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Abstract
Many recent works deal with problems concerning optimal partitions related to spectral

quantities of domains in Euclidean spaces or on manifolds. Due to the complexity of these
problems, few explicit solutions are known. Therefore, numerical algorithms have been
developed in order to find approximations of optimal partitions. Such algorithms are based
on discretizations of the domain and lead to finite dimensional difference equations. In the
following, the coupling of the gradient descent method with a projection algorithm leads to
a non-linear difference equation. Various properties of the discrete problem are discussed
and numerical results illustrating the behaviour of the discretization scheme are shown.

1 Introduction

Given an open set ω in an Euclidean space or in a manifold, the spectrum of the Laplace oper-
ator with zero Dirichlet boundary conditions consists of an increasing sequence of eigenvalues

0 < λ1(ω) ≤ λ2(ω) ≤ · · · → +∞.

To each eigenvalue λk(ω) there corresponds an eigenfunction uk ∈ H1
0 (ω) such that the follow-

ing partial differential equations are satisfied:{
−∆uk = λk(ω)uk in ω

uk = 0 on ∂ω

Given a domain D in Rd or in a manifold we call a partition of D with n cells a family of
sets ω1, ..., ωn ⊂ D such that

n⋃
i=1

ωi = D and ωi ∩ ωj = ∅.

The previous equalities are to be understood up to sets of zero Lebesgue measure. Optimal
partition problems which are of interest in the following are related to the spectrum of the
Dirichlet Laplace operator on each of the sets ωi, i = 1, ..., n. We may formulate the following
problems.

Problem 1. Given D in Rd or in a manifold, find ω1, ..., ωn ⊂ D such that (ωi)
n
i=1 forms a

partition of D and
λ1(ω1) + λ1(ω2) + ...+ λ1(ωn)

is minimized.
Problem 2. Find partitions of D such that

max
i=1,...,n

λ1(ωi)

is minimized.
For simplicity, in the following we refer to Problem 1 as minimization of the sum of eigen-

values and to Problem 2 as the minimization of the max of the eigenvalues. The main point
of interest of the paper is Problem 1, but similar tools can be used to study Problem 2. These
problems generated a lot of interest in recent years. Since they are related to shape optimization
one naturally poses the following questions:
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1. Do optimal partitions exist? This was answered positively in [8] and [11].
2. What is the regularity of the boundaries of the cells? The cells have boundaries that are

of class C1,α outside singular sets of dimension d− 2 [10],[11].
3. When are the solutions known? For Problem 1 the solutions are rarely known. For exam-

ple if n = 2 and D is a sphere then we know that two hemispheres are optimal [1]. For
Problem 2 there are multiple cases which are known and techniques used are related to
nodal partitions for eigenvalue problems. For more details see [5].

4. How can we approximate numerically these optimal partitions, given the bounding do-
main D? Due to the fact that solutions of Problems 1 and 2 are rarely known, a great
interest was shown towards discretization algorithms which allow the approximation of
solutions. We refer to [6], [14], [2], [15] for aspects dealing with Problem 1 and [3], [7] for
Problem 2. For a more complete list of works on the subjects look at references in these
cited papers.

In the following we concentrate on aspects related to Problem 1. These can be generalized
to Problem 2 using techniques from [3]. Numerical methods used to approximate solutions of
such spectral optimal partitioning problems use a discretization of the domain D. A method
of representing the shapes which is well adapted to the study of partitions was proposed in
[6] and consists of replacing each shape ωi by a density function ϕi defined on the discrete
grid. The partition condition is simply replaced by an algebraic condition on the discrete func-
tions and can simplify the numerical treatment. It is possible to compute the derivative of the
eigenvalues λ1(ωi) with respect to each of the nodes of the discretization. A gradient descent
algorithm is used in order to search for a minimizer of the functional. Since performing a de-
scent step may lead to new discrete function which may not verify the partition constraint, a
projection algorithm is applied in order to make sure that the constraint is satisfied.

The above algorithm can be formulated as a non-linear recurrence relation on the discrete
functions ϕi. An efficient numerical implementation is proposed, where the eigenvalue prob-
lems are solved only on a neighbourhood of the regions {ϕi ≥ ε} where ε is a given threshold.
More details about the numerical aspects and simulation results can be found in [2]. Aspects
related to the discrete algorithm are presented in the following sections, together with obser-
vations related to numerical simulations.

2 Discrete equation

In the following we present a framework for the numerical approximation of solutions of the
problem

min
(ωi)

λ1(ω1) + ...+ λ1(ωn), (1)

where the minimization is made over all partitions (ωi)
n
i=1 of a domain D. In the applications

presented below D will be a domain in the plane, in the three dimensional space or a closed
surface.

