of Mehdi Makni: 2021. I advised this internship during Mehdi’s

second Bachelor year. The goal of the internship was to further develop aspects I taught in
the course MAA209 (Introduction to numerical Optimization) for Bachelor students. During
the internship Mehdi worked on the implementation in Python of several algorithms related to
spectral partitioning problems described in Section 4.4 and in particular the one shown in [A16].

1.5 Code production

I uploaded on Github the codes used for the simulations in some of my articles. More precisely:
� The following toolbox used in [A17] can be used to approximate numerically Cheeger sets

and optimal Cheeger patches. More details are given in Section 4.3.

https://github.com/bbogo/Cheeger_patch

� The following repository

https://github.com/bbogo/LongestShortestPartitions

contains codes used in [A3]. It features a Python Jupyter Notebook used to compute
Voronoi diagrams with prescribed cell areas and minimal perimeter. In particular, the
sensitivities of the areas and perimeters of individual Voronoi cells with respect to the
position of the Voronoi points are computed. The second part contains FreeFEM codes
used for the maximization of the minimal relative perimeter of a partition. The context
and more details are given in Section 4.2.

� The repository

https://github.com/bbogo/ConvexSets

contains codes related to the paper [A14]. The discretization method described in Sec-
tion 3.4 is implemented in FreeFEM [66] and is used to solve numerically various shape
optimization problems under convexity and width constraints.

� A set of smaller code samples related to papers [A7], [A24], [A20] can be found on my
webpage:

http://www.cmap.polytechnique.fr/~beniamin.bogosel/software.html

1.6 Structure of the memoir and List of Publications

The memoir is structured into chapters underlining some of my main contributions to this field
and relating them to the two classifications provided previously. Each chapter concludes with
a list of perspectives, underlining the new possible lines of research opened by the presented
works.

Chapter 2 deals with the optimization of the shape and topology of part and support
structures in Additive Manufacturing. I started working in this field in collaboration with G.
Allaire in the SOFIA project. The chapter starts with a brief introduction to AM providing
the relevant modelization issues motivating our work. A first step in the modelization for
optimizing support structures in AM is proposed in [A8]. Following the feedback from the
industrial partners, we refine our models and propose methods for optimizing the orientation
of the part to be fabricated in [A9]. The PhD thesis of M. Bihr leads to the work [A5], where
a simplified process simulation method based on the inherent strain method allows to optimize
the part and supports related to various thermo-mechanical criteria.

Post-processing of the contact regions between the part and support structures can be costly.
Sometimes an imperfect bonding between part and supports is desirable. In collaboration with

https://github.com/bbogo/Cheeger_patch
https://github.com/bbogo/LongestShortestPartitions
https://github.com/bbogo/ConvexSets
http://www.cmap.polytechnique.fr/~beniamin.bogosel/software.html
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G. Allaire and M. Godoy, we study shape optimization problems involving two phases with
imperfect bonding in the articles [A10], [A11].

Chapter 3 presents numerical aspects related to shape optimization under convexity con-
straints. The support function is the main tool used, allowing to transform the geometric con-
vexity constraint into a functional one. An initial numerical framework using truncated spectral
decompositions is presented, based on the works [A12], [A1].

A main drawback of using truncated spectral decompositions is the implicit assumption of
strict convexity. On the other hand, the saturation of the convexity constraint appears naturally
in many cases: segments in the boundary need to be taken into account. A second approach is
provided, considering the values of the support function on a discretization of [0, 2π], based on
the articles [A2], [A14].

Chapter 4 presents aspects related to numerical optimal partitions and multiphase prob-
lems. One particularity of the numerical methods presented in this chapter is the use of densities
to represent shapes.

The use of Γ-convergence results together with density representation of shapes allows us
to study optimal α-Cheeger clusters in [A17] and to maximize minimal perimeter partitions in
[A3].

In papers [A15], [A16] an improvement of the algorithm introduced in [32] is proposed. The
improved algorithm allows to efficiently find optimal partitions minimizing sums of fundamental
eigenvalues of each cell for many cells and even in dimension three. Partitions minimizing the
maximal fundamental eigenvalue of the cells are of particular interest in [A15] and further aspects
in this direction are discussed in [A18].

Chapter 5 presents the strategy for a hybrid proof of the polygonal Faber-Krahn inequality
based on the paper [A7] in collaboration with D. Bucur. Following [88], we compute the second
derivative of a simple eigenvalue of the Dirichlet-Laplace operator. Using distributed volumic
integrals only Lipschitz regularity is required for the shape and perturbation fields. This allows
us to obtain the Hessian of the first eigenvalue of a polygon, taking the vertex coordinates as
variables. Furthermore, the eigenvalues of the Hessian matrix are computed and explicit error
bounds are given for their approximations using finite elements. Numerical simulations show
that the regular polygon is a local minimizer. Various theoretical estimates allow us to show
that the proof of the Polyà-Szegö conjecture can be reduced to a finite number of validated
numerical computations.

The following papers are not presented in this memoir:
� Papers related to my PhD thesis: [A13], [A19], [A20], [A21], [A22], [A23], [A4].
� In [A24], together with V. Perollaz, K. Raschel and A. Trotignon, we study the critical

exponents of a class of random walks. The main tool used is the computation of the fun-
damental eigenvalue of the Laplace-Beltrami eigenvalues for particular spherical triangles.

� In [A6] together with T. Giletti and A. Tellini we study the behavior of the spreading speed
for KPP bulk-surface systems with respect to the shape of the section of the cylindrical
domain.

� In [A25] together with P. Antunes we consider the optimization of the low eigenvalues of
the Steklov-Lamé operator. We investigate theoretical questions related to existence of
minimizers and we perform numerical computations of optimal domains.

� In [A26], which is an expository paper, I present a new geometric proof of a theorem of
Siebeck and Marden linking the roots of a cubic polynomial to the roots of its derivative
via geometric arguments.
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Chapter 2

Design optimization for additive
manufacturing

2.1 Introduction

Shape and topology optimization methods introduced new ways of designing parts to be used in
industrial applications. Structural optimization methods modify the design such that volume or
some other relevant constraints are preserved, while the objective function corresponding to some
practical quantity of interest is diminished. Pioneering works in this sense use methods inspired
from homogenization [21] and the level-set method [7], [118]. Nevertheless, such automatic design
methods often produce shapes with complex topologies, which are difficult, if not impossible, to
manufacture using conventional fabrication methods (molding, casting). For manufacturability
purposes, additional constraints were considered and applied during the optimization process.
Among these I mention thickness constraints [6], molding direction constraints [5], geometric
and architectural constraints [49].

The rise of Additive Manufacturing (AM) technologies in recent years made possible the
construction of arbitrarily complex parts. There exist many such fabrication technologies, the
main characteristic being that the initial design is divided into slices which are built successively
on top of each other. The complex designs proposed using shape and topology optimization be-
came realizable, at least in theory. From a practical point of view, designs containing significant
horizontal regions (called overhang regions in the sequel) cannot be fabricated. The type of
AM technology used (polymer, selective laser melting – SLM) raises particular limitations and
constraints. In order to alleviate the constraints and render the design realizable, two options
are available: modifying the shape of the fabricated part or adding support structures.

I started working on shape optimization ideas related to AM when I became a postdoc in
the SOFIA project, in collaboration with Grégoire Allaire at CMAP. The subject of my work
was the optimization of the shape and of the topology of support structures in SLM fabrication
processes. Initial works dealing with shape optimization for AM optimize the constructed part
ω so that the fabrication process can succeed. It is generally agreed that large unsupported
surfaces that are almost horizontal cannot be constructed correctly using AM (using polymer
or SLM technologies). Constraints related to the control of the size of overhanging regions can
be formulated either in a direct geometric way [119], [3] or using modelization aspects based on
the mechanical behavior of the part during the build process [3]. The novelty of our approach
is that for a fixed part ω we consider adding optimized supports S such that manufacturability
requirements are achieved for the whole structure S ∪ω. The fact that ω is fixed is a constraint
which is imposed in various applications where the design of the part cannot be modified to
render it feasible using AM techniques.

One main aspect of my work was meeting with industrial partners (AddUp, Safran, Zodiac,
Volume) and learning from their practical experience how to design and adapt our simulation
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and optimization models to the industrial requirements. Multiple such exchanges allowed us to
obtain results having an impact on the industrial applications.

Given a fixed design ω and a design region D, containing ω, modeling the build chamber,
we consider variable supports S ⊂ D \ ω that are subject to optimization. One natural way
to obtain optimized support structures S is to minimize an objective function related to the
displacements provided by the linearized elasticity equation. The loading forces and boundary
conditions considered are inspired by the practical configuration of the part to be manufactured
and model the behavior of the part/support structure during the manufacturing process. The
nature of the forces considered lead to different results as illustrated in the following. In [A8]
we consider optimizing supports to counteract the action of the gravity on the part, modeled
by a volumic force in the elasticity equation acting inside of the part ω. In [A9] we study how
the orientation of the part influences the need of support structures. We also investigate how
the use of surface forces (modeling gravitational effects on overhangs or displacements induced
by thermo-mechanical deformations) change the behavior of the supports. Various technical
difficulties were encountered at this stage: handling STL files (containing a triangulation of the
surface of the part to be fabricated) and constructing fitted meshes around the part, obtaining
the design space for the supports. The software FreeFEM [66] and the re-meshing library MMG
[48] were intensively used.

In Section 2.2 practical aspects regarding the SLM manufacturing process are presented,
motivating the models proposed in the next sections. Section 2.3 deals with the optimization of
the orientation of the part with respect to various aspects related to AM and support structures.
In Section 2.4 an initial model is presented, where supports are optimized in order to counteract
the gravitational forces acting in the interior of the design. A refinement of this model is given,
applying surface loads mimicking the gravity on overhang regions. Compared with the previous
model, the second one produces supports that touch all regions that are in overhang.

Section 2.5 presents a summary of the work done in the thesis of Martin Bihr [23] (CIFRE
thesis at Safran Tech) which I co-supervised with Grégoire Allaire. A simplified process simula-
tion for SLM printing is proposed, based in the inherent-strain method. This model is efficient
and manages to capture the thermo-mechanical effects present during the manufacturing process.
Various criteria are investigated, among which I mention: the Von Mises stress, the maximal
vertical displacement of the structure for each layer, the vertical displacement of the part re-
leased from the fabrication plateau. This work lead to the publication [A5] and various aspects
were validated experimentally, since a plateau with optimized shapes for various criteria was
fabricated using a SLM machine at Safran.

Section 2.6 presents the work done in collaboration with Matias Godoy and Grégoire Allaire
regarding imperfect interface models. To improve the post-processing of parts, including the
removal of supports, sometimes an imperfect part-support interface is used. We investigate
mechanical models where the contact region between two materials is imperfect, i.e. the global
structure is less rigid along the interface. We study these models in the context of shape and
topology optimization, studying the corresponding shape derivatives and proposing numerical
methods for approximating solutions to the associated PDEs. This work lead to the articles
[A10] and [A11].

2.2 Practical aspects regarding support structures

In our work we focus on SLM (selective laser melting) AM fabrication processes, motivated by
the interest of the industrial partners in the SOFIA project. In most of this chapter we suppose
that the design of the fabricated part is given and we may modify its orientation or add support
structures to facilitate its construction. Given a part ω to be fabricated, the design is divided
into slices which are constructed successively on top of each other (see Figure 2.1).

The SLM fabrication process is described as follows:
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Figure 2.1: Design cut into horizontal slices (left). Graphical description of an SLM machine.

� The fabrication takes place in a rectangular box D, called the build chamber. The lower
face of this box is called the baseplate, usually denoted with ΓD in the sequel.

� A thin layer (typically 50 microns) of metal powder is deposited on top of the existing
structure using a roller.

� The laser melts the metal powder on the regions corresponding to the current slice. The
melted metal cools down and fusions with the existing structure.

� The structure is lowered and the process is repeated until all slices are constructed.

Already it can be noted that contrary to polymer AM technologies, the space outside the part
to be fabricated is filled with metal powder. The metal powder is a poor heat conductor, acting
almost as an insulator. Moreover, the powder does not act as a support and melting parts of
the current layer that are in overhang may lead to bubbling and poor surface quality of the
constructed part.

Given a part ω and an orientation, the success of the fabrication process is not guaranteed.
The SLM fabrication process is costly, with the cost being distributed between the metal powder
used and the machine printing time. It is agreed that roughly 90% of the cost is the machine
printing time, due to their high production and maintenance cost. There are various reasons that
can lead to process failure, which we describe below. We learned about these reasons discussing
with the industrial partners in the SOFIA project: AddUp, Fusia, Safran, Zodiac, Volume.

(i) Inclined surfaces. It is generally agreed, based on the practical experiences, that for
a given metal there exists an angle β such that surfaces making an angle less than β with the
horizontal plane (parallel to the baseplate) cannot be constructed. The threshold angle β is
determined experimentally and depends on the machine and the metal powder used. We have
two ways of optimizing the construction of inclined surfaces: choosing a proper orientation that
minimizes the surface area of overhang regions or adding support structures for these overhang
regions.

(ii) Thermo-mechanical deformations. The metal powder is melted on top of the exist-
ing structure. This leads to large thermal gradients. As the current slice cools down, it shrinks
leading to a horizontal contraction that affects the global part. Overhanging regions are espe-
cially subjected to such constraints and, contrary to the intuition, they can be pulled upwards
when the horizontal slices contract. (see Figure 2.2) The corresponding vertical deformations
of the part are problematic since the deformed part may interfere with the powder deposition
system. (see Figure 2.2) A collision of the part with the roller may lead to the deformation of the
part, may produce damage to the roller or can simply stop the fabrication process altogether.
Even if the fabrication process completes successfully it is possible that the thermo-mechanical
stresses in the part may lead to large deformations or cracks. (see Figure 2.2)

(iii) Contact or friction with the powder deposition system. At the powder deposi-
tion stage, the roller may exert important friction forces on the part due to the thinness of the
current powder layer. The magnitude of the exerted force is proportional to the contact surface
between the roller and the part. It is generally agreed that the orientation of the part should
be chosen such that there are as few regions as possible parallel to the roller.

Support structures are added to alleviate these potential problems. Nevertheless, the sup-
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Figure 2.2: (left)Vertical deformation of overhanging regions during SLM fabrication process.
(right) Cracks appearing during the SLM fabrication process, due to large thermal stresses.

ports come with a cost. First of all, there is an additional consumption of metal powder and
printing time motivating the construction of supports that are as light as possible. Secondly,
support structures are removed at the end of the fabrication process and the contact region
between the part and supports often needs to be post-processed, leading to additional costs.

Support structures are melted from the same metal powder. Therefore, they have the same
material properties. However, it is possible to design support structures that have a lattice
structure, leading to different mechanical behavior compared to the fabricated part. It is gen-
erally agreed in the industrial practice that full supports give best behavior for preventing the
vertical displacement of overhang parts and they conduct heat better to allow a more efficient
cooling process.

2.3 Optimization of the orientation

Given a shape ω ⊂ R3 to be printed, it can be observed that changing its orientation may change
the quantity of supports needed for its fabrication. Moreover, choosing the proper orientation of
a part to be printed is the first step of the fabrication process. Below, we discuss a few criteria
that can be used, motivated by the practical observations from the industrial collaborators.
These criteria are presented in detail in [A9].

� Minimize the area of overhang regions. Given a threshold angle β, for each orienta-
tion of the shape ω one can compute the area of the overhang regions. The area can be
expressed as a boundary integral on ω and for simplicity one may fix ω and consider the
build direction ~d ∈ S2 variable (depending on the orientation) leading to the function

G1(~d) =

∫
∂ω
H(~n · (−~d)− cosβ)ds,

where H is the Heaviside function. Replacing H with a smooth approximation leads to a
differentiable function, whose gradient can be used for a more efficient local-optimization.

This formulation can take into account regions for which supports are not wanted. Such
a constraint may arise from accessibility issues or due to constraints related to the quality
requirements for certain surfaces of the final design. In practice, it is enough to add a
weight function in the above integral, penalizing such regions.

� Minimize the projected area on a given plane. The motivation for this cost func-
tional is twofold. First, for some applications, multiple parts need to be built during the
same fabrication process. To optimize the packing of the parts on the baseplate, the pro-
jected area of the part should be as small as possible. Secondly, minimizing the projected
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area on the plane of the roller will decrease the forces induced by the roller on the built
part. For simplicity, we consider the following formula

G2(~d) =

∫
∂ω

(~n · ~d)+ds,

for the projected area with eventual repetition. As before, replacing the positive part with
a suitable regularization gives an approximate gradient useful for local optimization.

One may observe that rotating the shape around the vertical axis does not change the
overhang regions, i.e. G1(~d). Therefore, one can combine the two criteria presented up to
this point: find the initial orientation minimizing the overhang areas and afterwards find
the optimal orientation around the vertical axis for which the projection of the plane of
the roller is minimized. See Figure 2.4 for an example.

� Minimize the volume of vertical supports. Consider the overhang region Γβ(∂ω)

and compute the volume G3(~d) underneath it, i.e. the vertical cylindrical region under
overhanging regions. This gives a rough estimate of the quantity of supports needed
to support the overhangs. Ray casting can be used to approximate this volume for a
given orientation. Rays are sent towards the baseplate starting from the nodes lying on
overhanging faces of the discretized design and the first intersection with either the rest
of the structure or the baseplate is used to construct the desired cylindrical region where
the supports lie.

� Minimize the variation of the areas of horizontal sections. A heuristic way of
reducing the residual stresses present in the printed object is to have a small variation
of the areas of the cross sections of the structure, parallel to the baseplate. Given a
triangulation of the structure, recovered from an STL file, it is rather straightforward to
compute the polygonal contour corresponding to a slice at a given height. Isocontour
algorithms on triangulations can be employed efficiently to do this. Denote by G4(~d) the
variation of the areas of the slices taken at some uniform distribution of heights between
the minimal and maximal one.

Another obvious, and trivial, criterion is the minimization of the height, as a lower height would
necessitate fewer layers, leading to a shorter fabrication time. All these different criteria may lead
to different optimal orientations and should be considered in view of the desired applications.
These different criteria can be investigated quickly for a given design and they give a quick
overview of the advantages of different orientation, with respect to different manufacturing
constraints. These criteria can also be aggregated into a multi-objective optimization procedure.

From a practical point of view, the angle space for three dimensional objects has dimension
two and any one of the above criteria may lead to many local minima. In order to avoid local
minima, a rectangular grid is considered and the objective function is evaluated for each point
in this grid. Then, if the approximate gradient can be computed, as it is the case for the first
two criteria, a more refined local optimization procedure based on a gradient descent algorithm
is performed.

Detecting accessible regions. In order to remove support structures and to process
contact surfaces, these regions should be accessible from the exterior of the part in a straight
line. Complex structures may have regions that do not verify this accessibility assumption. We
propose two ways of detecting these regions:

� Ray tracing. Consider a family of source points outside the shape and send rays towards
all points (xj) in the discretized part given by a triangulated surface. If the first intersection
point of the ray corresponding with xj with ∂ω is xj then this point is accessible. This
approach is natural, but the choice of the appropriate source points may differ from shape
to shape. See Figure 2.3 for an illustration.
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Figure 2.3: Detecting accessible regions using ray casting. The source points are represented
with blue and the inaccessible regions with red.

� Distance functions. Consider a box D containing ω. Given x ∈ ∂ω and y ∈ D we
can consider the geodesic distance dω(x, y), i.e. the length of the shortest curve contained
in D \ ω connecting x and y. Then it is obvious how an accessibility criterion can be
formulated: if dω(x, y) equals the Euclidean distance, then x is accessible from y. For fixed
y, the distance x 7→ dω(x, y) can be computed efficiently using fast marching methods as
the one described in [50].

An illustration of a possible analysis of the optimal orientations that can be chosen for a given
structure is given in Figure 2.4. The U-shaped tube contains inaccessible regions. Taking these
into account when minimizing the surface area of overhang regions completely changes the final
orientation. In figures where two arrows are shown, the red one corresponds to the minimization
of the area of overhang regions, while the green one corresponds to the minimization of the
projection on the plane of the roller. More examples and details are shown in [A9].