In the following, for simplicity of presentation, we suppose that the domain D is the unit
square. Further on we show how the general case can be handled using similar tools. Suppose
that D is discretized using a N × N finite difference grid. A real function f , defined on D, is
represented on the grid by its values at the N ×N points: fi,j , 1 ≤ i ≤ N, 1 ≤ j ≤ N . We use
the centred finite differences to compute the discrete Laplace operator on this grid:

∆fi,j =
fi+1,j + fi−1,j + fi,j+1 + fi,j−1 − 4fi,j

4h2
, (2)

where h is the grid spacing parameter. Periodic or Dirichlet boundary conditions are used on
the boundary ∂D. The discrete Laplacian is a linear operation, therefore, if we represent the
values fi,j as a column vector f then the equation (2) can be represented as a matrix vector
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product Lf . For simplicity, from here on, we suppose that an ordering of the N × N points is
given and we label the values of the discrete function f using this labelling as fi, 1 ≤ i ≤ N2.
Moreover, when we drop the indices, we suppose that the operation is made on the whole
vectors.

Following the results in [6], the discrete eigenvalue problem associated to a density ϕi, 1 ≤
i ≤ N2 defined on the finite difference grid, has the form

[L+ Cdiag(1− ϕ)]u = λ(C,ϕ)u, (3)

where C � 1 is a penalization parameter and diag(v) is a diagonal matrix with entries taken
from the vector v. The results of [6] show that the derivative of the first eigenvalue of (3) with
respect to the components of ϕ is given by

∂iλ1(C,ϕ) = −Cu2i , (4)

where u is a normalized eigenvector associated to λ1(C,ϕ) in (3).
The numerical framework presented in [6], also used in [4], [3] and [2], is based on a gradi-

ent descent algorithm, described below.

1. Givenϕ1, ..., ϕn densities corresponding to a partition ofD (satisfying the relation
∑n

i=1 ϕi =
1), we compute the associate solutions of the discrete problem for each ϕi, given in (3).

2. The point-wise gradient with respect to each of the grid points, given in (4) can be com-
puted.

3. We choose a step size α > 0 and we evolve each of the densities ϕi in the opposite direc-
tion given by the gradient:

ϕi ← ϕi + αCu2i (5)

4. The new configuration might not satisfy the partition condition. Therefore we apply a
projection algorithm

ϕi ←
|ϕi|∑n
i=1 |ϕi|

. (6)

This projection was proposed in [6] and has the advantage of keeping the values of the
shape densities in the interval [0, 1]. The application ϕ 7→ λ1(C,ϕ) being concave, min-
imizing the sum of the eigenvalues forces the values of the functions ϕ1, ..., ϕn towards
the extreme values 0 or 1.

The composition of the transformations (5) and (6) gives the following non-linear mapping

(ϕi)
n
i=1 7→

ϕi + αCu2i
1 + αC

∑n
i=1 u

2
i

, (7)

where ui is the solution of (3) for ϕ = ϕi. One may note that since ϕi have values in [0, 1] and
the gradient descent, shown in (5), consists in adding positive quantities, the absolute values
in the projection operators are no longer needed in (7).

3 Numerical results

In the following we show how the algorithm in the previous section can be implemented effi-
ciently, in order to be able to study complex partitions from a numerical point of view. In [6]
the authors used the above approach by solving the problem (3) on the whole finite-difference
grid. Looking at the structure of the eigenvalue problem (3) we see that points corresponding
to {ϕ = 0} have a penalization term on the diagonal, equal to the penalization constant C � 1.
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Figure 1: Reduced computational grids in various configurations.

These terms have the role of imposing the Dirichlet boundary condition. As it was noticed in
[2],[3], it is not necessary to perform these computations on the whole discrete grid. Penalizing
only the points which are close to the region {ϕ ≥ ε} (where ε is a chosen threshold) is enough
to recover the Dirichlet boundary condition.

Therefore, using only nodes which are neighbours to the region {ϕ ≥ ε} is enough to solve
the discrete eigenvalue problem (3). Moreover, using this procedure the condition number
of the matrices for which we compute the eigenvalues is decreased, improving the precision
of computations, and the computations are greatly accelerated since the number of nodes in-
volved in the eigenvalue problems is reduced, especially if we have a large number of cells.
In Figure 1 we show a few examples of reduced grids. The points coloured with dark blue
represent points where the density ϕ is above 0.01. Points coloured with light blue represent
neighbours of the shape, which are also included in the computation. One may observe that
the size of the discrete problems is greatly reduced. In the following some applications of the
improved algorithm are shown. More details can be found in [2].

In order to avoid local minima, in all computations below, the initial densities are chosen
randomly and are projected onto the partition constraint. The polygonal structures in the final
partitions are solely the result of the optimization algorithm.

The algorithm above was described for a finite difference grid defined on an unit square. It
is possible to study general domains D by including them in a rectangular region and adding
a penalization term on all nodes of the grid that are outside D.