2.4 Linearized elasticity context

Consider the build chamber D and a fixed shape ω ⊂ D with a given fixed orientation. The
support structures are represented by the shape S ⊂ (D \ω). The goal is to assign an objective
function S 7→ J(S) based on the discussion in Section 2.2 that when optimized would yield
supports that are in accord with the industrial requirements. A secondary goal, that guided our
modelization choices, is the efficiency of the shape optimization algorithm. A usual requirement
is that the simulation process should finish in shorter time than the fabrication process, allowing
possible iterations and improvement of the support structures.

A natural idea is to search for supports that are as stiff as possible under different loadings,
when using the linearized elasticity equation. For simplicity, the objective function used for the
initial examples is the compliance, which leads to a self-adjoint problem, efficient from the
computational point of view.

(a) Gravity-like forces. The first option we tried is to consider the optimization of the
support S such that the structure S ∪ ω is the stiffest when considering volumic downward
pointing forces in ω. The fact that the supports can attach to the baseplate is modelized by
assigning a Dirichlet boundary condition on the lower face ΓD of D. Numerical simulations
are performed in FreeFEM [66] based on the level-set method [113], [7]. The theoretical and
numerical considerations are detailed in [A8].

It can be observed that the supports obtained through the optimization process connect
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1. U-shaped tube 2. Inaccessible regions 3. Area Supported Reg: G1

4. Volume opt: G3 5. Variation: G4 6. Avoid inaccessible

Figure 2.4: Case study: U-shaped tube. The various criteria considered are illustrated including
the detection of inaccessible regions.

the baseplate to various parts of the structure, increasing its stiffness. Nevertheless, these
supports are not in agreement with practical requirements, since large overhanging regions are
not supported. In [A8] we also consider the optimization of the supports with respect to the
evacuation of the heat towards the baseplate and the simultaneous optimization of the shape
and supports. For the latter, two level-set functions are used, allowing to capture the part, the
support and the powder regions. Different parts of the boundaries give rise to different shape
derivative formulas, which are detailed in the paper. Motivated by the paper [3] we also propose
a layer-by-layer model which yields similar results, but is more costly from a numerical point of
view. Some of these aspects of simultaneous shape/support optimization are developed further
in the thesis of M. Bihr [23].

(b) Surface forces acting on overhangs. To force the support to attach to overhanging
regions we consider again a linearized elasticity problem in D \ ω with downwards pointing
surface loads on overhanging regions Γβ(∂ω). Dirichlet boundary conditions are considered on
the baseplate and, possibly, on certain parts of ∂ω where the support is allowed to be attached.
Examples of supports obtained with this type of modelization are shown in Figure 2.6. It can
be observed that all overhanging regions on ∂ω are supported.

From a practical point of view, we use the software MMG [48] to create a mesh of D \ ω,
the design space for the supports S. Starting from an STL file, a triangulation is obtained
and adding a rectangular box around this triangulation allows us to obtain the desired mesh.
FreeFEM is used to identify and relabel overhanging regions and regions where the support may
attach. The process is illustrated in Figure 2.7.

In Figure 2.8 the optimization of supports is considered, using vertical surface loads on the
U-shaped structure. Two cases are considered: the Dirichlet boundary condition is applied on
the baseplate and on some parts of the shape ω and secondly, the Dirichlet boundary condition
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Figure 2.5: Fixed shape (left) and two views of the optimal supports.

Figure 2.6: Optimized supports obtained by minimizing the compliance for vertical loadings,
limit angle β = 45◦ and two different build orientations.

Figure 2.7: Mesh around the U-shaped tube ω obtained with MMG (left). Mesh with different
colors for the different parts of the boundary of ω (right): green - free boundary, red - baseplate,
purple - overhang regions Γβ for β = 45◦, blue - regions of ∂ω where the support may attach.
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Figure 2.8: Optimized supports for minimal compliance under pseudo gravity loads. Upper left:
u = 0 is imposed on a part of ∂ω and on the baseplate. Upper right: u = 0 is imposed only on
the baseplate. Bottom: addition of a penalization term.

Figure 2.9: Optimized supports for minimal compliance under pseudo gravity loads for three
copies of half-tubes: supports allowed to attach on the shapes (left), supports not allowed to
attach on the shapes (right)

is considered only on the baseplate.

The motivation behind this is the post-processing cost of contact surfaces between the part
and the support, discussed in Section 2.2. It turns out that changing the Dirichlet boundary
condition so that the support can only attach on the baseplate is not enough to avoid the contact
between the part and the support, as can be observed in the second case presented in Figure
2.8. In order to prevent this unwanted contact, an additional term is added in the objective
function, penalizing the contact area between the support and the part. Adding this contact
surface penalization term produces support structures that do not touch the shape ω, shown
again in Figure 2.8. More details regarding the test cases and the implementation are given in
[A9].

There are multiple possible extensions for such support optimization procedures. One idea is
to consider mutualized support structures when multiple shapes need to be printed on the same
plateau. An example in this sense, where three half tubes are considered inside the same mesh
is shown in Figure 2.9. The optimization algorithm gives a single support structure supporting
all overhanging regions, considering again the case where the support can attach to the shape
or not. Up to this point, the optimization of support structures was only subjected to volume
constraints. Therefore the resulting support structures may have overhangs themselves. A
strategy to prevent this is a work in progress and is presented in the perspectives section.
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2.5 Optimization of thermoelastic criteria using a simplified sim-
ulation model

The work described in this section is described in detail in [A5] and is part of the PhD thesis of
Martin Bihr [23], which I co-supervised with Grégoire Allaire. As underlined in Section 2.2, the
melting and cooling of the successive layers of the part can lead to high internal stresses and
possible deformations of the printed object. In order to understand these thermo-mechanical
phenomena before starting the fabrication process, numerical simulations should be performed.
A complete thermo-mechanical simulation of the process has a high computational cost, since
a number of PDEs proportional to the number of layers need to be solved, keeping all history
in memory. From the point of view of numerical shape optimization this is especially costly,
since such a simulation should be repeated at each iteration of the optimization process. Such
a complete simulation approach is described in [122] and [4]. In the following, we propose a
simpler model, which manages to capture the qualitative behavior of the fabricated structures
while being computationally cheaper.

The inherent strain method consists in decomposing the total strain ε into its elastic part
and the inelastic contribution

ε = εe + ε∗,

and suppose that ε∗ is known. To find the inherent strain tensor ε∗ corresponding to a given
set of machine parameters a test part is manufactured, and ε∗ is tuned such that the deflec-
tion measured experimentally corresponds to the one obtained numerically. More details and
bibliographical references regarding this method are given in [A5].

Let us consider a shape ω contained in the build chamber D. The build chamber is divided
into M layers Li and the intermediate domains Di are defined as tie union of the first i layers,
for every 1 ≤ i ≤M , leading to a sequence of domains Di verifying

D1 ⊂ ... ⊂ Di ⊂ ... ⊂ DM ≡ D.

The baseplate, i.e. the bottom of the build chamber D, is denoted by ΓD. For all 1 ≤ i ≤ M
consider the intermediary shapes ωi = ω ∩ Di. For each 1 ≤ i ≤ M consider the solutions
ui ∈ H1

ΓD
(ωi)

d, i.e. u ∈ H1(ωi)
d with ui = 0 on ΓD verifying the inherent strain problem

−div(σi) = 0 in ωi
σi = A(e(ui) + ε∗Li) with ε∗Li = ε∗χLi

σin = 0 on ∂ωi \ ΓD
ui = 0 on ΓD ∩ ∂ωi.

(2.1)

The constant inherent strain ε∗ has diagonal entries {−10−4,−10−4, 0} and was chosen based
on the one used in the Simufact Additive software. One advantage of problem (2.1) is that
displacements ui found for each layer are independent. In particular, they can be computed
in parallel, further improving the computational efficiency. We tested our basic FreeFEM [66]
implementation and obtained results giving qualitative agreement with simulations made with
Simufact for different test cases, as shown in [A5, Section 2].

The simplified simulation model allows us to efficiently optimize numerically various criteria
related to the SLM manufacturing process. Compared to [4] there is no need to compute the
solutions to the heat equations at each layer, the corresponding information being encoded in
the inherent strain tensor ε∗. In the numerical simulations a volume constraint was imposed,
as well as a final usage constraint, corresponding to an inequality constraint on the compliance
given by a linearized elasticity problem. The context is described in [A5, Section 3].

The criteria optimized in this work are shown below:
� Minimization of the vertical displacements. In order to prevent the collision of the

powder deposition system with the part, the positive vertical displacements should be



2.6. IMPERFECT INTERFACE MODELS 25

Figure 2.10: Minimizing the total vertical displacements.

limited as much as possible. In practice it is observed that such vertical displacements
appear in particular on overhanging regions. In [A5, Section 5.1] an example is given,
shown in Figure 2.10. It can be observed that the optimization process removes the massive
overhanging part in the original design. This result is remarkable since the removal of
overhaning regions is usually achieved using geometric criteria, while in this case a purely
mechanical model is used.

� Minimizing a Von Mises criterion. The Von Mises field gives information about the
total stress accumulated in different parts of the manufactured shape. It is generally agreed
that this quantity should be decreased to prevent the occurrence of cracks and distortions
in the printed object. An example of optimization in this sense is shown in [A5, Section
5.2].

� Minimization of the residual displacement after plate separation. After the
3D printing process is finished, the contraction of the successive layers leads to residual
constraints in the part. The printed object is clamped to the baseplate ΓD and cutting it
will lead to potential deformations when the corresponding constraints are released. We
model these deformations as follows. First, an inherent strain simulation with the part
clamped on ΓD gives us information about the constraints present in the part at the end of
the printing process. Next, we solve another mechanical problem giving the displacement
v of the part after the cut. In this problem, the stress given by the previous simulation is
used as a load, considering that the part is clamped only on a smaller subset ΓD0 of ΓD.
Next, we consider the minimization of the maximal vertical positive displacement given
by v in the shape ω. The details, equations and a numerical test can be found in [A5,
Section 6] and an experimental validation of the procedure is shown in Figure 2.11.

Following the presented simulations, an experimental assessment was performed at Safran.
This experiment validated our numerical simulations in the following aspects:

� Parts optimized for minimizing vertical displacements displayed lower vertical displace-
ments for some of the layers studied.

� Parts optimized for minimizing the displacement after plate separation displayed a lower
vertical displacement, measured after the manufacturing process.

A calibration procedure was also proposed, following the experimental measurements, allowing
to recover the coefficients of the inherent strain tensor. All details regarding the experimental
work and the calibration procedure are given in [A5, Section 7].

2.6 Imperfect interface models

The content of this section is obtained in collaboration with G. Allaire and M. Godoy (postdoc
in the SOFIA project) and is described in detail in [A10] and [A11]. The motivation for this
work comes from the post processing cost related to the removal of support structures. In some
applications, a weaker part/support contact region is designed, allowing the removal of supports
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Figure 2.11: Partially cut parts optimized for minimizing vertical displacement after baseplate
separation. The practical experimentation is part of M. Bihr’s thesis [23].

by hand. Therefore, such weak contact regions do not behave mechanically in the same way as
in a perfect interface setting. See Figure 2.12 for examples.

Consider a structure ω ⊂ Rd and its supports represented by the shape S ⊂ Rd. The
interface between ω and S is denoted with Γ. Contrary to the context of Section 2.4, we
consider displacements u which have components that are in H1 when restricted to ω and S,
but are not necessarily globally H1. In particular, displacements u can be discontinuous along
the interface Γ between S and ω and we denote by [u] = uS − uω the jump of u across the
interface Γ. Using the usual notations e(u) (the symmetrized gradient) and

σ(u) = Ae(u) = 2µe(u) + λ div u Id

where λ and µ are the Lamé coefficients (potentially different in ω and S) we solve the following
problem: {

u|ω = uω ∈ H1(ω), u|S = uS ∈ H1(S), u = 0 on ΓD∫
ω σ(uω) : e(uω)dx+

∫
S σ(uS) : e(uS)dx+

∫
ΓR
−1[u] · [v]ds = L(v),

(2.2)

for all v verifying the same hypotheses as u. The linear form L models the different loadings
that can be applied to the structure. The second order tensor

R = α(Id−ν ⊗ ν) + βν ⊗ ν,

where ν is the normal vector to the interface Γ between S and ω pointing inside ω, models the
rigidity of the structure at the contact interface Γ. In particular, parameters α and β model the
stiffness of the structure ω ∪ S along the interface Γ in the normal and tangential directions,
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Figure 2.12: Support structures having a weak contact interface with the part, facilitating their
removal.

respectively. When α, β → 0+ we recover the perfect interface case, where the displacement is
continuous along Γ, i.e. [u] = 0. Details in this sense are given in [A11, Section 2].

One can observe that standard piecewise affine finite elements are not enough to approximate
solutions of (2.2) numerically. Notably, on the interface Γ the jump [u] = uS−uω is present and
needs to be computed numerically. The approach we chose is to consider two piecewise affine
vector fields, one for uω and another one for uS . We add additional terms in (2.2) with a small
coefficient, ensuring that the resulting numerical problem is well posed. In practice, we consider
a bounding box D and we mesh exactly ω and D \ ω, ensuring that the interface Γ is always
exactly meshed. The supports S are represented with a level-set function defined on D \ ω.
From a practical point of view, the resulting numerical problem has twice the size as the usual
linearized elasticity problem, leading to costly computations, especially in dimension three.

Numerical results shown in Figure 2.13 show how the rigidities α, β influence the optimized
support structures. The loading case considered corresponds to vertical, gravity like forces acting
in the part ω and the objective function is the compliance. As the parameters α, β increase,
the interface becomes weaker in the tangential and normal directions, respectively. The perfect
interface yields supports resembling vertical pillars similar to the configurations obtained in [A8]
in the perfect case. When the interface is weak in both tangential and normal directions, support
structures become massive and go above the structure ω. A weakly tangential interface yields
again vertical pillars, as the structure considered has substantial horizontal parts. A weakly
normal interface gives supports concentrated on the edge of the overhanging parts, where the
tangential attachment of the supports to the part aligned with the direction of the loads is more
substantial. Although the supports obtained through this type of models is not in agreement with
the industrial requirements underlined in Section 2.2, this study shows how a purely mechanical
model related to the strength of the interface contact influences the resulting support structures.

2.7 Perspectives

The works presented in this chapter give rise to the following natural perspectives:
(i) Control of overhanging regions in the support being optimized. In the sim-

ulations presented previously a volume constraint is imposed on the support structures. This
does not prevent optimized supports having themselves unwanted overhanging parts in their
boundary. In the paper [119] a functional for quantifying overhangs in the level-set framework is
proposed. Based on this, we can consider the following functional based on the signed distance
function, which can be used to control overhanging regions. Given ω ⊂ D and dω its signed
distance function, consider

J(ω) =

∫
ωc

(∇dω · (−~d)− cosβ)2
+, (2.3)
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Figure 2.13: Different views of the optimized designs: perfect interface (upper row), α = β = 400
(2nd row), α = 100, β = 1 (3rd row) and α = 1, β = 100 (lower row).

where, as usual ~d denotes the build direction. This functional has multiple advantages compared
with, for example, the perimeter of overhanging regions. The latter creates a dripping effect as
shown in [3]. The functional (2.3) has non-zero contribution when downward pointing spikes
are present, eliminating these effects. The shape derivative of (2.3) can be computed using the
methods described in [57].

(ii) Parallelization of the computations. Computations described in this chapter are
realized using FreeFEM [66] coupled with toolboxes Advect [40] and Mshdist [50] used for ad-
vection and re-initialization of level-set functions. In all simulations, the main part of the
computational cost is the resolution of the PDEs involved in the corresponding models. Parallel
capabilities of FreeFEM could be used to accelerate this process, especially for complex models
needing multiple solves per iteration (like those shown in Section 2.5). Moreover, the advection
and re-initialization of the level set as a distance function could also profit from parallel comput-
ing. Examples of parallel implementations of shape and topology optimization problems using
FreeFEM [66] are given in [58] and [53] for the case of body fitted meshes. These frameworks
could be extended to the where the optimized shape is represented using level-set defined on a
fixed mesh.

(iii) Optimization related to accessibility criteria. In Section 2.2 we recall that support
structures need to be removed at the end of the manufacturing process. In particular, supports
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should not attach to non-accessible regions. The accessibility of a certain region can be defined
in multiple ways, for example considering straight lines from some source points to the boundary
of the part to be supported. From a shape optimization point of view, accessibility criteria that
allow shape differentiability are of special interest. Initial work in this direction is done in the
final chapter of the PhD thesis of M. Bihr [23] and is the subject of a work in progress.
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Chapter 3

Numerical shape optimization for
convex sets

3.1 Introduction

Problems investigated in this chapter have the form minω∈AF(ω), where A is a family of convex
sets with additional constraints. I focus on aspects related to the numerical handling of con-
straints coming from convex geometry (convexity, diameter, constant-width, inclusion), using
well adapted functional parametrizations of convex sets.

The study of shape optimization problems in the class of convex sets has particular features.
The existence of solutions is often facilitated by the compactness properties underlined by the
Blaschke selection theorem [112, Chapter 1]: a sequence of convex shapes included in a large
ball contains a subsequence converging in the Hausdorff metric. The study of the regularity of
optimal shapes via optimality conditions is more difficult. Parts of the optimal shapes where the
convexity constraint is saturated (for example segments in the boundaries) cannot be perturbed
with arbitrary vector fields. The papers [70], [85], [86] describe some of the theoretical challenges
that appear working with such constraints.

Numerical tools for approximating solutions to shape optimization problems are useful in
this context since in many cases the theoretical tools cannot describe completely the optimal
shapes. In such cases, new leads for theoretical study and new conjectures can arise from prop-
erly designed numerical simulations. The goal of this chapter is to underline my contributions
to this area of research described in a series of publications: [A12], [A1], [A2], [A14]. Difficul-
ties underlined previously, regarding admissible domain perturbations, are also reflected in the
numerical study. In the article [16] the authors answer this challenge using perturbations which
preserve convexity. The approaches described in this chapter use a parametric formulation and
exploit the fact that convex shapes admit efficient functional parametrizations based on the
support function and the gauge function.

There are works in the literature which propose algorithms that can handle the convexity
constraint. In [83] a method is proposed in which the convex shapes are represented as in-
tersections of half-spaces. In [96] the authors propose a method of projection onto the class
of convex shapes. The articles [20], [84], [104] show how to deal with width constraints using
various formulations. The methods presented in the previous references are rather complex and
not straightforward to implement.

The work presented in this chapter was motivated by the search of a more direct approach to
shape optimization among convex sets, allowing more flexibility in the choice of constraints and
functionals to be minimized. This is made possible starting from the properties of the support
function. This idea was initially proposed in [19] for the study of shapes of constant width,
further extended in the habilitation thesis [18]. However, the numerical framework used in [19],
[18] needs special tools regarding semi-definite programming algorithms and the cost functional

31
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is at most linear or quadratic in terms of the Fourier coefficients of the support function. In
[A12] and [A1] we extend this framework to arbitrary functionals including three dimensional
simulations.

The discretization strategies using the support function can be described as follows:

� Strictly convex shapes have support functions of class at least C1. Therefore, a truncated
spectral decomposition of the support function allows an efficient way to parametrize such
shapes. The numerical framework is presented in Section 3.3, based on the publications
[A12] and [A1].

� One drawback when using spectral decomposition for approximating support functions of
convex shapes is the exclusion of segments in the boundary. As recalled in Section 3.2,
the support function is not differentiable for orientations corresponding to segments in the
boundary. On the other hand, shape optimization problems in the class of convex sets often
have solutions containing segments in the boundary, illustrating the competition between
the convexity constraint and the behavior of the functional to be minimized. In order to
capture segments in the boundary, in [A2] a discretization strategy using the values of
the support function on a discretization of [0, 2π] is employed. Furthermore, a completely
rigorous approach, guaranteed to produce discrete convex shapes is given in [A14]. These
aspects are detailed in Section 3.4.

In Section 3.2 various results regarding the support and functions associated to convex sets
are recalled. In Section 3.3 strictly convex shapes are parametrized using a truncated spectral
decomposition of the support function. In Section 3.4 the framework is extended to arbitrary
convex sets using the values of the support function at a discretization of [0, 2π]. Section 3.5
shows various applications based on the methods described and gives more details regarding the
numerical framework, including examples of fully working codes that are made available online
on Github: https://github.com/bbogo/ConvexSets. We conclude with an overview of the
perspectives of this work in Section 3.6.

3.2 Functional parametrizations of convex sets

3.2.1 The support function

A convex body K ⊂ Rd is a compact convex set with non-void interior. The support function
hK : Sd−1 → R of a convex body K ⊂ Rd is defined by

hK(u) = max
x∈K

(x · u) (3.1)

or alternatively, hK(u) is the distance from the origin to the supporting plane orthogonal to the
direction u ∈ Sd−1. An illustration for the two dimensional case is given in Figure 3.1. It is also
possible to define the support function on the whole space HK : Rd → R by

HK(u) = max
x∈K

(x · u), (3.2)

and note that hK = HK(u/|u|) when u ∈ Rd \ 0. In other words, HK is the positive 1-
homogeneous function which coincides with hK on the unit sphere. The concept of support
function is classical in convex geometry and the reader can consult [112] for more details and
properties. By definition, the support function is well adapted for handling width and diameter
constraints, since hK(u)+hK(−u) represents the distance between the two tangent hyperplanes
to K orthogonal to u ∈ Sd−1.

The definition above shows, in particular, that the support function is well adapted for
dealing numerically with width or diameter constraints. This was already observed in the
previous works [A1], [19], [A12] or [A2].

https://github.com/bbogo/ConvexSets
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hK(u1)hK(u2)

hK(u3)

K

Figure 3.1: Illustration of the support function of a convex body.

In Figure 3.2 two examples of shapes and their associated support functions are shown,
for the classical Reuleaux triangle and a stadium like shape. In [112, Cor 1.7.3] it is shown
that at all points where the supporting plane intersects K at exactly one point, the support
function is differentiable. In particular, as shown by the example of the stadium, segments in
the boundary of a two dimensional convex domain produce discontinuities in the first derivative
of the associated support function. Therefore, the discretization of the support function should
allow such discontinuities in the derivative in order to capture segments in the boundary.

For a convex compact body K ⊂ R2 consider the associated support function hK defined by
(3.1). Let us briefly recall some of the basic properties of the support function. For a complete
exposition with proofs the reader can consult [112, Section 1.7]. We parametrize the unit circle
S1 using u = (cos θ, sin θ) with θ ∈ [0, 2π]. Therefore, in the following, we identify the support
function hK with a continuous 2π periodic function p : [0, 2π] → R. For θ ∈ [0, 2π] denote
the associated normal and tangential vectors r(θ) = (cos θ, sin θ) and t(θ) = (− sin θ, cos θ).
The set H(K, θ) = {x ∈ R2 : x · r(θ) = p(θ)} is called the support line of K at θ. The set
F (K, θ) = K ∩H(K, θ) is called the support set of K at θ. In [112, Section 1.7] it is shown that
p is differentiable at θ if and only if the associated support set F (K, θ) contains only one point.
An immediate consequence is that segments in the boundary of K correspond to parameters θ
where the support function has a discontinuity in the first derivative. In particular, constant
width shapes have support functions at least of class C1, since they do not contain non-trivial
segments in their boundaries. The proof is straightforward and can be found, for example, in
[74, Exercise 7-3].

In view of the discussion above, the support function p of a strictly convex shape K ⊂ R2 is
of class C1. It is classical (see [19], [A1] and references therein) that in this case, a parametric
representation of ∂K is given by x(θ) = p(θ)r(θ) + p′(θ)t(θ) or, more explicitly,{

x1(θ) = p(θ) cos θ − p′(θ) sin θ,

x2(θ) = p(θ) sin θ + p′(θ) cos θ.
(3.3)

It is straightforward to see that at points where the support function p is C2, the tangent vector
at the curve with the parametrization (3.3) is given by (p(θ) + p′′(θ))t(θ). In [19], the convexity
of K is characterized by

p(θ) + p′′(θ) ≥ 0 for every θ ∈ [0, 2π]. (3.4)

At points where p is at least C2, the condition above is clear. As underlined in [17], [19], when
p is of class C1,1, the constraint may also be interpreted in the sense of distributions, including
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Figure 3.2: Two examples of convex shapes together with their support and gauge functions.
Segments in the boundary correspond to singular points for the support function. Angular
points generate singularities for the gauge function.

points where p′′ is not defined. In dimension three the corresponding parametric representation
and convexity constraint become more involved, as shown in [A1].

3.2.2 The gauge function

Another natural parametrization of convex sets can be achieved using radial functions with re-
spect to an interior point. In dimension two it turns out that the inverse of the radial distance to a
fixed origin has properties which allows again the use of efficient numerical methods for discretiz-
ing convex shapes. Given K ⊂ R2 a convex set containing the origin, consider ρK : [0, 2π]→ R+

to be a radial function for K. In other words, θ 7→ ρK(θ)

(
cos θ
sin θ

)
is a parametrization for ∂K.

This allows us to define the associated gauge function γK : [0, 2π]→ R+ by

γK(θ) = 1/ρK(θ). (3.5)

The gauge function is related to the support function via the polar body. Given a convex body
K, the polar body is K◦ = {y ∈ Rd : x · y ≤ 1,∀x ∈ K}. The gauge function of the body K is
equal to the support function for K◦. See [112] for more details. Compared with the support
function, the gauge function has singularities at angular points (instead of segments). Two
examples are shown in Figure 3.2 illustrating the smoothness of the gauge function for segments
in the boundary and singularities coming from angular points. Details regarding the usage of
the gauge function in numerical simulations are presented in Section 3.4.

The usage of the gauge function rather than the radial function for parametrizing convex sets
is further motivated by the simplicity of the convexity condition when using the gauge function.
Indeed, it can be shown that in dimension two, if γK is of class C2 convexity is equivalent with

γK(θ) + γ′′K(θ) ≥ 0,

for every θ ∈ [0, 2π]. One can observe that this condition is the same as (3.4) for the sup-
port function. From a numerical point of view, the analogue discrete constraints should be
investigated as shown in Section 3.4.
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3.3 Spectral decomposition of the support function

The initial motivation for finding an appropriate framework for numerical shape optimization
among convex set was the article [A12], where we study the minimization of the k-th eigenvalue
of the Dirichlet-Laplace operator under diameter constraint

min
diam(Ω)=d

λk(Ω). (3.6)

Eigenvalues λk are decreasing with respect to set inclusion: ω1 ⊂ ω2 ⇒ λk(ω1) ≥ λk(ω2).
Taking the convex hull preserves the diameter and decreases the k-th eigenvalue, therefore we
may assume that admissible shapes in (3.6) are convex. Problem (3.6) has solutions due to the
Blaschke selection theorem and the continuity of the eigenvalues for the Hausdorff convergence
of convex sets [68, Section 2.3.3]. Since the Dirichlet-Laplace eigenvalues are decreasing under
domain inclusion, solutions of problem (3.6) are maximal sets for a given diameter, therefore they
are constant width sets. The paper [19] already proposed a framework for shape optimization
in the class of constant width sets, where a truncated spectral decomposition of the support
function is used in dimension two. The convexity constraint is handled in a rigorous way,
using semi-definite programming techniques and specialized software. Aspects related to the
three dimensional case are discussed in the habilitation thesis of T. Bayen [18, Chapter 5]. An
alternative way of imposing the convexity constraint was proposed in [9], where (3.4) is imposed
only on a discrete subset of [0, 2π]. This results in a set of linear inequalities for the Fourier
coefficients, allowing straightforward implementation using standard optimization software like
fmincon in Matlab or IPOPT. Although this approximation is not as rigorous as the analytic
approach in [19], when imposing (3.4) for sufficiently many points on the unit circle the numerical
algorithm behaves well. Furthermore, there is no limitation concerning the objective function
used in this context, as long as the shape derivative is known.

In dimension two, the numerical setting consists in working with support functions given by

(a0, a1, ..., an, b1, ..., bn) 7→ p(θ) = a0 +
n∑
k=1

(ak cos(kθ) + bk sin(kθ)). (3.7)

In view of the discussion in Section 3.2, p given by (3.7) can only be a support function of a
strictly convex set. Constant width sets are strictly convex and, therefore, it is not restrictive to
use such a parametrization in this context. Different constraints can be imposed in this setting:

� convexity: impose (3.4) for θ = 2πj/M , j = 0, ...,M − 1 resulting in a series of linear
inequality constraints for the Fourier coefficients in (3.7).

� constant width: p(θ) + p(θ+π) = w is characterized by a2k = b2k = 0 for k ≥ 1, i.e. the
even part of the spectral decomposition is constant.

Moreover, various geometric quantities like the area and perimeter have explicit expressions in
terms of the coefficients of the parametrization given in (3.7), as recalled in [A1].

The three dimensional case is more involved, although similar ideas are used. The support
function is approximated using spherical harmonics. The convexity constraint can be reduced
to the positivity of the Gaussian curvature in dimension three, which can be imposed on a large
enough family of points on the unit sphere, giving rise to a set of non-linear differentiable in-
equality constraints. More details regarding the discrete framework in dimensions two and three
are given in [A1]. In the same work we prove that working with truncated spectral decompo-
sition is not restrictive in the following sense: solutions for parametric optimization problems
for support functions given by (3.7) converge towards solutions of optimization problems using
the full Fourier series as the number of parameters converges to +∞. This result, valid also in
dimension three, generalizes the theoretical aspects shown in [19].

Let us now consider a few applications:
� Minimization of the Dirichlet-Laplace eigenvalues under diameter constraint.

This is the subject of the work [A12]. From a numerical point of view, a first surprising
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Figure 3.3: Left: Numerical minimization of the volume under constant width constraint in
dimension three – the Meissner body. Center-Right: rotors of minimal volume in the regular
tetrahedron and the regular octahedron.

result was observing that for k ∈ {1, 2, 3, 4, 5} the minimizer is the disk. This is different
from the case of volume and perimeter constraints considered in [102], [10], [11], [A13],
where the disk is a minimizer only for k ∈ {1, 3}. This motivated us to look more closely at
indices k for which the disk is a local minimizer. The only indices k for which this can occur
are k ∈ {1, 2, 3, 4, 5, 7, 8, 11, 12, 16, 17, 27, 33, 34, 41, 42, 50}. The proof of this fact goes
through some delicate estimates involving the Bessel functions. The numerical algorithm
allowed us to obtain better candidates than the disk for k ∈ {6, 9, 10, 13, 14, 15, 18, 19, 20}.
The corresponding numerical optimal shapes are shown in Table 3.1. A similar analysis
could be performed in dimension three. In [A1] we found numerically constant width
shapes with smaller eigenvalue than the ball for k ∈ {10, 46, 99}.

� The Blaschke-Lebesgue theorem says that the Reuleaux triangle minimizes the area among
shapes with given constant width. The three dimensional analogue problem is still open
and it is conjectured that the Meissner bodies obtained by rounding three edges of a
Reuleaux tetrahedron are optimal [79]. In [A1] we obtain the two Meissner bodies when
minimizing the volume under constant width constraint as a result of a constrained opti-
mization problem starting from random initial coefficients. The result is shown in Figure
3.3. This suggests that the conjecture should be true and Meissner bodies are indeed
volume minimizers in the class of three dimensional bodies of constant width.

� Rotors are convex bodies that can turn inside a convex polygon/polyhedron always being
tangent to all the edges/faces. In dimension two all regular polygons admit rotors [19], [17].
In dimension three there exist rotors in the regular tetrahedron, the regular octahedron
and the cube (these are bodies of constant width). In [95] three dimensional rotors are
characterized using the coefficients of the spherical harmonics of the associated support
function. Maximal volume rotors are the inscribed balls. Minimal volume rotors are not
analytically known and the proposed numerical framework allows us to approximate them
numerically. Results obtained with our algorithm are shown in Figure 3.3.

Other applications are shown in [A1], however whenever segments are present in the bound-
ary, the numerical algorithm had difficulties converging. Considering enough coefficients in the
spectral decomposition allows to approximate segments in the boundary, but the well known
Gibbs phenomenon prevents us to be very precise: the truncated Fourier series of a function f
has an oscillatory behavior near a discontinuity of f or f ′. Moreover, the behavior does not im-
prove when considering more Fourier coefficients in the decomposition. This shows that as soon
as segments are present in the boundary, truncated spectral decompositions of support functions
are not appropriate for obtaining reliable numerical results. This motivates the content of the
next section.
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λ6(Ω) = 30.453 λ9(Ω) = 49.080 λ10(Ω) = 49.084
λ6(D) = 30.4713 λ9(D) = 49.2184 λ10(D) = 49.2184

λ13(Ω) = 70.222 λ14(Ω) = 70.244 λ15(Ω) = 73.589
λ13(D) = 70.8499 λ14(D) = 70.8499 λ15(D) = 74.8868

λ18(Ω) = 93.626 λ19(Ω) = 93.683 λ20(Ω) = 98.254
λ13(D) = 95.2776 λ19(D) = 95.2776 λ20(D) = 98.7263

Table 3.1: Non circular shapes of width 2 which are candidates to be the minimizers of λk, for
k = 6, 9, 10, 13, 14, 15, 18, 20.

3.4 Discrete framework: support and gauge functions

In the article [A2] we investigate shapes maximizing the k-th Steklov eigenvalue under diameter
constraints. Recall that for a Lipschitz domain Ω, the Steklov eigenvalues are defined by{

−∆u = 0 in Ω
∂nu = σk(Ω)u on ∂Ω,

(3.8)

where ∂nu denotes the usual normal derivative. The Steklov spectrum of a domain Ω consists
of a sequence of eigenvalues of the form

0 = σ0(Ω) ≤ σ1(Ω) ≤ σ2(Ω)...→ +∞.

The zero eigenvalue is associated to a constant eigenfunction and when Ω is connected σ1(Ω)
is strictly positive. Therefore, the question of optimizing the Steklov eigenvalues becomes in-
teresting for indices k ≥ 1, corresponding to non-zero eigenvalues. When considering convexity
and diameter constraints we are able to show that optimal shapes exist for the maximization of
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σk(Ω). Moreover, two surprising theoretical results hold: for k ≥ 1, the k-th Steklov eigenvalue
is not maximized by the ball in any dimension and the k-th optimal Steklov eigenvalue is always
multiple. The fact that analytic description of optimal shapes is not available, not even for the
first eigenvalue, motivated us to investigate optimal shapes numerically. It quickly turned out
that segments and angular points are present in the boundaries of optimal shapes, making the
approach presented in the previous section inefficient.

We devised a simple alternative by choosing parameters

pj = p(θj), θj = 2πj/N, j = 0, ..., N − 1,

representing the values of the support function at a uniform discretization of [0, 2π]. In the fol-
lowing denote by h = 2π/N the uniform discretization step. The convexity constraint (3.4) and
the parametrization (3.3) give rise to discrete analogues once the approximation of the differen-
tial operators is chosen. A natural idea, which we employ in [A12], is to use finite differences:

p′(θj) ≈ pj+1−pj−1

2h , p′′(θj) ≈ pj+1+pj−1−2pj
h2

. This gives rise to parametric optimization problems
with linear inequality constraints, easily handled by available optimization software.

However, when investigating the convexity of the discrete polygons given by the parametriza-
tion, in the recent work [A14] I show that for h small the discrete polygon obtained is not
necessary convex. A rigorous alternative is presented in the next section.

3.4.1 Rigorous discrete convexity condition

It is well known that if p is the support function of the convex body K ⊂ R2 then p = p +
a cos θ+b sin θ is the support function of the translated body (a, b)+K. This is a straightforward
consequence of definition or of the parametrization (3.3). One may note that the classical
centered finite differences are not exact when considering discretizations of translations given by
pi = pi + a cos θi + b sin θi.

To remedy this we propose the following choices for approximating the first derivatives p′(θi)
and the discrete curvature radii p(θi) + p′′(θi):

p′(θi) ≈
pi+1 − pi−1

2 sinh
:= qi, p(θi) + p′′(θi) ≈ %i = pi +

pi+1 − 2pi + pi+1

2− 2 cosh
. (3.9)

The observations below show that this discretization choice for first derivatives and curvature
radii has multiple advantages:

� As h → 0 we have sinh = h + O(h3), 2 − 2 cosh = h2 + O(h4). Therefore, when h → 0,
at points where p is smooth, the discretizations proposed in (3.9) converge to p′(θi) and
p+ p′′(θi), respectively. Therefore, the proposed discretization is consistent.

� Formulas (3.9) are linear in pi and they are exact for support functions of the form p(θ) =
c + a sin θ + b cos θ. A first consequence is that the discretization process commutes
with translations: the numerical representations of two translated convex bodies are
related by the same translation. Secondly, translated discretized convex bodies have the
same discrete curvature radii given by (3.9).

� Using p′(θi) ≈ (pi+1 − pi−1)/(2 sinh) in (3.3) and computing the oriented area of the
triangle given by three consecutive vertices A1,A2,A3 in the discretization, we obtain

Area(∆A1A2A3) = [%2(%1 + %3) + 2%1%3 cosh] sin2(h/2) tan(h/2). (3.10)

Assuming the discrete radii of curvature are non-negative implies that the oriented area
of ∆A1A2A3 is non-negative. Therefore, discrete shapes constructed using (3.9) in the
parametrization (3.3) are convex, provided

%i = pi +
pi+1 − 2pi + pi+1

2− 2 cosh
=
pi+1 + pi−1 − 2pi cosh

2− 2 cosh
≥ 0, i = 0, ..., N − 1. (3.11)
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Equation (3.10) and geometric aspects underlined in [A14, Proposition 2.7] show that for
a convex n-gon, approximated using the procedure above, N − n of the discrete curva-
ture radii are equal to zero. Moreover, consecutive discrete curvature radii equal to zero
correspond to overlapping points in the parametrization.

The constraints (3.11) are linear in the variables (pi)
N−1
i=0 and can be easily implemented in

optimization software. These constraints are used in all the numerical simulations presented in
the sequel.

For N ≥ 5, denote by KN the following class of convex polygons:

KN = {A0...AN−1 : Aj = pjrj +
pj+1 − pj−1

2 sin 2π
N

tj ,

pj+1 + pj−1 − 2pj cos
2π

N
≥ 0, ∀j = 0, ..., N − 1}.

These are the polygons used in the numerical framework to approximate convex sets.

In [A14, Section 2.3] more geometric aspects are presented, motivating the choice of the
discretization (3.9). It turns out that this is the only choice that produces convex polygons
for all variables pj , 0 ≤ j ≤ M − 1 verifying (3.11). The polygons in KN defined above can
approximate arbitrarily well any convex set in the Hausdorff metric as N → ∞. Moreover, it
can be shown that zero curvature radii in (3.9) lead to particular behavior regarding the vertices
of the discrete polygon. In particular, segments in the boundary can be well characterized and
multiple consecutive points may coincide at angular points.

3.4.2 Gauge function

A convex shape K with non-void interior is well characterized using a radial function ρ : [0, 2π]→
(0,+∞) with respect to an interior point O. The radial function verifies ρ(θ) = |OXθ| where
Xθ ∈ ∂K is the intersection of the line through O having direction (cos θ, sin θ) with ∂K. Given
a radial function ρ(θ) which is of class C2 at least, the curvature of K for the radial coordinate
θ is given by

κ(θ) =
ρ2(θ) + 2(ρ′(θ))2 − ρ(θ)ρ′′(θ)

(ρ(θ)2 + (ρ′(θ))2)3/2
.

It can be readily checked that using the gauge function, defined by γ : [0, 2π] → (0,+∞),
γ(θ) = 1/ρ(θ) the sign of the curvature κ(θ) is given by the sign of γ + γ′′. In other words, if γ
is of class C2 then γ is the gauge function of a convex set if and only if

γ(θ) + γ′′(θ) ≥ 0, for every θ ∈ [0, 2π]. (3.12)

As recalled in the introduction, the gauge function of a convex body is the support function of
the polar body K◦ = {y ∈ Rd : x · y ≤ 1, ∀x ∈ K}.