3.1 Domains in the plane

The algorithm presented in [6] for the study of problem (1) was also capable of dealing with
planar domains, but computation costs were high for many cells on fine grids. In [6] an example
of computation for 512 cells on the square was presented. That computation was made on a
supercomputer at the Texas Advanced Computing Center. The same computation can be done
in a few hours on a laptop with the simplified algorithm using reduced grids. This result is
presented in Figure 2. More complex cases can be handled, like the partition in 1000 cells on a
1000× 1000 grid on the periodic square (also shown in Figure 2). It was conjectured in [10] that
the partition minimizing the sum of the eigenvalues converges to the honeycomb structure
as n → ∞. This can be observed in Figure 2: local patches of regular hexagons appear. In
order to further investigate this behaviour some computations are made on an exact union of
regular hexagons. The expected behaviour is observed: the optimal partition obtained with our
algorithm aligns with the exact honeycomb structure corresponding to these domains. Such a
result can also be visualised in Figure 2.

Recent progress towards the proof of the spectral honeycomb conjecture was made in [9],
where the authors showed that if the cells of the partitions are supposed to be convex and
additional hypotheses regarding the minimality of eigenvalues of regular polygons are true,
then the honeycomb partition is optimal for (1) as n→∞.
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Figure 2: Optimal partitions in the plane for many cells. The cells have the tendency to dis-
tribute in a honeycomb pattern.

Figure 3: Partition minimizing (1) for the sphere, a torus and a more complex surface.

3.2 Domains on surfaces.

A first natural extension of the 2d algorithm is to look problem (1) for domains on surfaces
in R3. In order to do this, a finite element setting is used to discretize the surface, but the
numerical algorithm is the same. For details see [2]. In [13] the authors used an energy for-
mulation to study optimal partitions on various surfaces. Their algorithm was also based on
finite elements, using the whole triangulation for the computations. In [2] an analogue grid
restriction procedure was proposed in the case of surfaces, allowing the acceleration of compu-
tations and the treatment of partitions with many cells. In this way, similar observations can be
made, noting that partitions of surfaces also tend to follow the planar behaviour and patches
of hexagonal cells are observed. Topological arguments based on Euler’s formula show that in
some cases, partitions consisting entirely of hexagons are not possible. In the case of the sphere
it is observed that for n large the optimal configuration seems to consist of 12 pentagons and
n− 12 hexagons. A few computations of optimal spectral partitions are presented in Figure 3.

3.3 Three dimensional domains

The computational simplifications due to the grid restriction procedure allow the extension of
the algorithm of [6] to study problem (1) for three dimensional domains. Other works like [12]
and [15] deal with three dimensional computations in periodic settings using energy formu-
lations. The direct approach presented in the beginning of Section 2 also allows the study of
non-periodic general domains. A few observations can be made in the following cases:
• the sphere: for n ≤ 12 optimal partitions seem to be cones determined by subsets of the

unit sphere. See Figure 4 for more details.
• the regular tetrahedron: for n of the form n = k(k + 1)(k + 2)/6 it is observed that

partitions seem to be made of cells of four types corresponding to the corners, edges,
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Figure 4: Partitions of the ball for n = 4, 7, 12. Cells of the partition are moved in order to show
the interior conical structure.

Figure 5: Partitions of the regular tetrahedron for the pyramidal numbers n = 56, 84 and 120.

faces and the interior of the regular tetrahedron. See Figure 5 for more details.
When n is a pyramidal number, the cells in the interior of the regular tetrahedron seem to

be rhombic dodecahedra. Computations in the periodic setting for 32 cells also give the same
structure. This shows important evidence toward the possible equivalent formulation of the
honeycomb spectral conjecture in R3. A detailed analysis of the periodic case is also presented
in [2].

4 Conclusions and perspectives

The algorithm of [6] was improved by considering a grid restriction procedure in order to
diminish the size of the discrete eigenvalue problems. The reduction of computational time
makes possible the numerical study of partitions with large number of cells for domains in R2,
R3 and surfaces in R3. The algorithm is also an efficient tool for testing conjectures related to
spectral optimal partitions.

Perspectives include the theoretical study of conjectures arising from numerical simula-
tions. Despite the simplicity of the structures of some partitions, no progress has been made in
identifying explicitly the optimal partitions solving (1). Another perspective is the study of the
non-linear discrete recurrence relation (7), like showing that for α small enough the iteration
provides a descent direction for (1). Finally, the convergence of the discrete algorithm could be
studied by investigating the properties of the fixed point type iteration (7).
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[6] Blaise Bourdin, Dorin Bucur, and Édouard Oudet. Optimal partitions for eigenvalues.
SIAM J. Sci. Comput., 31(6):4100–4114, 2009/10.

[7] Farid Bozorgnia. Optimal partitions for first eigenvalues of the Laplace operator. Numer.
Methods Partial Differential Equations, 31(3):923–949, 2015.

[8] Dorin Bucur, Giuseppe Buttazzo, and Antoine Henrot. Existence results for some optimal
partition problems. Adv. Math. Sci. Appl., 8(2):571–579, 1998.
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