As in the case of the support function, described in Section 3.4.1 we consider a discretization
θj = jh, 0 ≤ j ≤ N − 1, with h = 2π/N . The values of the gauge function at the points θi are
approximated by γi ≈ γ(θi). Note that by definition we have γi > 0. The discretization of the
convexity constraint (3.12) using centered finite differences gives

γi +
γi+1 − 2γi + γi−1

h2
≥ 0, for every 0 ≤ i ≤ N − 1. (3.13)

On the other hand, for three consecutive angles θi−1, θi, θi+1 we may consider the triangle
with vertices Ai = (1/γi)ri, with ri = (cos θi, sin θi) and computing its oriented area gives

Area(∆Ai−1AiAi+1) =
(γi−1 + γi+1 − 2γi cosh) sinh

2γi−1γiγi+1
. (3.14)
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This implies that the rigorous convexity condition from the discrete point of view is

γi−1 + γi+1 − 2γi cosh ≥ 0, for every 0 ≤ i ≤ N − 1. (3.15)

In view of the equality 2 cosh = 2− h2 +O(h4), inequalities (3.13) and (3.15) are equivalent up
to a term of order O(h4). However, for small h (3.13) is a consequence of (3.15), but not the
other way around.

It can be observed that the rigorous discrete convexity constraint (3.15) is the same as the
rigorous discrete convexity constraint for the support function (3.11). Therefore, given a set of
parameters (pi)

N−1
i=0 = (γi)

N−1
i=0 , verifying the constraints (3.15), the discrete shapes constructed

using the proposed discretization for the support function and the gauge functions are both
convex.

3.5 Applications and Code

The numerical frameworks described in the previous sections are implemented in FreeFEM [66].
The optimization software IPOPT [116] is used for handling the various inequality constraints.
The sensitivity of the objective function with respect to each one of the parameters of the
discretization is computed based on the shape derivative. Details are provided in [A14, Section
3]. To facilitate the reproduction of the results of this article, some of the codes used are
published online at the following repository:

https://github.com/bbogo/ConvexSets

The codes can be used in a straightforward way to tackle other optimization problems with
the constraints described previously. It is enough to modify the computation of the objective
function (based on different PDEs if needed) and to change the shape derivative formula in the
code. The linear inequality/equality constraints needed for handling the convexity and width
constraints should be modified accordingly.

Below I present some applications based on the previously described numerical frameworks.
(i) Using the support function. The support function allows to easily implement nu-

merical shape optimization problems among convex sets, following the description shown in
Section 3.4.1. In particular, width, constant width and diameter constraints can be imposed in
a straightforward manner in this context.

� Minimization of the k-th Dirichlet Laplace eigenvalue λk(ω) under area and
convexity constraints. For k = 2 best results known in the litterature, shown in [12]
are obtained without any effort. For k ≥ 3 better results than those shown in [A1] are
obtained, due to the correct capturing of segments in the boundary.

� Maximization of λk(ω) under constant width constraint. Numerical simulations
show that for 1 ≤ k ≤ 10 the Reuleaux triangle is the maximizer. From a theoretical point
of view this is an open problem.

� Maximization of λk(ω) under minimal width constraint. Numerical simulations
show that for 1 ≤ k ≤ 10 the equilateral triangle is the maximizer. From a theoretical
point of view this is an open problem.

� Simulations made in [16] are performed using the numerical framework described above,
obtaining similar results.

(ii) Using the gauge function. The numerical framework based on the gauge function
described in Section 3.4.2 has the same complexity as the one based on the support function. On
one hand, the parametrization using the gauge function is more straightforward, since only the
radial distances are used. Recall that the support function also uses tangential components based
on an approximation of the first derivative, as shown by the parametrization (3.3). However,
dealing with width constraints is not straightforward in this context. Therefore, one should

https://github.com/bbogo/ConvexSets
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|K| · |K◦| = 6.750 |K| · |K◦| = 8.000

Figure 3.4: Numerical minimizers for |K| · |K◦| in dimension two.

choose between the support or gauge function parametrizations according to the particularities
of the problem under study.

� The minimization of λk(ω) under convexity and volume constraints is revisited, obtaining
results similar to those obtained with the support function.

� The maximization of λ1(ω) under convexity, inclusion (D1 ⊂ ω ⊂ D2) and volume con-
straints is investigated, following a problem proposed in the recent article [87]. Theoretical
results show that free parts of ∂ω are polygonal lines, but optimal shapes are not known
in general. Numerical simulations agree with the theoretical ideas and could be used to
further characterize optimal shapes.

(iii) Optimizing functionals depending on a convex body and its polar body. We
observed that the rigorous discrete convexity constraints for the support and the gauge functions
are the same: see (3.11) and (3.15). Moreover, the gauge function of a convex set is the support
function of the polar body. As a direct consequence, one can use the same set of parameters to
describe K and its polar body K◦.

As an illustration, we test the algorithm for a well known problem in dimension two, the
minimization of the product |K| · |K◦|. It is well known that when K is convex and symmetric
with respect to the origin, the solution is a parallelogram, while when K is a general shape
containing the origin, the solution is a triangle. More details about this problem can be found
in [31]. The numerical simulations recover the theoretical ones as shown in Figure 3.4. While
in dimension two the problem is solved, the three dimensional case is not yet solved completely.
The conjecture is proved for n = 3 for centrally symmetric bodies in [73]. An extension of the
numerical framework to the three dimensional case is of particular interest in this sense.

3.6 Perspectives

The framework described in Section 3.4 is complete in dimension two, in the sense that arbi-
trary functionals can be handled and the discrete shapes used are always convex, provided the
parameters verify the corresponding linear inequality constraints. The next goal is to extend
this framework in dimension three. The potential difficulties are underlined below:

� Compared to dimension two, in dimension three a uniform sampling of the unit three
dimensional sphere should be used. Such a uniform sampling is not exact, but numerical
algorithms can be used.

� Given a uniform sampling of the sphere and a set of parameters representing the support
function at these points, approximations of the tangential gradients are needed to define
the boundary points. Like in dimension two, one key point could be to impose that the
discretization is invariant with respect to translations.
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� The geometric aspects shown in [A14, Section 2] should be extended to the three dimen-
sional case, giving additional insight on the rigorous discrete convexity constraint in this
case.

� The usage of the gauge function in dimension three should be investigated. One could,
potentially, recover the two dimensional results, namely that for a set of parameters, the
discrete convexity constraints should be the same for the gauge and support functions.

Achieving this program would lead to a complete numerical framework in dimensions two and
three, allowing the study of a large class of functionals under the convex geometry constraints
presented in this chapter.



Chapter 4

Optimal partitioning and multiphase
problems

4.1 Introduction

This chapter presents theoretical and numerical aspects related to shape optimization problems
depending on multiple shapes. Consider a domain D subset of an Euclidean space or a manifold
and a fixed positive integer n ≥ 2. General problems of the form

min
(ωi)∈A

F (ω1, ..., ωn)

are considered where A denotes the set of partitions of D, defined by

A = {(ωi)ni=1 : int(ωi) ∩ int(ωj) = ∅ for 1 ≤ i < j ≤ n,
n⋃
i=1

ωi = D}, (4.1)

where the usual notations for the interior and closure of a set are used. Given (ωi)
n
i=1 ∈ A,

we call ωi a phase or cell of the partition. General multiphase problems where the partition
condition is removed, considering only n non-overlapping phases, can also be investigated using
the tools proposed in the sequel. In some cases, additional volume constraints |ωi| = ci are
imposed for each one of the cells ωi, 1 ≤ i ≤ n.

Famous examples in this sense are given by the minimization of the total perimeter

min
(ωi)∈A

n∑
i=1

Per(ωi) (4.2)

when the areas of ωi are equal: |ωi| = |D|/n. Theoretical and quantitative results are well
studied for problem (4.2) as shown, for example, in [93] and [98]. Nevertheless, explicit optimal
configurations are rarely known, as in addition to the usual difficulties when dealing with shape
optimization problems for one phase, combinatorial aspects concerning the position of the cells
need to be taken into account. The asymptotic case where n → ∞ is known as the honeycomb
conjecture. Since the antiquity it was remarked that the structure of the bee honeycomb should
be optimal in terms of labor cost. Since this cost is related to the total perimeter of the
honeycomb walls, it was natural to conjecture that the hexagonal partition is optimal for (4.2)
as n → ∞. This result was proved in full generality only recently in the famous work of T.
Hales [65]. Numerical algorithms for approximating solutions to problem (4.2) were proposed
in various contexts. The three dimensional case is more challenging and the corresponding
optimal partition is not known. The Weaire-Phelan structure [120] is conjectured to be optimal,
following various numerical results. In [45] the authors use the software Evolver by K. Brakke
which can optimize locally the total perimeter starting from a given partition. One difficulty

43
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in the study presented in [45] is that all combinatorial combinations of cell configurations need
to be considered as initializations to avoid local minima. An alternative approach based on
the Voronoi implicit interface method is described in [111], where the cells of the partition are
modeled with a function inspired from the level-set method.

A more flexible approach, less sensible to the initialization and being able to deal with
arbitrary cell configurations (without any restrictions related to connectedness or combinatorial
aspects) was proposed in [103]. In this approach, cells are replaced with densities, the perimeter
is approximated using the Modica-Mortola Γ-convergence result and the partition condition
becomes a simple algebraic constraint: the sum of the densities is identically equal to 1. An
analogue approach for minimal perimeter partitions on manifolds is presented in [A23]. This
allowed us to recover results from [45] regarding optimal partitions of the sphere into equal
area cells, avoiding all the difficulties regarding the combinatorial configuration of the cells in
the intialization. In [34] the method was extended to a large number of cells by considering a
restricted grid around each cell, drastically reducing the computational costs. This work inspired
the framework presented in Section 4.4 for the case of spectral functionals.

Recently, in [A3] we investigate how the minimal relative perimeter partition of D into n
cells varies with respect to the shape of the container D. This study was motivated by [55] where
the authors solve the two dimensional case where n = 2 and D is divided into equal areas: it is
shown that the disk maximizes the minimal perimeter partition into two cells of equal areas. We
show that, among convex sets, there exists a container D maximizing the minimal total relative
perimeter of a partition with fixed volume of the cells (not necessarily equal). Then we devise
a numerical method for approximating maximizing shapes. Surprisingly, the ball seems to be
optimal in 2D and 3D, regardless on the volume constraints assigned to the cells. The details
of this work are described in Section 4.2.

Given a domain D ⊂ Rd, the α-Cheeger set is defined as the subset ω ⊂ D minimizing the

ratio
Per(ω)

|ω|α
. Inspired from the Modica-Mortola theorem, in [A17] we present a Γ-convergence

approximation for the α-Cheeger sets and the corresponding problem for clusters. When α
converges to (d − 1)/d, it is possible to approximate circle and ball packing problems using a
direct variational method, avoiding the usual combinatorial difficulties. This work is presented
in Section 4.3. In this context, instead of considering a partitioning problem we work directly
with the Cheeger sets in a multiphase formulation.

A second class of partitioning problems that I studied is related to the minimization of
functionals related to the Dirichlet-Laplace eigenvalues for each one of the cells. A classical
problem is to solve

min
(ωi)∈A

λ1(ω1) + ...+ λ1(ωn), (4.3)

where A denotes the family of partitions of a given domain D defined in (4.1). Notice that
no constraint is imposed on the volumes of the cells in this case, since the monotonicity and
properties of the eigenvalues show that a small cell will have a large first eigenvalue. From a
quantitative point of view, an optimal configuration will have connected cells with a volumes
that are not too small. The problem was studied in [43], [42] from a theoretical point of view.
However, earlier references and computations can be found in [47], where (4.3) is related to the
stationary state of some chemical reaction system. The study of this problem is also motivated
by modelization considerations when studying dynamical systems of populations in competition
[44]. Removing the partition condition and adding a volume penalization term for each cell leads
to a well posed multiphase problem studied theoretically in [39] and numerically in [A19]. The
existence of solutions for problem (4.3) is discussed in [32]. Although various conjectures exist
for particular domains D, almost no theoretical result is known regarding the precise description
of minimizers, not even for n = 2. This motivated the study of numerical methods like the one
proposed in [32] where again densities are used to parametrize shapes. From a theoretical point
of view it is conjectured that when n → ∞ the honeycomb hexagonal partition is optimal for
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(4.3). The conjecture was motivated by simulations presented in [32] and more recently by those
in [A16]. Theoretical results in [37] show that, assuming convexity of the cells, the honeycomb
conjecture is optimal, provided the Polyà-Szegö conjecture1 holds true for pentagons, hexagons
and heptagons. The most recent developments related to this famous conjecture are presented
in Chapter 5.

Different functions depending on the fundamental eigenvalues of the cells can be considered,
among which we mention p-norms and the maximum. The maximum of the fundamental eigen-
values is of particular interest, since in some cases, the optimal partition is related to the nodal
partition of a particular eigenfunction of D. This is one of the rare cases where the solution to the
corresponding optimal partitioning problem can be identified analytically. Among the various
articles dealing with this aspect I mention [28], [27], [29], [26], [25]. In the paper [A15] written in
collaboration with V. Bonnaillie-Noël, we propose an algorithm inspired from [32] for minimizing
p-norms of the fundamental eigenvalues. For p → ∞, such optimal partitions approximate the
optimal partition for the maximum of the fundamental eigenvalues. We investigate for various
planar domains the evolution of such partitions as p changes.

The numerical algorithm used in [A15] uses a grid restriction technique, using only neighbor-
ing nodes of the current cell in the computation of the Dirichlet-Laplace eigenvalue. This brings
significant efficiency improvements compared to the algorithm proposed in [32]. The algorithm
is further improved and extended to optimal partitions on surfaces and in dimension three in
[A16]. Further aspects related to optimal partitioning for functionals depending on spectral
quantities are presented in Section 4.4

4.2 Total relative perimeter: behavior of the optimal partition
on moving domains

Given Ω ⊂ Rd, open, connected with Lipschitz boundary and c ∈ (0, 1) we consider the isoperi-
metric profile

I(Ω, c) = min{PerΩ(ω) : ω ⊂ Ω, |ω| = c|Ω|}. (4.4)

We denote by PerΩ the relative perimeter with respect to Ω. For a regular set ω ⊂ Ω we have
PerΩ = Hd−1(∂ω∩Ω), i.e. only the perimeter of ω inside Ω is taken into account. As usual, Hd−1

denotes the d−1 dimensional Hausdorff measure. The notion of perimeter can be generalized to
less regular sets, called generically sets of finite perimeter, using functions of bounded variation.
More precisely ω ⊂ Ω has finite relative perimeter with respect to Ω if its characteristic function
χω belongs to BV (Ω), the space of functions defined on Ω, having bounded variation. More
details can be found, for example, in [93, Part II].

Similarly, given c = (ci)
n
i=1 ∈ Rn such that

∑n
i=1 ci = 1 consider the isoperimetric profile of

a partition defined by

PI(Ω, c) = min{
n∑
i=1

PerΩ(ωi) : ωi ⊂ Ω, (ωi) form a partition of Ω, |ωi| = ci|Ω|}. (4.5)

The existence of optimal isoperimetric sets and partitions is classical [98], [93] and is a conse-
quence of the lower semicontinuity of the generalized de Giorgi perimeter with respect to the L1

convergence of characteristic sets.
We are interested in optimizing the isoperimetric profiles defined above with respect to the

shape of the container Ω, when the volume is fixed. Considering thin rectangles shows that
the minimization problem does not have a solution. Therefore, we turn our attention to the
maximization problems. In the case of a single phase, given c ∈ (0, 1) consider the problem

max
|Ω|=vd

I(Ω, c). (4.6)

1The conjecture says that regular n-gons minimize λ1 among n-gons having fixed area.
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For the partition case, given c ∈ Rd with
∑n

i=1 ci = 1 consider the problem

max
|Ω|=vd

PI(Ω, c). (4.7)

Our work was initiated by the article [80] on the CNRS Image des Mathématiques website,
where the contents of [55] are discussed. The article asks what happens if isoperimetric sets cor-
responding to volumes smaller than one half are considered. It turns out that the single phase
problem is called convex isoperimetric problem in the literature and dates back to an article of
[121] according to historical facts presented on Frank Morgan’s blog [99]. The single phase prob-
lem is solved for c = 1/2 in [55] and for small c ∈ (0, 1) in [22]. The case of perturbations of the
disk and axisymetric domains is handled in [117]. The question of maximizing the isoperimetric
profile of a partition (4.5) is new.

We start by proving that problems (4.6) and (4.7) have solutions. We consider the case of
convex sets, although in dimension two the result could hold even among star-shaped domains
or even simply connected domains, since we did not find any relevant counterexamples. The
proof of existence given in [A3, Section 2] has the following steps:

� Upper bounds for the isoperimetric profiles are found using a Loomis-Withney inequality
[81] which relates the volume of a convex body K to the volume of its projection on a
family of hyperplanes orthogonal to an orthonormal basis of Rd. This shows that the
minimal volume of the projection of Ω on a hyperplane has an upper bound in terms of
|Ω|.

� Compactness properties for a maximizing sequence are recovered by finding an upper
bound for the diameter and using the Blaschke selection theorem [112, Chapter 1].

� Finally, continuity of the isoperimetric profiles for the Hausdorff metric is a consequence
of the results in [108], which are extended to the case of partitions.

Numerical tools that help approximate isoperimetric sets and minimal length partitions based
on Γ-convergence results are developed in [103], [A23]. In our work we want to maximize the
length of a minimal perimeter partition with respect to the shape of the container Ω.

A key point in our approach is the approximation of minimal length partitions involved in the
computation of PI(Ω, c). In order to avoid difficulties related to the treatment of the partition
constraint it is convenient to represent each set in the partition ωi as a density ui : Ω → [0, 1].
Then, the partition constraint can be simply expressed by the algebraic equality

∑n
i=1 ui = 1

on Ω. The next aspect is the approximation of the perimeter of a set represented via its density
function. A well known technique is based on the Γ-convergence relaxation for the perimeter
inspired by a result of Modica and Mortola [97]. The main idea is to replace the perimeter
with a functional that, when minimized, yields minimizers converging to those that minimize
the perimeter.

Let us briefly recall the concept of Γ-convergence and the property that motivates its use
when dealing with numerical optimization. Let X be a metric space. For ε > 0 consider the

functionals Fε, F : X → [0,+∞]. We say that Fε Γ-converges to F and we denote Fε
Γ−→ F if

the following two properties hold:

(LI) For every x ∈ X and every (xε) ⊂ X with (xε)→ x we have

F (x) ≤ lim inf
ε→0

Fε(xε) (4.8)

(LS) For every x ∈ X there exists (xε) ⊂ X such that (xε)→ x and

F (x) ≥ lim sup
ε→0

Fε(xε). (4.9)

An important consequence is the following classical result concerning the convergence of
minimizers of a sequence of functionals that Γ converge:
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Suppose that Fε
Γ−→ F and xε minimizes Fε on X. Then every limit point of (xε) is a

minimizer for F on X.
Therefore, in practice, in order to approximate the minimizers of F it is possible to search

for minimizers of Fε, for ε small enough.
Let us now state the two theoretical results that are used in this work concerning the Γ-

convergence relaxation of the perimeter and of the total perimeter of a partition, with integral
constraints on the densities. The first result is the classical Modica-Mortola theorem [97]. Var-
ious proofs can be found in [1, 33, 41]. In the following Ω is a bounded, Lipschitz open set.
Consider a double well potential W : R→ [0,∞) which verifies the following assumptions: W is
of class C1, W (z) = 0 if and only if z ∈ {0, 1} and W has exactly three critical points. For such
a double well potential W described previously, denote γ = 2

∫ 1
0

√
W (s)ds. In the following

c ∈ [0, 1] represents the fraction used for the volume constraint.

Theorem 4.2.1 (Modica-Mortola). Define Fε, F : L1(Ω)→ [0,+∞] by

Fε(u) =


∫

Ω

(
ε|∇u|2 +

1

ε
W (u)

)
u ∈ H1(Ω),

∫
Ω u = c|Ω|

+∞ otherwise

and

F (u) =

{
γ PerΩ({u = 1}) u ∈ BV (Ω; {0, 1}),

∫
Ω u = c|Ω|

+∞ otherwise
.

Then Fε
Γ−→ F in the L1(Ω) topology.

This result can be generalized to the case of partitions. It should be underlined that it is
not a trivial extension of the single phase result, since the Γ-convergence is not stable for
the sum.

Theorem 4.2.2. Define Gε, G : L1(Ω)→ [0,+∞] by

Gε(u) =


n∑
i=1

∫
Ω

(
ε|∇ui|2 +

1

ε
W (ui)

)
if u ∈ (H1(Ω))n ∩X(Ω, c)

+∞ otherwise

G(u) =

{
γ
∑n

i=1 PerΩ({ui = 1}) if u ∈ (BV (Ω, {0, 1}))n ∩X(Ω, c)

+∞ otherwise

Then Gε
Γ−→ G in the (L1(Ω))n topology.

A proof of this result can be found in [103]. In the numerical simulations the double well
potential is W (s) = s2(1− s)2 which gives the factor γ = 1/3 in the results shown above.

4.2.1 Numerical framework for approximating minimal perimeter partitions

In this section the numerical minimization of Fε and Gε is discussed. Since Ω is a general domain,
we choose to work with finite element discretizations. Given Th a triangulation of Ω, denote
by (xj)

N
j=1 the set of the nodes. Working with P1 Lagrange finite elements, a piecewise affine

function u defined on the mesh Th is written
∑N

j=1 ujφj . As usual, φj are the piece-wise linear
functions on each triangle, characterized by φj(xk) = δjk. For a P1 finite element function, the
values uj are given by u(xj) and we denote u = (uj) = (u(xj)) ∈ RN . With these notations, it
is classical to introduce the mass matrix M and the rigidity matrix K defined by

M =

(∫
Th
φiφj

)
1≤i,j≤N

and K =

(∫
Th
∇φi · ∇φj

)
1≤i,j≤N
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As an immediate consequence of the linearity of the decompositions u =
∑N

j=1 ujφj , v =∑N
j=1 vjφj we have that

∫
Th
uv = uTMv and

∫
Th
∇u · ∇v = uTKv.

This immediately shows that the functionals Fε and Gε can be approximated using the mass
and rigidity matrices M and K using the expression

∫
Th

(
ε|∇u|2 +

1

ε
u2(1− u)2

)
≈εuTKu +

1

ε
vTMv =: F(u) (4.10)

where v = (uj(1− uj))Nj=1. The formula (4.10) is a quadrature rule using values at the nodes of
the triangulation. The first term is exact for P1 functions u. The second term in the integral
(4.10), is a fourth order polynomial, which is approximated using the mass matrix for P1 finite
elements. The approximation error appears only in regions where u ∈ (0, 1), corresponding to
the phase transition region. The gradient of this expression w.r.t. u can be computed and is
given by

∇F(u) = 2εKu +
2

ε
Mv � (1− 2u), (4.11)

where � denotes pointwise multiplication of two vectors: u� v = (ujvj)
N
j=1.

It is obvious that with (4.10) and (4.11) it is possible to implement a gradient-based op-
timization algorithm in order to minimize Fε and Gε. The software FreeFEM [66] is used for
constructing the finite element framework and the algorithm LBFGS from the package Nlopt
[75] is used for the minimization of (4.10).

Constraints. Volume and partition constraints need to be imposed for all the phases
represented by the densities (ui)

n
i=1. A projection method is considered, allowing the use of

efficient optimization algorithms recalled above. The details are given in [A3, Section 3.2]. The
main idea inspired from [34] is to project ui parallel to

√
2W (ui), modifying the densities mostly

at the interface with the neighboring cells.

Initialization. It was underlined that density based methods from [103], [A23] allow to
obtain meaningful approximation of global minimizers starting from random densities. Never-
theless, in our case, an optimal partition needs to be found at every iteration of the maximization
algorithm. It is therefore useful to search for initializations that are as close as possible to the
optimal partition we search. This lead us to consider Voronoi diagrams with particular features,
as described in [A3, Section 3.3].

We compute the sensitivity of the areas and perimeters of each one of the Voronoi cells with
respect to the position of the Voronoi points. This allows us to find:

� Voronoi diagrams with cells having prescribed areas.
� Perimeter minimizing Voronoi diagrams with area constraints for the cells.

These tools are used for finding initial partitions in dimension two. In dimension three, this
process is more costly and only random Voronoi diagrams were considered.

Shape derivative. Assuming that minimizers uΩ and (uiΩ)ni=1 of Fε and Gε, respectively,
defined in Theorems 4.2.1, 4.2.2 are unique and differentiable with respect to Ω we find that the
ε-isoperimetric profiles are shape differentiable verifying:

Iε(Ω, c)
′
Ω(θ) =

∫
∂Ω

(
ε|∇uΩ|2 +

1

ε
W (uΩ) + µ(uΩ − c)

)
θ · n (4.12)
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where µ = − 1
ε|Ω|

∫
ΩW

′(uΩ) and

PIε(Ω, c)′Ω(θ) =

∫
∂Ω

n∑
i=1

(
ε|∇uiΩ|2 +

1

ε
W (uiΩ)

)
θ · n

+
n∑
i=1

µi

∫
∂Ω

(uiΩ − ci)θ · n (4.13)

The Lagrange multipliers µi can be found using φi = δij in the optimality conditions for the min-
imization of Gε, which gives µi = −1/(ε|Ω|)

∫
ΩW

′(uiΩ). Details regarding these computations
are given in [A3, Section 3.4].

It should be noted that results obtained agree with classical works related to the differen-
tiation of a minimum under constraints: [52, Chapter 9, Sections 2.3, 5.4], [59, Capter 3], [30,
Chapter 4]. Looking more closely at formulas (4.12), (4.13) it can be observed that the terms
appearing can be associated to one of the two phenomena:

� Movement of the boundary at the contact point between ∂Ω and the interfaces of the
optimal partition.

� Global movement of the boundary corresponding to the intersection with the cell with
index i, proportional with the corresponding Lagrange multiplier µi. In the single phase
case, the Lagrange multiplier is related to the mean curvature of the isoperimetric set,
according to [92].

Parametrization and optimization algorithm. We are interested in studying numeri-
cally problems (4.6) and (4.7) among convex sets. We choose to work with radial parametriza-
tion, which obviously includes convex sets. The radial functions are parametrized using trun-
cated Fourier series.

The maximization algorithm used is a simple gradient flow, advancing in the direction of
the gradient regardless of the evolution of the value of the objective function. The step of the
gradient flow algorithm is decreased after a fixed number of iterations to avoid oscillations and
to improve convergence. This algorithm choice is motivated by the fact that we compute the
objective function via a numerical optimization algorithm. If instead of a global minimum we
use a local minimum for computing an ascent direction and the objective value, we may find a
larger value than expected for the maximum. A gradient flow algorithm may correct itself at
subsequent iterations, if needed.

Code. The finite element software used for the optimization algorithm described in Section
4.2.1 is FreeFEM [66], which provides an interface to the LBFGS optimizer from Nlopt [75].

The partition initialization via Voronoi diagrams is coded in Python, where optimization
algorithms from Scipy.optimize and Nlopt are used for unconstrained and, respectively, con-
strained optimizations. Codes and examples are provided in the following Github repository:

https://github.com/bbogo/LongestShortestPartitions/tree/main/GradientVoronoi.

The visualization is done with Python using Matplotlib in dimension two and Mayavi [107]
in dimension three. The graphical representation of partitions is done by extracting surface
meshes of an iso-level for each cell in the optimal partition using FreeFEM [66] and MMG3D
[48]. These surface meshes are then plotted with Mayavi [107]. Some codes used for obtaining
the results illustrated in the paper can be found in the Github repository:

https://github.com/bbogo/LongestShortestPartitions/tree/main/FreeFEMcodes.

4.2.2 Numerical results and discussion

The behavior of the gradient flow algorithm is illustrated in Figures 4.1 and 4.2. It can be ob-
served that the objective function stabilizes itself as the step decreases. The optimal numerical

https://github.com/bbogo/LongestShortestPartitions/tree/main/GradientVoronoi
https://github.com/bbogo/LongestShortestPartitions/tree/main/FreeFEMcodes
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Figure 4.1: Maximization of I(Ω, 0.3) in dimension two together with the evolution of the cost
function.

Figure 4.2: Maximization of PI(Ω, (1/3, 1/3, 1/3)) in dimension two together with the evolution
of the cost function.

shape obtained is the disk, regardless of the number of cells, as also shown in Figures 4.3, 4.4.
Three dimensional computations shown in Figures 4.5, 4.6 show that the ball is the numeri-
cal maximizer. It is remarkable that the ball remains the maximizer even when the volume
constraints on the cells are not equal.

The theoretical considerations and numerical simulations presented in this work suggest that
the results of [22], [117], [55] are valid in more general settings: in dimensions two and three,
under volume and convexity constraints the ball maximizes the following:

� the minimal relative perimeter of a subset ω ⊂ Ω with volume constraint |ω| = c|Ω| for all
c ∈ (0, 1).

� the minimal relative perimeter of a partition of Ω into sets (ωi)
n
i=1 with volume constraints

|ωi| = ci|Ω| given ci ∈ (0, 1) with
∑n

i=1 ci = 1. The result seems to hold even in the case
where the sets |ωi| do not have the same volume constraints.

In [A3, Section 5] we also investigate the optimality conditions based on the shape derivative
formulas. We conclude that the optimal partition corresponding to a solution of (4.6) or (4.7)

Iter 1: 3.305 Iter 6: 3.383 Iter 13: 3.384 Iter 20: 3.422 Iter 70: 3.441 Iter 150: 3.450

Figure 4.3: Illustration of the gradient flow algorithm in dimension two for n = 6: the numerical
optimal partition and its associated cost are represented for a couple of iterations.
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Iter 1: 4.655 Iter 5: 4.738 Iter 15: 4.784 Iter 20: 4.861 Iter 70: 4.895 Iter 150: 4.902

Figure 4.4: Illustration of the gradient flow algorithm in dimension two for n = 10: the numerical
optimal partition and its associated cost are represented for a couple of iterations.

Figure 4.5: (left) Maximization of the length of the minimal perimeter partition into equal areas
for n ∈ {3, 4}. (right) Results obtained when the area constraints are not the same: n = 3:
ratios 1 : 2 : 2, n = 4: ratios 1 : 2 : 2 : 2.

is not unique. Moreover, it is likely that every boundary point of a maximizing set Ω should be
a contact point for an optimal isoperimetric set or partition. This fact shows why the ball is
likely to be a solution for the problems considered, regardless of the size of the constraints.

4.3 Cheeger sets and clusters

Consider d ≥ 2 and α > d−1
d a fixed constant. For every bounded measurable subset E of Rd,

we introduce the following generalized α-Cheeger constant

hα(E) := min

{
HN−1(∂∗Ω)

|Ω|α
: Ω ⊂ E, Ω measurable

}
. (4.14)

Notice that the lower bound on the exponent α is linked to the isoperimetric inequality. The
case α = 1 corresponds to the classical notion of Cheeger set. Given a container D ⊂ Rd, the
objective of the work [A17] is to study problems

min
{

max
i=1,...,k

hα(Ei) : (E1, . . . , Ek) ∈ Pk(D)
}

(4.15)

min
{ k∑
i=1

hα(Ei) : (E1, . . . , Ek) ∈ Pk(D)
}
, (4.16)

Figure 4.6: Maximization of the length of the minimal perimeter partition into equal areas for
n ∈ {6, 13}. An expanded view of the optimal partition is also illustrated for each case.
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where D is a given open bounded subset of Rd and

Pk(D) =
{

(E1, . . . , Ek) : ∀i, j = 1, . . . , k, Ei ⊂ D, Ei ∩ Ej = ∅, Ei measurable
}

denotes the set of partitions of D. The objective is twofold:
� Obtain qualitative results describing the behavior of the α-Cheeger clusters when α →(

d−1
d

)
+

or α→ +∞.
� Give an efficient phase field numerical approach for computing optimal α-cheeger clusters

and, as a consequence of their asymptotic behavior, of optimal packings of balls in arbitrary
boxes D.

A first natural idea is to observe that instead of working with the sets Ei one can work di-
rectly with the associated α-Cheeger sets ωi, transforming the optimal partition problem into a
multiphase problem.

Theoretical results. Let us recall briefly the main theoretical results proved in [A17].
Concerning the limiting behavior of solutions with respect to α we have the following:

� when α→
(
d−1
d

)
+

solutions to problem (4.15) converge to the optimal packing problem

max
{
r : ∃{xi, ri ≥ r}i=1,...,k , B(xi, ri) ⊂ D , B(xi, ri) ∩B(xj , rj) = ∅

}
, (4.17)

and solutions to problem (4.16) converge to the following optimal packing problem

max
{ k∏
i=1

ri : ∃{xi, ri}i=1,...,k , B(xi, ri) ⊂ D , B(xi, ri) ∩B(xj , rj) = ∅
}
.

� when α→ +∞ a solution to problem (4.15) converges the partition of D into k cells having
equal measure, minimizing the product of their perimeters. We conjecture that for large
k, similar to the result of [65], this optimal partition is the hexagonal one.

Next, we consider an approximation by Γ-convergence of the p-norm of a Cheeger cluster.
Motivated by the Modica-Mortola result [97] (see also Theorem 4.2.1) and the definition of the
α-Cheeger set, we consider an energy containing the Modica-Mortola formula at the numerator
and a volume term in the denominator. The key point is to consider a higher exponent for the
density in the volume integral in the denominator, as the natural choice equal to one is not
enough.

Theorem 4.3.1. Let D be a bounded, open and Lipschitz domain in Rd. For any fixed α > d−1
d

and p > 1, consider the sequence of functionals defined on L1(D,Rk) by

Fp,ε(u1, . . . , uk) :=

k∑
i=1

ε ∫D |∇ui|2dx+ 9
ε

∫
D u

2
i (1− ui)2( ∫

D |ui|
2d
d−1dx

)α
p

if ui ∈ H1
0 (D), ui ≥ 0,

∑k
i=1 ui ≤ 1, and +∞ if not. Then, for every sequence uεi ∈ H1

0 (D) \{0}
such that lim supε→0 Fε(u

ε
1, . . . , u

ε
k) < +∞, (uε1, . . . , u

ε
k) converges up to subsequences to some

limit (u1, . . . , uk) in L1(D,Rk). Moreover, the sequence Fp,ε Γ-converges as ε→ 0 in L1(D,Rk)
to the functional

Fp(Ω1, . . . ,Ωk) :=

k∑
i=1

(Hd−1(∂∗Ωi)

|Ωi|α
)p
. (4.18)

In practice, we replace the non-overlapping condition
∑k

i=1 ui ≤ 1 with a penalty term
1
ε

∑
1≤i<j≤k u

2
iu

2
j inspired from the paper of Caffarelli and Lin [43]. This gives rise to the

following result which is the main practical tool for the numerical implementation of our phase
field approach.
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Proposition 4.3.2. Let D be a bounded, open and Lipschitz domain in Rd. For any fixed
α > d−1

d and p > 1, the sequence of functionals defined on L1(D,Rk) by

F̃p,ε(u1, . . . , uk) :=
k∑
i=1

(ε ∫D |∇ui|2dx+ 9
ε

∫
D u

2
i (1− ui)2( ∫

D |ui|
2d
d−1dx

)α )p
+

1

ε

∑
1≤i<j≤k

∫
D
u2
iu

2
jdx (4.19)

if ui ∈ H1
0 (D), 0 ≤ ui ≤ 1 and +∞ if not , Γ-converges as ε→ 0 in L1(D,RN ) to the functional

Fp(Ω1, . . . ,Ωk) :=

k∑
i=1

(Hd−1(∂∗Ωi)

|Ωi|α
)p

Moreover, if for any p > 1 we denote (Ωp
1, . . . ,Ω

p
k) a minimizer in Pk(D) of Fp then, for

p→ +∞, possibly extracting a subsequence, we have

(Ωp
1, . . . ,Ω

p
k)

L1(D,Rk)−→ (Ω1, . . . ,Ωk),

being (Ω1, . . . ,Ωk) a solution to (4.15).

In order to discretize the functional (4.19), we consider a rectangular box D in R2 or R3

endowed with a finite differences uniform grid with M discretization points along each axis
direction. A function u will be numerically represented by its values at the grid points. We use
basic first order centered finite differences in order to compute the gradient terms |∇ui|, and
basic quadrature formulas to compute all integrals. Similar approaches were already used in [103]
and [A23]. The other integrals are approximated by using basic quadrature formulas on the grid.
The optimization is done using a LBFGS quasi-Newton method implemented in Matlab [114],
allowing pointwise bounds for all optimization variables. This optimization strategy motivated
us to use the penalized formulation shown in (4.19).

For a general domain D we consider a rectangular box D′ ⊃ D on which we construct the
finite differences grid. We set all functions involved in the computations to be equal to zero on
grid points outside D and set the gradient to be equal to zero on the same points lying outside
D. In this way the optimization is made only on points inside the desired domain D. Such type
of techniques are called fictitious domain methods or chimera methods in the literature.

It is also possible to use a finite element framework in order to minimize (4.19) on general
domains. In [A23, Section 3] one can find a detailed presentation of such a finite element
framework in the context of Modica-Mortola functionals. Once the mass and rigity matrices for
the Lagrange P1 finite elements are obtained, all functionals needed in our computations can
be expressed using vector matrix products.

We make available an implementation of the algorithm described above which can be found
online at the following link:

https://github.com/bbogo/Cheeger_patch.

This implementation uses the finite element framework for the optimization of (4.19). As detailed
below it is also possible, for convex domains, to compare the Cheeger sets found by minimizing
(4.19) with the exact Cheeger sets obtained using the representation formula provided by Kawohl
and Lachand-Robert in [78].

We conclude with a series of numerical experiments:
• Computation of α-Cheeger sets. In this case, corresponding to k = 1, there is no

need to use the penalization term. We optimize directly the non-penalized ratio between the
Modica-Mortola ratio and the volume term with constraints 0 ≤ u ≤ 1. Examples can be seen
in Figure 4.7 for a domain in R2 and in Figure 4.8 for a domain in R3.

In order to test the accuracy of our method we compare our algorithm with an imple-
mentation of the Kawohl & Lachand-Robert explicit formula for finding Cheeger sets (α = 1)

https://github.com/bbogo/Cheeger_patch
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Figure 4.7: The α-Cheeger set for a non-convex set in 2D, for α ∈ {0.5001, 0.75, 1, 2}.

Figure 4.8: The α-Cheeger set for a regular tetrahedron in 3D, for α ∈ {0.667, 0.9, 1, 2}.

associated to convex sets in 2D [78]. As can be seen in Figure 4.9 the relaxation algorithm
we propose is quite precise. We represent with red the ε-level set of the result obtained when
minimizing (4.19) and with dotted blue the result obtained using the algorithm described in
[78]. The value of ε used here is the same as the one used in the relaxed formulation. Choosing
a level set corresponding to a larger value would correspond to a contour which does not touch
the boundary of D, contrary to the known behavior of Cheeger sets. In the test cases presented
below the results given by the two algorithms are almost indistinguishable. The relative errors
obtained are small and, as expected, working on finer meshes leads to better approximations
both of the Cheeger sets and of the Cheeger constants.

• Computation of α-Cheeger clusters. Some examples of Cheeger clusters can be seen
in Figure 4.10. One can notice immediately that the cells are not necessarily convex, for instance
when D is a square and n = 5. The results in the periodic case are in accordance with results
in [37].

• Computation of optimal packings. We compute α-Cheeger clusters for α very close
to d−1

d and p large, which in our computations means at most 100. Choosing the parameter α

close to d−1
d forces the cells in the optimal configurations to be close to disks. We choose to use

a p-norm approach since this regularizes the non-smooth problem of minimizing the maximal
radius of a family of disks. The minimization of a p-norm instead of the ∞-norm is a natural
idea, also used in [A15] for the study of partitions of a domain which minimize the largest

0.0040 0.0030 0.0030 0.0037

Figure 4.9: Comparison between results obtained when minimizing (4.19) (red) and the Kawohl
& Lachand-Robert formula from [78] (dotted-blue). The numbers given below the pictures
indicate the relative errors for the corresponding Cheeger constants.
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Figure 4.10: Cheeger clusters for problem (4.16) in a square: 5 cells, 12 cells, 16 cells (periodic).

fundamental eigenvalue of the Dirichlet-Laplace operator. To quantify our results we extract
an approximation for the centers of the disks given by the densities obtained numerically. Once
these centers are known, we perform a local minimization using fmincon in Matlab to obtain a
more accurate description of the circle/sphere packing obtained.

In the planar case, we present some computational results in Figure 4.11. In our test cases
the numerical algorithm based on the Γ-convergence result combined with the post-treatment
algorithm generally produce configurations which are comparable to the best known results in
the literature. We recall that one of the first papers regarding the circle packings in a circle
was authored by Kravitz in 1967 [82]. In this paper we can find a conjecture regarding the
19-circle packing in a disk. The optimality of this 19-packing, presented in Figure 4.11, was
proved by Fodor in [60]. Extensive numerical results up to thousands of circles were performed
and collected on the website http://www.packomania.com/, maintained by Eckard Specht. In
all cases, we compared our results with best ones available, listed on the above cited website.
The numerical algorithm manages to capture the right results in cases where the optimal circle
packing configuration is unique and rigid, like the case of 19 disks in a circle or 28 disks in
an equilateral triangle. Moreover, we are able to capture the best known results even in cases
where the solution is not unique, like in the case when we have 18 disks in a circle. One may
notice that the best known configuration for 18 disks inside a circle contains disks of the same
radius as the best known configuration for 19 disks. Therefore, when dealing with the circle,
removing a disk from the 19-disk optimal packing gives a solution for the 18 disks case. This
shows that the optimal configuration is not unique in this case. Our relaxed algorithm finds a
configuration which is equivalent to the best known configurations given by other algorithms.
We may observe slight differences between configurations in the relaxed setting and the refined
results, which are due to the fact that when working with densities cells are not constrained to
be disks.

Some examples of computations of optimal spherical packings for domains in R3 are pre-
sented in Figure 4.12. In this case, we observe again a good convergence to the best known
configurations.

4.4 Optimal partitions for spectral functionals: an efficient al-
gorithm

4.4.1 Numerical framework

In this section I recall the results obtained in [A15] and [A16] related to optimal partitions for
spectral functionals. The main tool allowing us to study numerically such optimal partitions in
an efficient way is an improvement of the algorithm proposed in [32] based on a grid restriction
procedure.

First, let us recall that for a domain D ⊂ Rd and a subset ω ⊂ D, the Dirichlet-Laplace
eigenvalues verify

−∆uk = λk(ω)uk, uk ∈ H1
0 (ω).

http://www.packomania.com/
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Figure 4.11: Circle packing examples in 2D for problem (4.17): density representation and local
optimization.

Figure 4.12: Sphere packing examples in 3D for problem (4.17).

The main challenge is to compute approximations of λk(ω) working with a discretization of D.
The idea motivating this comes from the article [62] where the shape ω ⊂ D is encoded in a
measure appearing as a penalization term

−∆uk + µuk = λk(µ)uk, uk ∈ H1
0 (D).

In the case where µ is given by

µ(X) =

{
0 if cap(X ∩ ω) = 0

+∞ otherwise

then λ(µ) is precisely the first eigenvalue of the Dirichlet Laplacian operator on ω, where cap
denotes the capacity. This formulation inspired the numerical method presented in [32] where a
density approximation is used for approximating the shape ω. If ϕ is close to the characteristic
function of ω then solving

(−∆ + C(1− ϕ))u = λ1(C,ϕ)u (4.20)

for u ∈ H1
0 (D) and C � 1 will give us approximations of the eigenvalues and eigenfunctions

of ω. In [32] it is proved that when ϕ = χω and C → ∞ then λk(C,ϕ) converges to λk(ω) as
C →∞. A quantitative convergence result is presented in [A19]

|λk(Ω)− λk(µC)|
λk(Ω)

≤ KC−1/(N+4),

where µC = C(1− χω).
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Consider D a rectangular box in Rd endowed with a finite differences uniform grid. We
consider an ordering for the points of this grid, allowing us to represent the discretization of
a function u on this grid by a single vector ū. Let L be the matrix associated to the Laplace
operator on this grid, i.e. Lū computes the discrete Laplacian using 2d+ 1 point stencils on the
finite difference grid. We consider the discrete version of (4.20) given by

(L+ Cdiag(1− ϕ))ū = λ1(C,ϕ)ū (4.21)

In this way we may give an approximation of the eigenvalues and eigenfunctions of a set using
a finite difference grid on a larger set and an approximation of its characteristic function. This
immediately shows why formulation (4.21) is so well adapted to study partitioning problems:
we can perform computations on a fixed grid in order to find quantities related to some of its
subsets.

Together with this advantage comes a drawback: we have a fixed computation grid regardless
of the size of the cell ω, for which we wish to compute the eigenvalue. There is no advantage
in using points far away from the current cell in order to impose Dirichlet boundary conditions.
We propose that prior to the eigenvalue computation to look if the cell is localized to just one
part of the grid and then restrict the computational domain to a suitably sized neighbourhood
around the cell. In the sequel we call computational neighbourhood of a cell, the region to which
we restrict the computations regarding a particular cell.

Given a density ϕ we identify its corresponding computational neighborhood as follows:

� First we find all the grid points (Pi)i∈I where the current density ϕ is greater than some
threshold, equal to 0.01 in the computations.

� Next, we identify neighbors of points (Pi)i∈I , i.e. grid points that are adjacent to one of
these points. This process is made efficient using an adjacency matrix computed only once
at the beginning of the simulation. To account for a non-trivial phase transition from 0 to
1, we repeat the process 5 times, successively finding the neighbors of points in the current
sub-grid. More details are given in [A16, Section 2].

� Denote by Rϕ the set of points in the computational neighborhood found above. Figure
4.13 illustrates a few examples in dimensions two, three and on surfaces. The blue (dark)
points are grid nodes in the set {ϕ ≥ 0.01}. The cyan (light) points are grid nodes which
are neighbors of the set {ϕ ≥ 0.01}. The union of these two sets of points is Rϕ.

We compute the eigenvalue of the current cell using only the grid points inside the associated
neighborhood Rϕ found using the procedure described above. More precisely, we select from
the matrix L, associated to the finite-differences Laplace operator, only the lines and columns
corresponding to indices of points which are contained in the computational neighbourhood Rϕ.
In the initial phase of the computation the densities are random and the associated sub-grids
may coincide with the whole grid. However, when the cells become localized the gain in speed is
significant. A similar discrete framework is available when using finite element methods and the
corresponding, described in [A16, Section 2]. The algorithm can be implemented on a periodic
grid by modifying the adjacency matrix so that neighbours along the sides of the computational
domain are included.

In each of the situations presented above, partitions of the domain D will be represented by
n-tuples of functions (ϕ1, ..., ϕn) defined on D which verify the partition condition

ϕ1 + ...+ ϕn = 1

point-wise at each grid point. The initial condition will always be generated randomly and then
projected on the constraint. In [32] the authors proposed the following projection:

ϕi 7→
|ϕi|∑n
i=1 |ϕi|

. (4.22)
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Figure 4.13: Illustration of computational neighborhoods in dimension two, three and on sur-
faces. Given ϕ a density function, dark points are points in the set {ϕ ≥ 0.01} and light points
are their successive neighbors.

Apart from the fact that this projects a family of functions on constant sum equal to 1 constraint,
this also makes every function ϕi have values in [0, 1]. This is important in light of the fact that
the application ϕ 7→ λ1(C,ϕ) is concave in ϕ [32]. Thus when minimizing

∑n
i=1 λ1(ϕi, C) each ϕi

will become an extremal point in the family of functions with values in [0, 1], and these extremal
points are exactly the characteristic functions, taking values in {0, 1}.

Optimization algorithm. For simplicity, we denote by ϕi, i = 1, ..., n the current density
functions. At each iteration we perform the following:

� For each i = 1, ..., n, find the computational neighbourhood Rϕi of ϕi.
� Compute the associated eigenvalue λ1(C,ϕi) and eigenfunction ui = (uj)

N
j=1 solving (4.21)

on the respective restricted grids Rϕi (extended with zeros outside Rϕi), where N is the
size of the finite differences grid.

� Using the eigenfunction ui = (uj)
N
j=1, compute the associated gradient of λ1(C,ϕi) with

respect to each discrete variable. Denoting vi = (u2
j )
N
j=1, according to [32] this is given by

∇λ1(C,ϕ) = −Cvi,

� Gradient descent iteration: update each density function ϕi using the opposite direc-
tion of the gradient

ϕi 7→ ϕi + αCvi,

� Performing the gradient descent iteration will break the partition condition. Therefore we
project back on the constraint using the algorithm in [32], described in (4.22).

� Test if the new partition has a lower energy. If yes, then we continue, if not then we
decrease the value of the step size α.

� Continue the optimization loop until we reach a preset maximal number of iterations, or
the step α is smaller than 10−6.

When dealing with many cells we wish to automatically classify the components of an op-
timized partition. In dimension two and on surfaces this can be achieved by simply counting
neighbors. In dimension three the number of neighbors is not enough to classify the cells. We
use the spectrum of the normalized Laplace-Beltrami operator of the surfaces of the cells to
decide which cells are similar. The algorithm is described in [A16, Section 2, Algorithm 3].

4.4.2 Simulations and observations

The framework proposed in the previous section is efficient and allows to perform faster simula-
tions in more complex contexts than those presented in [32]. In dimension two, various domains
were considered with up to 1000 cells. The hexagonal partition emerges as the number of cells
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Figure 4.14: Partitions on various domains

increases, as can be observed in Figure 4.14. These simulations, in accord with previous sim-
ulations [32], [46], confirm the Caffarelli-Lin conjecture. We consider the same test as in [32]:
the unit square with 512 cells on a 512× 512 grid. We take random densities on a 32× 32 grid
and we perform an optimization on this grid in order to get an initial partition. We double the
number of points in the grid along each axis direction and we interpolate the previous result on
the new grid. We optimize again the result and we double the grid size until we reach the desired
resolution. In Figure 4.15 we present the result obtained using the approach given above. We
observe the presence of patches of regular hexagons as expected. We underline here that this
test was made on a laptop with a 3.5GHz quad-core processor and 16GB of RAM in a few hours
of computation time. Having more cells and better resolution is possible, as it can be seen in
Figures 4.15, 4.16. Working with sparse matrices we optimize the memory cost used for storing
the computational structure. For example in Figure 4.15, we present a case with 1000 cells on
a grid of size 1000× 1000 the computation takes about 12 hours and RAM consumption is less
than 16GB when using sparse matrices to represent the cells. The 1000×1000 computation was
made on a machine with an 8-core Xeon processor with 32 GB of RAM. However, the code was
not parallelized, so eigenvalues were not computed in parallel. The RAM usage was of about
4GB in general, with spikes up to 12GB when performing the grid refinement step, probably due
to the fact that several variables containing information having the size of the whole partition
structure were present: among these one contains the current densities and one contains the
gradient. Also, additional variables were created during the projection step. This example is
presented to show the advantage of the grid restriction method with respect to the algorithm
presented in [32], where for the same computation a supercomputer was needed2.

Figure 4.15: 512 cells on a grid of size 512× 512 and 1000 cells on a grid of size 1000× 1000.

It is possible to observe exact hexagonal patterns if we look at partitions of 2D shapes which
are exact union of regular hexagons. These types of domains have also been investigated by

2The computation in [32] was made at Texas Advanced Computing Center
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Figure 4.16: Optimal partitions on unions of hexagons for 217, 271, 397 and 1027 cells. The
partition of 397 cells is computed on a grid of size 1024× 1024 and the partition into 1027 cells
on a grid of size 510× 510.

Figure 4.17: Optimal spectral partition for various 3D objects.

Bonnaillie-Noël, Helffer and Vial in [28] by adding cracks with Dirichlet conditions. In the
computations presented here, we always start with an initial condition consisting of random
densities and we arrive at an exact partition made of regular hexagons. This provides further
evidence that the Caffarelli-Lin conjecture seems to be true. The partitions obtained are given
in Figure 4.16.

The same algorithm can be used to simulate optimal multiphase configurations described
in the work [39]. For particular choices of the penalization parameter this leads to another
variational approach for computing circle packings. More details are given in [A16, Section 3.2].
Surface partitions can also be investigated, as shown in [A16, Section 3.3]. Hexagonal patterns
emerge again in this case as the number of cells increases. This behavior is natural, since smooth
surfaces behave locally like planar domains.

The efficiency of the proposed algorithm allows to investigate 3D partitions. Results in
this sense are shown in Figure 4.17. The 3D analogue of the Caffarelli-Lin conjecture can be
investigated by using periodic boundary conditions in a cube. Figure 4.18 shows the differ-
ent configurations obtained for n ∈ {8, 16, 32}. Different classical configurations are obtained,
including the Kelvin truncated octahedra and the Weaire-Phelan structure. A more careful in-
vestigation detailed in [A16, Section 3.4] shows that it is likely that the rhombic dodecahedron
partition is the optimal one in the asymptotic case as n→∞. When partitioning a tetrahedron
into a pyramidal number of cells of the form n(n + 1)(n + 2)/6 we obtain four types of cells
illustrated in Figure 4.19. The classification of the cells was done in an automatic way using the
Laplace-Beltrami spectrum of the surfaces of the cells. It can be noted that the cells inside the
tetrahedron are rhombic dodecahedra.

4.4.3 Minimizing the maximal eigenvalue

The article [A15] deals with the minimization of p-norms of the first Dirichlet-Laplace eigenvalues
of the cells. The objective is to deduce, for large enough p, approximations for the partition
minimizing the maximal fundamental eigenvalue

min max
i=1,...,n

λ1(ωi). (4.23)
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Figure 4.18: Some computations on the periodic cube: the Weaire-Phelan structure for n = 8,
the Kelvin structure for n = 16 and the rhombic dodecahedron structure for n = 32.

Figure 4.19: Automatic classification using the spectrum of the Laplace-Beltrami operator for
the cells of the partition of the tetrahedron into 120 cells: 4 corner cells, 36 cells along the edges,
60 cells corresponding to the faces, 20 cells in the interior.

In some particular cases, solutions to the problem above are given by nodal partitions for some
eigenfunction of the bounding domain D. See, for example [67] for more details.

We provide three methods for approximating solutions to problem (4.23):

� using p-norms: the algorithm proposed in the previous section can be easily adapted for
optimizing p-norms of the first eigenvalues of each cell. The optimal partition evolves with
respect to p and converges to the optimal partition for the maximum as p→∞. In Figure
4.20 an example is shown regarding the 4 partition of the equilateral triangle. This is one
case where the change from p = 1 to p large is the most significative.

� using penalization: for ε > 0 we propose the functional

n∑
i=1

λ1(ωi) +
1

ε

∑
1≤i<j≤n

(λ1(ωi)− λ1(ωj))
2, (4.24)

which, when minimized among partitions of D produces optimal partitions converging to
solutions of (4.23) when ε→ 0 . The optimization framework uses finite differences based
on the density representation of the cells. The objective cost is therefore inexact unless the
resolution is very fine. In order to have a more precise evaluation we extract the contours
of the partition from the optimized densities and we use finite elements to compute the
associated eigenvalues. The details of these computations are shown in [A15, Sections 4-5].

� using Dirichlet-Neumann problems: In some particular cases, the topology of the
optimal partition found with one of the preceeding methods allows us to derive more
information regarding the symmetry. In particular, some of the partitions found can be
expressed as nodal domains of eigenfunctions corresponding to some well chosen Dirichlet-
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Figure 4.20: Evolution of the 4 partition of an equilateral triangle with respect to p.

Neumann problem on a particular polygon P :
−∆u = Λk(P )u in P

u = 0 on Sj , 1 ≤ j ≤ qD
∂nu = 0 on Tj , 1 ≤ j ≤ qN ,

(4.25)

where Sj , 1 ≤ j ≤ qD and Tj , 1 ≤ j ≤ qN are segments on the boundary or in the interior
of P where Dirichlet and, respectively, Neumann boundary conditions are imposed. The
nodal partition associated to Λk(P ) varies with the choice of the segments described above.
A parametric search, described in detail in [A15], is performed to identify the configuration
yielding a compatible nodal partition.
An example is shown in Figure 4.21 for the 8-partition of an equilateral triangle. Red seg-
ments indicate Dirichlet boundary conditions while blue ones indicate Neumann boundary
conditions. Further aspects regarding this method are discussed in [A18] and the main
ideas are summarized below:

– For the equilateral triangle, when k = 8, initial simulations using density based
methods show that the optimal partition is symmetric. See Figure 4.21 a).

– Working on half of the equilateral triangle, consider the segment [XsXt] where Dirich-
let conditions are imposed. Consider also the vertical crack [YqYr] where an additional
Dirichlet condition is imposed. See Figure 4.21 b).

– The fifth eigenfunction for this configuration of boundary conditions has the desired
nodal structure. The position of the points Xs,Xt,Yq,Yr is modified until the nodal
partition touches the endpoints of the segments [XsXt], [YqYr]. See Figure 4.21 c).

– The nodal partition is symmetrized, giving a partition on the whole equilateral tri-
angle. See Figure 4.21 d).

Whenever all three strategies above can be applied, the Dirichlet-Neumann method gives best
results, followed by the penalization method.

4.5 Perspectives

Maximization of the minimal perimeter partitions [A3].
� Existence results should be extended to more general settings (star-shaped domains, simply

connected domains in dimension two). Counterexamples should be found to guarantee that
the existence results are optimal.

� The computation of the shape derivatives in (4.12), (4.13) are formal, assuming the optimal
isoperimetric set or partition is unique. A computation of the directional derivatives in
full generality should be made, following, for example, the ideas in [52, Chapter 9].

� Qualitative results regarding optimal sets and partitions should be investigated in more
detail. Variational ideas could bring new insights and generate different proof methods
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a) Optimal 8-partition b) Mixed problem c) Nodal partition d) Symmetrized partition

Figure 4.21: The 8-partition of the equilateral triangle. The leftmost picture shows the partition
found using the penalization method. The next pictures show the Dirichlet-Neumann approach
computing the 8-partition of the equilateral triangle. Red segments indicate Dirichlet boundary
conditions and blue segments indicate Neumann boundary conditions.

than those in [55] or the other references working on this problem.
Spectral partitions [A15], [A16].
� To investigate optimal partitions in more detail, especially from the point of view of the

precision of the objective cost, alternative numerical representations of the partition could
be used. Starting from the approximate density representation of the partition, the Voronoi
interface method [111], or a finite number of level sets could parametrize the resulting
partition. FreeFEM together with MMG [48] could be used to mesh exactly all cells,
providing a framework where the cost function is evaluated precisely. Notably, results in
[A15] where the Dirichlet-Neumann method cannot be used could all be further improved.

� Alternative formulations could be used for the study of the min-max problem. For example

min{r : λ1(ωi) ≤ r, (ωi) is a partition of D}

leads to a constrained problem where all constraints are differentiable. fmincon or IPOPT
could be used to study the min-max problem in the discrete setting with potentially better
results than the penalization method proposed in (4.24).

� Elucidate cases where no better candidate is known than a partition which cannot be
optimal [67]. For example the 9-partition of the square or the 8 partition of the cube.
Having more precise simulation methods could bring more clarity in these cases.
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Chapter 5

The Polygonal Faber-Krahn
inequality

5.1 Introduction

For every bounded, open set Ω ⊂ R2 we consider the eigenvalue problem for the Laplace operator
with Dirichlet boundary conditions{

−∆u = λu in Ω,
u = 0 on ∂Ω.

(5.1)

The spectrum consists only on eigenvalues, which can be ordered (counting the multiplicity),

0 < λ1(Ω) ≤ λ2(Ω) ≤ · · · ≤ λk(Ω) · · · → +∞.

Lord Rayleigh conjectured in 1877 that the first eigenvalue is minimal on the disc, among all
other planar domains of the same area. The proof was given in by Faber and Krahn in the
1920s. A survey of the topic can be found in [69, 68].

In their book of 1951, Pólya and Szegö have conjectured a polygonal version of this inequality
(see [106, page 158]). Denote by Pn the family of simple polygons with n sides in R2 and for
every n ≥ 3 consider the problem

min
P∈Pn,|P |=π

λ1(P ). (5.2)

They propose the following:
Pólya-Szegö Conjecture (1951). The unique solution to problem (5.2) is the regular polygon
with n sides and area π.

This question, easy to state, has puzzeld many mathematicians in the last seventy years, but
no significant progress has been made. The conjecture holds true for n = 3 and n = 4. A proof
can be found, for instance, in [68] as a straightforward application of the Steiner symmetrization
principle (the original proof can be found in [106]). However, Steiner symmetrization techniques
do not allow the treatment of the case n ≥ 5 since, performing this procedure, the number of
vertices could possibly increase. We are not aware of further results regarding this conjecture.
Neverteless, we mention a new approach, which applies only to triangles, proposed by Fragalà
and Velichkov in [61], establishing that equilateral triangles are the only critical points for the
first eigenvalue.

It is quite straightforward to prove the existence of an optimal n-gon in the closure of the
set of simple n-gons with respect to the Hausdorff distance of the complements, as shown in
[68, Chapter 3]. It has precisely n edges, but it is possibly degenerate in the sense that a vertex
could belong to another edge. However, it is not even known that this polygon has to be convex!
Meanwhile, many numerical experiments have been performed for small values of n (see for
instance [8], [24, Chapter 1], [54]) which all suggest the validity of the conjecture.

65
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In the paper [A7] in collaboration with D. Bucur, we present results which justify that a
hybrid proof of the Polyà-Szegö conjecture can be given, based on theoretical results and certified
numerical computations. The proof strategy is described below and more details are be given
in subsequent sections.

Local minimality of the regular n-gon. A polygon with n vertices can be completely
characterized using 2n real variables. Thus problem (5.2) is reduced to a finite dimensional
optimization problem. A simple eigenvalue is differentiable with respect to domain perturbations
[71, Chapter 5], therefore computation of first and second partial derivatives can provide the
relevant information related to local minimality. While classical shape derivative formulas for λ1

written as linear forms of the normal displacement of the boundary remain valid on polygons,
this is not the case for the second shape derivatives [71, Chapter 5]. Based on the recent paper
of A. Laurain [88] we compute second shape derivatives for λ1 using volume integrals to avoid
the need of additional regularity hypotheses. This allows us to compute the Hessian matrix for
λ1 when the coordinates of the vertices are taken as variables.

A particular change of basis makes the Hessian matrix of the scale invariant functional Pn 7→
λ1(Pn)|Pn| block circulant, allowing us to completely characterize its spectrum. The spectrum
consists of the eigenvalue 0 with multiplicity 4 (corresponding to translations, rotations and
homotheties) and another 2n− 4 eigenvalues. We show that if the remaining 2n− 4 eigenvalues
are strictly positive then the regular polygon is indeed a local minimum. The complexity of the
formulas for the non-zero eigenvalues does not allow us to solve theoretically the question of
local minimality. This motivates us to use a numerical method instead.

Validated numerical computations. When using finite element methods to approximate
solutions of a PDE multiple sources of error exist: discretization errors, meshing errors, machine
precision errors. All these sources of errors need to be taken into account to validate a numerical
computation. Given a mesh size h, the difference between the analytical solution and the one
obtained with finite elements can be estimated using a term of the form O(hk) where the
power k depends on the type of finite elements and the norm used. While general classical
references ignore the constants involved and focus on the order k, in our case, precise information
regarding the corresponding constants are necessary. Based on the work [90] we find explicit
estimates for all PDEs involved in the computations of the eigenvalues of the Hessian matrix.
The quantification of the errors made by working with floating point arithmetics is a more
delicate issue. Generally, one needs to perform all computations using an interval arithmetics
software like Intlab [109]. Operations on floating point numbers are transformed into operations
on intervals. The resulting interval is guaranteed to contain the exact result. Using these
techniques we manage to show that for n ∈ {5, 6, 7, 8} the regular n-gon is a local minimizer, up
to floating point errors involved in solving the large FEM problems. Ideally one should perform
the FEM computations using interval arithmetics, but this is the subject of future works since
different difficulties need to be overcome: validation of large linear systems and matrix eigenvalue
problems, improvement of the constants and convergence order in the a priori estimates for the
FEM problems.

Reducing the proof to a finite number of numerical computations. The final point
of our strategy is to limit the space of n-gons that are relevant competitors with the regular one
to a region which can be exhausted through numerical computations. To do this we have the
following steps:

(i) The local minimality region. Based on the H2+s regularity of the first eigenfunction
on a regular polygon we show that the eigenvalues of the Hessian matrix vary continuously in a
quantified way for n-gons close to the regular one. Therefore, the computation of the eigenvalues
of the Hessian for the regular n-gon will give a quantified neighborhood of local minimality.
Fixing 2 vertices (amounting for the flexibility given by the four zero eigenvalues), the strict
positivity of 2n− 4 remaining eigenvalues of the Hessian will be preserved in a neighborhood of
the regular n-gon.
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(ii) Geometric inequalities. We provide analytic upper bound for the diameter and lower
bounds for the inradius and minimal edge length of an optimal n-gon. This allows to reduce
the space of admissible n-gons to a compact region of R2n−4. Moreover, explicit estimates show
that performing one validated numerical computation can provide a quantified neighborhood of
the current n-gon where no minimizer exists.

(iii) Finite number of numerical computations. Following the previously presented
facts, outside the local minmality neighborhood, the compact region of R2n−4 corresponding to
the geometric constraints described above, can be covered using a finite number of balls of a
given, sufficiently small radius. Performing a validated computation for an n-gon with coordi-
nates in every such ball is enough to validate the conjecture. If the validation procedure fails, a
counterexample will be found (highly unlikely, in view of the numerical evidence for the conjec-
ture). For now, this proof strategy is only formal, since we do not have an estimation regarding
the number of computations necessary to complete the proof. Further qualitative results (like
the convexity of optimizers) would reduce the search space and improve the feasibility of this
hybrid proof strategy.

In the following sections I present the main ideas in connection with the strategy described
above. Section 5.2 deals with the computation of the second shape derivative of a simple
eigenvalue among Lipschitz domains. Section 5.3 contains details regarding the computation of
the eigenvalues of the Hessian of λ1 on the regular n-gon and the explicit estimates related to
their numerical approximations using P1 finite elements. In Section 5.4 geometric estimates for
optimal n-gons are given and the exhaustion of the admissible space through a finite number
of numerical computations is discussed. The chapter concludes in Section 5.5 with a series of
perspectives regarding theoretical qualitative properties and numerical aspects related to the
proposed proof strategy.

5.2 Second shape derivatives and Hessian matrix

It is well established that simple Dirichlet-Laplace eigenvalues are differentiable with respect
to the shape of the domain without any regularity assumptions [71, Section 5.7]. The case of
multiple eigenvalues is more involved, but it can be shown that directional derivatives exist
[68, Section 2.5.3], [77, Chapter VII]. The classical formula for the shape derivative of a simple
eigenvalue λ of (5.1) is

λ′(Ω)(θ) = −
∫
∂Ω

(∇u · n)2θ · n, (5.3)

where u is the L2(Ω) normalized eigenfunction associated to λ and n is the outer normal vector to
∂Ω. Formula (5.3) contains an integral of the square of the normal derivative of the eigenfunction
u on the boundary and is valid under certain regularity assumptions. For example if u ∈ H2(Ω)
the trace of its gradient is well defined and belongs to L2(∂Ω). When Ω is convex the results of
[64, Chapter 2] show that u belongs to H2(Ω) so the boundary formula for the shape derivative
is valid. It can be observed that formula (5.3) gives the shape derivative as a linear form
depending on the normal component of the perturbation field θ ·n. In [100] it is shown that this
structure holds for very general functionals under regularity assumptions. Moreover, in regular
contexts the second derivative also has a particular structure. The second derivative of a simple
eigenvalue is described, for example, in [71, Section 5.9] for shapes that are C3 regular. The
formula and methods used to obtain it cannot be used in the case of polygons. It is likely that
the search for an answer to this question using the structure theorem in [100] prevented earlier
attempts to compute the second shape derivative in contexts where less regularity is present.

The idea that started our work on the Polyà-Szegö conjecture comes from a paper of A.
Laurain [88], formalizing ideas present in other previous works like [89]. The use of distributed
shape derivative formulas, i.e. volume integrals instead of boundary ones, requires less regularity
for the domain and perturbation fields. Distributed shape derivative formulas, for a generic shape
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differentiable functional Ω 7→ J(Ω), have the structure

J ′(Ω)(θ) =

∫
Ω

S1 : Dθ + S0 · θ (5.4)

where S0 ∈ L1(Ω,R2) is a first order tensor and S1 ∈ L1(Ω,R2×2) is a second order tensor.
When S1 is regular enough we have div S1 = S0 (see [89]). This implies that when Ω is regular
enough, the use of the divergence theorem allows us to transform formula (5.4) into the standard
form (5.3).

In [A7] we compute the distributed shape derivative for a simple eigenvalue λ(Ω) and we
arrive at the formula

λ′(Ω)(θ) =

∫
Ω

Sλ1 : Dθ, where Sλ1 = (|∇u|2 − λ(Ω)u2) Id−2∇u⊗∇u. (5.5)

As usual Id denotes the identity 2 × 2 matrix and ⊗ denotes the tensor product: if a, b ∈
Rd then a ⊗ b = (aibj)1≤i≤j≤d ∈ Rd×d. Formula (5.5) holds when Ω is Lipschitz and θ ∈
W 1,∞(R2;R2). The advantage of formula (5.5) is that it can be further differentiated without
imposing additional regularity assumptions, using the same method described in [A7, Section
2]. We arrive, thus at the formula for the second order distributed Fréchet derivative, given for
θ, ξ ∈W 1,∞(R2;R2) by

λ′′(Ω)(θ, ξ) =

∫
Ω
Kλ(θ, ξ)

with

Kλ(θ, ξ) = −2∇u̇(θ) · ∇u̇(ξ) + 2λ(Ω)u̇(θ)u̇(ξ) + Sλ1 : (Dθ div ξ +Dξ div θ)

+
(
−|∇u|2 + λu2

)
(div ξ div θ +DθT : Dξ)

+ 2(DθDξ +DξDθ +DξDθT )∇u · ∇u
−
[
λ′(Ω)(θ) div ξ + λ′(Ω)(ξ) div θ

]
u2, (5.6)

where u̇(θ), u̇(ξ) ∈ H1
0 (Ω) are the material derivatives of the eigenfunction u in directions θ, ξ,

respectively, defined by the variational formulation∫
Ω

(∇u̇(θ) · ∇v − λ(Ω)u̇(θ)v) dx

=

∫
Ω

(
−(div θ Id−Dθ −DθT )∇u · ∇v + λ′(Ω)(θ)uv + λ(Ω)uv div θ

)
dx, (5.7)

holding for every v ∈ H1
0 (Ω). Notice that u̇(θ) is defined up to a multiple of u, moreover,

the second shape derivative does not change if u̇(θ), u̇(ξ) are changed with a multiple of u.
Therefore an additional condition is considered to have uniqueness of solutions in (5.7), for
example

∫
Ω uu̇(θ) = 0. The expression (5.6) is new, up to our knowledge and is valid when the

shape Ω, and the perturbation fields θ, ξ are Lipschitz, including the case of polygons.

In the following we restrict our analysis to polygonal domains Ω. We consider a particular
class of perturbation vector fields θ ∈ W 1,∞(R2;R2) preserving the polygonal character of the
n-gon Ω. For simplicity, we only define the perturbation fields inside Ω, their extension outside
Ω, being arbitrary. Denote the vertices of the polygon by ai ∈ R2 and consider associated
vectors θi ∈ R2 for i = 0, ..., n− 1. Consider a triangulation T of Ω such that the edges of Ω are
edges of some triangles in T . Two examples are shown in Figure 5.1, the symmetric one having
particular interest for the sequel. On this triangulation consider P1 (piece-wise affine) functions
ϕi such that ϕi(aj) = δij . The functions ϕi are equal to zero at any existing internal nodes of the
triangulation T . This allows to define the global perturbation θ =

∑n−1
i=0 θiϕi ∈W 1,∞(Ω;R2).
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Figure 5.1: Examples of admissible triangulations used for defining perturbations on a polygon
and graphical view of the function ϕ1.

Taking the coordinates of the polygon as variables x = (a0, ...,an−1) and using perturbation
fields of the form described above, the associated gradient vector and Hessian matrix can be
computed using the previously found shape derivative formulas. In particular, we have

∇λ(x) =
(∫

Ω
Sλ1∇ϕi

)
i=0,...,n−1

(5.8)

Following the notation of [88], we introduce the functions Ui ∈ H1
0 (Ω;R2), i = 0, ..., n − 1

such that u̇(θ) =
∑n−1

i=0 θi ·Ui. Using (5.7) we get the set of two PDEs: Ui ∈ H1
0 (Ω;R2),∫

Ω
(DUi∇v − λ(Ω)Uiv) dx =

∫
Ω

[−(∇ϕi ⊗∇u)∇v + 2(∇u�∇v)∇ϕi] dx

+

∫
Ω

Sλ1∇ϕi
∫

Ω
uv dx+ λ(Ω)

∫
Ω
uv∇ϕi dx, (5.9)

for every v ∈ H1
0 (Ω) with the normalization condition∫

Ω
uUi dx = 0, (5.10)

so that the system of equations (5.9) - (5.10) has a unique solution Ui.

Theorem 5.2.1. The Hessian matrix Nλ ∈ R2n×2n of a simple Dirichlet-Laplace eigenvalue
(5.1) with respect to the coordinates of the n-gon is given by the following n× n block matrix

Nλ = (Nλ
ij)0≤i,j≤n−1

where the 2× 2 blocks are given by

Nλ
ij =

∫
Ω

(−2DUiDUT
j + 2λ(Ω)UiU

T
j +∇ϕi ⊗ Sλ1∇ϕj + Sλ1∇ϕi ⊗∇ϕj) dx

+

∫
Ω

(
−|∇u|2 + λ(Ω)u2

)
(2∇ϕi �∇ϕj) dx

+ 2

∫
Ω

[(∇ϕi · ∇u)(∇ϕj ⊗∇u) + (∇ϕj · ∇u)(∇u⊗∇ϕi) + (∇ϕi · ∇ϕj)(∇u⊗∇u)] dx

−
∫

Ω
u2

[
∇ϕi ⊗

(∫
Ω

Sλ1∇ϕj dx
)

+

(∫
Ω

Sλ1∇ϕi dx
)
⊗∇ϕj

]
dx (5.11)

where Ui ∈ H1(Ω,R2), i = 0, ..., n− 1 are solutions of (5.9)-(5.10).
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It should be noted that in formula (5.11) all the terms that do not contain the material
derivatives Ui (5.9) are explicit in terms of the eigenfunction u and the functions ϕi (related to
the geometry of the n-gon).

The results in [A7, Section 3] show that the coefficients of the Hessian matrix (5.11) vary
continuously, in a quantifiable way, with respect to the coordinates of the vertices of the n-gon.
Such stability results for the eigenvalue and the corresponding eigenfunction are rather classical.
For instance, Savaré and Schimperna [110] give estimates for solutions of the Laplace equation in
the class of sets satisfying a uniform cone condition while Burenkov and Lamberti [14], Feleqi [56]
discuss the eigenfunctions. The quantitative stability of the eigenvalues for domain perturbations
is discussed in [105]. On the other hand, the stability of the terms involving the material
derivatives (5.9) is more delicate and exploits the H2+s(Ω) regularity of the eigenfunctions of a
regular n-gon. This is the subject of [A7, Section 3].

The regular n-gon. We are interested in proving the local minimality of the regular n-gon,
therefore in the following we restrict ourselves to this case and we consider the first eigenvalue
λ1(Ω). In particular, the first eigenfunction has the same symetries as the regular n-gon. We
also assume that the functions ϕi are defined using a symmetric triangulation, shown in Figure
5.1. In [A7, Section 2] we show that these symmetry considerations allow us to obtain a simpler
formula for the Hessian Matrix for the regular n-gon.

Furthermore, the scaling properties of the Dirichlet-Laplace eigenvalue imply that the quan-
tity λ1(Ω)|Ω| is scale invariant. Therefore, we focus on this quantity which allows a more
straightforward characterization of the minimality of solutions of (5.2) since it gives rise to an
unconstrained problem. The associated Hessian matrix is given below.

Proposition 5.2.2. In the case where Ω is a regular n-gon and the triangulation T defining
ϕi is symmetric the Hessian matrix of λ1(Ω)|Ω| = A(x)λ1(x) in terms of the coordinates of the
polygon has the 2× 2 blocks Mλ

ij, 0 ≤ i, j ≤ n− 1 given by

Mλ
ij =− 2|Ω|

∫
Ω

(DUiDUT
j − λ1(Ω)UiU

T
j )

− λ1(Ω)

∫
Ω

[∇ϕi ⊗∇ϕj −∇ϕj ⊗∇ϕi]

+ 2|Ω|
∫

Ω
(∇ϕi · ∇ϕj)(∇u1 ⊗∇u1). (5.12)

The simplified formula (5.12) for the Hessian of the product of the area and the first eigen-
value has three terms:

� The first one is related to the decomposition Ui of the material derivatives given in (5.9).
Furthermore, these terms are computed using the bilinear form from the variational for-
mulations of Ui, which will be essential in improving the estimates in the numerical sim-
ulations. This part of the Hessian is negative definite.

� The second term is proportional to the Hessian of the area given in [A7, Section 2]. The
associated blocks are non-zero only when |i − j| = 1 (modulo n). This part has both
positive and negative eigenvalues.

� The third term involves only the first eigenfunction u1 and the functions ϕi described in
the symmetric configuration shown in Figure 5.1. The associated blocks are non-zero only
when |i− j| ≤ 1. This part of the Hessian is positive definite.

Although the expression of the Hessian given in (5.12) is explicit, its positive definiteness is
not obvious. The analysis of the eigenvalues of this matrix is continued in Section 5.3.
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5.3 Eigenvalues of the Hessian matrix and their numerical ap-
proximations

In this section, the spectrum of Mλ, the Hessian matrix of x 7→ λ(x)A(x) described in (5.12)
is investigated. For simplicity we use the notation θ = 2π/n and Pn denotes the regular n-gon
with unit circumradius, centered at the origin and having the first vertex a0 = (1, 0). The main
ideas elaborated in detail in [A7, Section 4] are resumed below:

� Translations, rotations and homotheties do not change the scale invariant quantity λ(x)A(x).
Using direct observations related to the matrices involved, or more explicitly, considering
perturbations of the regular n-gon preserving its regularity, we show that Mλ has four
zero eigenvalues associated to the eigenvectors

tx =



1
0
1
0
. . .
0

 , ty =



0
1
0
1
. . .
1

 , s =



1
0

cos 2π
n

sin 2π
n

. . .

sin 2(n−1)π
n

 , r =



0
−1

sin 2π
n

− cos 2π
n

. . .

− cos 2(n−1)π
n

 . (5.13)

� Having four extra degrees of freedom, we may fix two vertices a0,a1 and consider the
minimization of x 7→ λ1(x)A(x) using the remaining 2n − 4 variables a2, ...,an−1. The
associated Hessian matrix is a (2n−4)×(2n−4) principal submatrix of Mλ. This submatrix
is positive definite, provided the remaining 2n− 4 eigenvalues of Mλ are strictly positive.
(see [72, Theorem 4.3.28]) Moreover, continuity arguments in [A7, Section 3] ensure that
the positive definiteness of this (2n− 4)× (2n− 4) matrix is preserved in a neighborhood
of the regular n-gon, proving local minimality.
Therefore, the proof of local minimality of the regular n-gon is reduced to showing that
the remaining 2n− 4 non-zero eigenvalues of Mλ are strictly positive.

� The matrix Mλ computed in (5.12) uses the usual Euclidean basis. Making a change
of basis considering radial and tangential coordinates for each vertex shows that circular
permutations of the vertices do not change the associated Hessian matrix. Therefore, the
Hessian matrix becomes block circulant and using results in [115] we can characterize its
spectrum using a set of 2× 2 matrices

Bρk = M0 + M1(ρkRθ) + ...+ Mn−1(ρkRθ)
n−1,

constructed using the blocks on the first line of Mλ, roots of unity ρk = exp(ikθ) and
usual rotation matrices Rτ .

Tedious, but explicit computations show that the eigenvalues of Bρk , and as a consequence those
of Mλ, can be expressed in terms of u1, U

1
0 , U

2
0 .
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Euclidean basis

Radial-tangential basis

Figure 5.2: Changing the basis from the Euclidean one to use radial and tangential coordinates.
The Hessian matrix becomes block circular in this setting.

Theorem 5.3.1. For 0 ≤ k ≤ n− 1 we have Bρk =

(
αk iγk
−iγk βk

)
with

αk =
2n(1− cos(kθ))

sin θ

∫
T0

(∂xu1)2 − 2|Pn|a(U1
0 ,

n−1∑
j=0

cos(jkθ)(cos(jθ)U1
j + sin(jθ)U2

j ))

βk =
2n(1− cos(kθ))

sin θ

∫
T0

(∂yu1)2 − 2|Pn|a(U2
0 ,
n−1∑
j=0

cos(jkθ)(− sin(jθ)U1
j + cos(jθ)U2

j ))

γk = −2|Pn|a(U1
0 ,

n−1∑
j=0

sin(jkθ)(− sin(jθ)U1
j + cos(jθ)U2

j ))

= 2|Pn|a(U2
0 ,
n−1∑
j=0

sin(jkθ)(cos(jθ)U1
j + sin(jθ)U2

j ))

Moreover, the eigenvalues of Bρk are given by

µ2k = 0.5(αk + βk −
√

(αk − βk)2 + 4γ2
k), µ2k+1 = 0.5(αk + βk +

√
(αk − βk)2 + 4γ2

k).

As a consequence, the eigenvalues of the Hessian matrix Mλ given in (5.12) are exactly µj,
j = 0, ..., 2n− 1.

Despite the explicit character of the formulas found in Theorem 5.3.1, the positivity of
the 2n − 4 non-zero eigenvalues is not obvious and we do not have a theoretical argument
for now. Nevertheless, these eigenvalues can be approximated numerically using finite elements,
motivating us to find explicit error bounds justifying their positivity. The choice of finite elements
compared to other methods like fundamental or particular solutions [15] is motivated by the
complexity of the equations of the material derivatives (5.9). Solutions to these equations are not
even in H2(Ω), since discontinuities in the derivatives occur along segments of the triangulation
T defining ϕi, depicted in Figure 5.1.

The steps needed to obtain certified error estimates for coefficients of Mλ using P1 finite
elements are summarized as follows:

� Certified approximations for λ1 and u1 are well known and described in [91]. We describe
in detail in [A7, Section 5] the constants appearing in the estimates

|λ1 − λ1,h| = O(h2), ‖∇u1 −∇u1,h‖L2(Ω) = O(h), ‖u1 − u1,h‖L2(Ω) = O(h2),

where h is the mesh size. The constants take into account the geometry of all triangles
present in the mesh Th discretizing the n-gon Ω.
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Figure 5.3: Examples of symmetric meshes for regular polygons used in the computations.

� The estimate for the approximation of Ui, solution of (5.9) is more involved. The difficul-
ties come from the lack of global H2(Pn) regularity. We use again the H2+s(Pn) regularity
of the eigenfunction to conclude that the singular term in the right hand side of (5.9) be-

longs to H−
1
2
−γ(Pn) for γ ∈ (0, 1/2). The main results allowing us to obtain a quantified

estimate for Ui is [A7, Theorem 5.2] where we show that if U is a generic scalar component
of Ui then

‖∇U −∇Uh‖L2(Pn) = O(h0.5−γ),

for every γ ∈ (0, 1/2) with explicit constants depending on γ. Moreover, the constants go
to +∞ as γ → 0.

� A detailed analysis of the equation (5.9) is given in [A7, Section 5] and all required a priori
estimates for the constants involved are given. In particular, we even suppose that the
mesh of Pn is symmetric and is made of congruent triangles, as shown in Figure 5.3.

� The terms involving Ui in formulas given in Theorem 5.3.1 have a particular structure, in-
volving the bilinear form a(u, v) =

∫
Ω∇u ·∇v−λ1(Ω)uv, also appearing in the variational

formulation of the material derivatives (5.9). In [63, Section 5] it is shown that defining
some auxiliary problems can double the convergence speed in the estimates for some par-
ticular quantities of interest. We perform the same analysis in [A7, Section 5.3] and we
arrive at a quantified error terms for eigenvalues of Mλ which are enough to guarantee the
positivity of the remaining 2n− 4 non-zero eigenvalues for n ∈ {5, 6, 7, 8}.

The next result summarizes the results described above:

Theorem 5.3.2. The terms αk, βk, γk in Theorem 5.3.1 admit an error estimate of order
O(h1−2γ) for every γ ∈ (0, 1/2) when the first eigenfunction u1 and the function U0 = (U1

0 , U
2
0 )

are approximated using P1 finite elements.

Having explicit a priori error estimates, we are ready to perform the numerical computations.
The software FreeFEM [66] is used in its parallel version. The simulations are run on the
Cholesky cluster at the Institut Polytechnique de Paris on up to 400 cores. The computation
process is described below:

� Given n ≥ 5 we construct a symmetric mesh as shown in Figure 5.3 with mesh size h equal
to the length of the equal sides in the small isosceles triangles composing it. The size h
is chosen such that estimates in Theorem 5.3.2 are enough to guarantee positivity of the
non-zero eigenvalues of Mλ defined in (5.12), following Theorem 5.3.1.

� Piecewise affine P1 elements are used to approximate λ1, u1 and solutions Ui, i = 0, ..., n−1
of (5.9). The numerical quantities obtained are used to compute αk, βk, γk shown in
Theorem 5.3.1 as well as the constants in estimates from Theorem 5.3.2.

� For each one of the αk, βk, γk, the explicit error estimate gives intervals Iαk
, Iβk , Iγk guaran-

teed to contained the exact result. These intervals are used in Intlab [109] to find intervals
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h d.o.f.

Pentagon 10−4 250 025 001

Hexagon 10−4 300 030 001

Heptagon 10−4 350 035 001

Octagon 10−4 400 040 001

Table 5.1: Size of the computational problems for the finite element computations.

Pentagon

Eig. l.b. u.b. mult.

2.568803 2.359297 2.784816 2

8.015038 7.558395 8.460722 2

13.458443 13.012758 13.915086 2

Hexagon

Eig. l.b. u.b. mult.

1.323826 1.040291 1.629895 2

3.916803 3.112218 4.719205 2

12.990672 12.188270 13.795257 2

7.566593 6.326083 8.803012 1

11.540733 10.304314 12.781243 1

Heptagon

Eig. l.b. u.b. mult.

0.747352 0.446026 1.096876 2

2.056766 0.963449 3.148214 2

4.655979 3.078862 6.228621 2

12.292485 10.719843 13.869602 2

12.582047 11.490599 13.675364 2

Octagon

Eig. l.b. u.b. mult.

0.452095 0.182855 0.774247 2

1.171933 0.309482 2.034382 2

2.772135 1.273803 4.268064 2

12.049631 11.187182 12.912082 2

13.037208 11.541279 14.535540 2

3.999568 1.460555 6.536411 1

11.740713 9.203870 14.279726 1

Table 5.2: Numerical approximations of the 2n − 4 non-zero eigenvalues of the Hessian matrix
for n ∈ {5, 6, 7, 8} together with intervals given by the error estimate in Theorem 5.3.2

containing the eigenvalues of Mλ. If among these intervals we find 2n − 4 which do not
contain 0, then we have found 2n− 4 strictly positive eigenvalues.

The strategy described above allows us to conclude that the regular n-gon is a local minimizer
for n ∈ {5, 6, 7, 8}. The bounds for the corresponding non-zero eigenvalues are shown in Table
5.2. The missing ingredient to have a complete proof is the control of errors made in the FEM
computations: resolution of discrete linear systems and machine errors. Basic estimations based
on estimates of the condition number of the rigidity and mass matrices for P1 finite elements
(see [76] for example) show that errors related to the linear systems have the form O(εh−2),
where ε is the given machine precision. Evaluating machine precision errors is more involved, as
shown in [13], for example. Ideally the whole FEM computation should be made in Intlab, but
for now this is costly in view of the need to validate large linear systems and large eigenvalue
problems. In the perspective section we enumerate some ideas that might lead to a complete
proof in this sense.

The sizes of the numerical computations associated to the FEM problems are enumerated in
Table 5.1. The a priori estimates have the particularity that the precision of the computation
can be evaluated before execution. Evaluating the optimal problem size which still allows us to
conclude the local minimality leads to estimations shown in Table 5.3. In particular, any further
improvements in the error estimates shown in Theorem 5.3.2 concerning the constants or the
order of convergence would lead to a further decrease in size which could allow to perform the
whole computation using interval arithmetics and complete the proof of the local minimality of
the regular n-gon for problem (5.2).
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Mesh size deg. freedom

Pentagon 9.8e-4 ≈ 2.6 million

Hexagon 4.2e-4 ≈ 17 million

Heptagon 1.9e-4 ≈ 97 million

Octagon 1.35e-4 ≈ 220 million

Table 5.3: Approximately optimal mesh sizes and number of degrees of freedom for which
currently known a priori estimates allow to certify the local minimality.

5.4 Reducing the proof to a finite number of numerical simula-
tions

For a given n ≥ 5 suppose that the regular n-gon is a local minimizer for (5.2). Suppose also
that, fixing two vertices, we have a quantified neighborhood Vn ⊂ R2n−4 for the remaining n− 2
vertices where local minimality occurs, based on [A7, Section 3]. This could be achieved by
either theoretical or numerical methods, like the ones shown in the previous section.

To achieve the objective stated in the introduction, namely to use numerical tools in order
to complete the proof of the Polyà-Szegö conjecture, first we establish some theoretical results
regarding geometric aspects of an optimal n-gon, denoted by Qn in the following. Denote by
l∗n = λ1(Qn)|Qn|, the minimal value for scale invariant objective functional P 7→ λ1(P )|P | among
n-gons. Recall that the existence of such an optimal n-gon is guaranteed by the results in [68,
Chapter 3]. The main results are enumerated below:

� Fixing the volume of Qn there exists an explicit upper bound for the diameter of the
optimal n-gon. In the scale invariant setting this translates into a restriction regarding the
possible flatness of the optimal n-gon. Fixing two vertices of the polygon, corresponding
to the longest side, in the scale invariant setting leads to a lower bound on the area of the
optimal n-gon. The result is described in detail in [A7, Theorem 7.1] and the proof uses
techniques introduced in [38].

� A lower bound on the smallest edge length of Qn, when the volume is fixed, is provided
in [A7, Theorem 7.3]. This lower bound for the shortest side length also holds in the scale
invariant setting, since we have a lower bound on the area.

� A quantitative stability result in [A7, Lemma 7.4] shows that for two polygons with the
same area and an upper bound on the diameter, closedness of the vertices implies closedness
of the first eigenvalues. Makai’s inequality [94] gives a lower bound on the first eigenvalue
in terms of the inradius ρP : λ1(P ) ≥ 1

4ρ2P
. Using this inequality and the lower bound

on the area we obtain an explicit lower bound for the inradius of an optimal n-gon Qn.
Among polygons with prescribed lower bound on the inradius we obtain an explicit result
of the following form.
If P = [a0...an−1], Q = [b0...bn−1] are two n-gons having areas in [m,M ], 0 < m < M ,
with inradii verifying ρP , ρQ ≥ ρmin > 0 such that |aibi| ≤ δ then

|λ1(P )− λ1(Q)| ≤ Cnδ1/2,

where the constant Cn depends only on n.

Based on these theoretical results we prove in [A7, Theorem 7.5] that the proof of the
Polyà-Szegö conjecture can be achieved using a finite number of numerical computations. The
argument presented is formal and uses a ball covering of a compact set of R2n−4 containing
coordinates of admissible polygons verifying the geometric constraints described above. In the
following, I present an alternative argument, also abstract, allowing to reach the same conclu-
sions. More concrete variants that are more appropriate from a computational point of view are
discussed in the Perspectives section.
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Consider n ≥ 5 and, up to a change of variables, fix two vertices a0 = (0, 0),a1 = (1, 0).
We work with the scale invariant functional P 7→ λ1(P )|P |, therefore without loss of generality
we assume that [a0a1] is the longest edge of the polygon P = [a0...an−1]. The remaining n− 2
vertices lie in a bounded region of the plane and their coordinates belong to a compact region
Rn ⊂ R2n−4. Following the arguments described above, there exists an explicit constant Kn

such that if the vertices of admissible n-gons P,Q are at distance at most equal to δ then

|λ1(P )|P | − λ1(Q)|Q|| ≤ Knδ
1/2. (5.14)

Choose an estimate ε1 of the minimal value of |P |λ1(P ) outside the local minimality neigh-
borhood Vn described above. For example, start with ε1 = 1 and perform the steps described
below. Assuming that l∗n is given by the regular n-gon, in the following l∗n represents an approx-
imation of λ1(Pn)|Pn|.

� Suppose that outside the local minimality neighborhood Vn we have λ1(P )|P | ≥ l∗n + ε1.
� Consider a uniform grid of squares (Sn) in the plane having diagonals δ0 , covering the

region where vertices of polygons with vertices in Rn ⊂ R2n−4 belong. See Figure 5.4
for an illustration. It follows that the set Rn can be covered by products of the form
Si2 × ...× Sin−1 . The length δ0 is chosen such that:
(a) δ0 is smaller than half the size of the minimal edge of the optimal polygon, determined

analytically previously. Therefore any admissible polygon P having coordinates in
Rn will have vertices in different squares (Sn).

(b) Using the constant Kn from (5.14) we have Knδ
1/2
0 < ε1/4. This implies that if an

admissible polygon P with vertices aj ∈ Sij , j = 2, ..., n − 1 verifies λ1(P )|P | ≥
l∗n + ε1/4 then no other polygon having vertices in the same squares is better than
the regular n-gon.

� There is a finite number of cartesian products S = Si2 × ... × Sin−1 . Loop through all of
them and perform the following:
(a) Find an admissible polygon in the current region S. If no such polygon exists, there

is nothing to be done.
(b) If the current region is included in the local minimality neighborhood Vn, there is

nothing to be done.
(c) If an admissible polygon P exists, compute λ1(P )|P | using a certified finite element

computation obtaining an interval with length smaller than ε1/4. If this certified
computation gives λ1(P )|P | ≥ l∗n+ε1/2 then no other polygon better than the regular
n-gon exists in the current region.

(d) If the previous inequality is not verified, divide ε1 by two and repeat the above
procedure.

Suppose the procedure described above fails for every choice of ε1 of the form 1/2m, m ≥ 1.
Then a sequence of polygons converging to a counter example lying outside the local minimality
neighborhood will be found, contradicting the conjecture. Assuming the conjecture is true, the
strategy described above will finish after a finite number of numerical computations.

Alternative approach. Considering again a square grid, like in Figure 5.4, and n−2 small
squares Si2 , ..., Sin−1 , consider polygons Q1, Q2 such that:

� Q1 = [a0a1b2...bn−1] with bj ∈ Sij , 2 ≤ j ≤ n− 1 has minimal area. See Figure 5.5 (left).
� Q2 is a maximal polygon with respect to inclusion, containing all polygons of the form

[a0a1b2...bn−1] with bj ∈ Sij , 2 ≤ j ≤ n−1. Note that Q2 may have more than n sides. In
view of the monotnicity of the eigenvalues with respect to inclusion, Q2 is used to obtain
a lower bound for eigenvalues of polygons P = [a0a1a2...an−1] with aj ∈ Sij . See Figure
5.5 (center).

Then λ1(Q2)|Q1| is a lower bound for P 7→ λ1(P )|P | for P having vertices a0,a1,aj ∈ Sij , 2 ≤
j ≤ n − 1. If this lower bound is higher than l∗n then the region S = Si2 × ... × Sin−1 does not
contain a better competitor than the regular n-gon. If the inequality does not hold, divide each
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Si2

Si3

Si4

a0 a1

Vn

Vn

Vn

Figure 5.4: Graphical illustration of the computational strategy for n = 5: the fixed points a0, a1,
the local minimality neighborhood Vn, the square grid and squares Si2 , Si3 , Si4 are represented.

Si2

Si3

Si4

a0 a1

Si2

Si3

Si4

a0 a1

Si2

Si3
Si4

a0 a1

Figure 5.5: Examples of polygons giving lower bounds for the area (left) and the eigenvalue
(center) for polygons with vertices a0,a1,aj ∈ Sij , 2 ≤ j ≤ 4. The picture on the right shows
an example of three squares Si2 , Si3 , Si4 with sides 0.04 which do not contain any competitors
better than the regular pentagon. The numerical validation of this fact used 262144 numerical
computations.

square in smaller ones and repeat the procedure recursively.

It is not clear if this method is efficient in practice, since the squares need to be small for the
inequality described above to hold. Nevertheless, in Figure 5.5 an example is shown for n = 5,
where the validation of polygons having vertices in the squares Sij , 2 ≤ j ≤ 4 is performed. The
numerical validation used 262144 numerical computations, showing that these regions do not
contain a better polygon than the regular n-gon.

5.5 Perspectives

The results described in this chapter have various natural perspectives described below. The
goal is to apply the strategy presented here to complete the proof of the optimality for the
regular n-gon for at least one value of n ≥ 5.

� The first objective is the completion of the proof for the local minimality of the regular n-
gon. Ideally, a theoretical proof of the positivity for the eigenvalues described in Theorem
5.3.1 should be given. Alternatively, the estimates in Theorem 5.3.2 should be improved.
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Initial results, investigating deeper regularity results in [64] concerning problems (5.9) show
that even though the solutions Ui are not globally in H2(Pn), they are, in fact piecewise
H2 for every triangle in the triangulation shown in Figure 5.1.

� After improving the convergence results in Theorem 5.3.2, the whole finite element compu-
tation should be performed in Intlab [109]. Studying the code used for validating matrix
eigenvalue problems shows that natural improvements are readily available.

� The theoretical arguments in [A7, Section 3] should be revisited and all constants involved
in the estimates should be evaluated. The argument using Stein extensions could be
replaced with an argument using only the extension operator for the regular polygon.

� Qualitative properties of the minimal n-gons should be further investigated. In particular,
the question of convexity is still open. The new results regarding the explicit second order
derivatives could help deal with this aspect. Proving that the optimal n-gon is convex
would drastically reduce the computational cost of the strategy described in Section 5.4.

� Numerical experiments show that using particular changes of basis, different from the one
shown in Figure 5.2, the resulting Hessian matrix becomes almost diagonal. This suggests
that more details regarding the structure of the second derivatives could be found. In
particular, the second shape derivative (5.6) and the Hessian matrix found in Theorem
5.2.1 should be investigated in the context of the structure theorem described in [100].

� Practical aspects regarding the strategy described in Section 5.4 should be further ad-
dressed, evaluating more precisely the computational cost and the feasibility of the ap-
proach proposed.
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Alpes, Dec. 2015. https://tel.archives-ouvertes.fr/tel-01502792.
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[26] V. Bonnaillie-Noël and B. Helffer. On spectral minimal partitions: the disk revisited. Ann.
Univ. Buchar. Math. Ser., 4(LXII)(1):321–342, 2013.
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[74] I. M. Jaglom and V. G. Boltjanskĭı. Convex figures. Translated by Paul J. Kelly and Lewis
F. Walton. Holt, Rinehart and Winston, New York, 1960.

[75] S. G. Johnson. The nlopt nonlinear-optimization package. http://github.com/stevengj/
nlopt.

[76] L. Kamenski, W. Huang, and H. Xu. Conditioning of finite element equations with arbitrary
anisotropic meshes. Math. Comp., 83(289):2187–2211, 2014.

[77] T. Kato. Perturbation theory for linear operators. Springer-Verlag, Berlin-New York, second
edition, 1976. Grundlehren der Mathematischen Wissenschaften, Band 132.

[78] B. Kawohl and T. Lachand-Robert. Characterization of Cheeger sets for convex subsets of
the plane. Pacific J. Math., 225(1):103–118, 2006.

[79] B. Kawohl and C. Weber. Meissner’s mysterious bodies. Math. Intelligencer, 33(3):94–101,
2011.

[80] B. Kloeckner. Dans quelle forme la plus petite paroi enfermant un volume donné
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[95] E. Meissner. Über die anwendung von fourier-reihen auf einige aufgaben der geometrie und
kinematik. Vierteljahrschrift der Naturforschenden Gesellschaft, 54:309–329, 1909.
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