
Shape optimization of an imperfect interface: steady-state heat

diffusion
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Abstract

In the context of a diffusion equation, this work is devoted to a two-phase optimal design problem
where the interface, separating the phases, is imperfect, meaning that the solution is discontinuous
while the normal flux is continuous and proportional to the jump of the solution. The shape derivative
of an objective function with respect to the interface position is computed by the adjoint method.
Numerical experiments are performed with the level set method and an exact remeshing algorithm
so that the interface is captured by the mesh at each optimization iteration. Comparisons with a
perfect interface are discussed in the setting of optimal design or inverse problems.
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Introduction

The problem of optimal distribution of materials or phases for a given physical system has a great
relevance in the field of optimal design. The aim is to find the optimal distribution of materials, with
prescribed proportions, such that a cost or performance criterion, which depends on the phases mixture,
is minimized. This problem has been explored for several governing systems (for example in the scalar
setting, for stationary heat, electrical or magnetic diffusion [41, 15], or in the vector case for linear elasticity
[10, 5]) with different techniques, such as the Hadamard method of shape variation [29], homogenization
methods [2, 43] or the SIMP method [13, 45]. In most works, the interface between phases is assumed to
carry the classical transmission conditions, namely continuity across the interface of the solution and its
normal flux, which in this work will be referred to as a perfect interface.

In this work, we rather focus on systems where this classical transmission condition between phases
does not hold and we call it an imperfect interface. Such a behaviour is the result of imperfect interactions
or bondings between materials and is taken into account in many works where this phenomenon has
relevant and important physical consequences. For example, [37] studied the reinforcement of composite
structures for compliance minimization when there is a competition between the rigidity of the solid
inclusions and the imperfect interfacial bonding between the inclusions and the surrounding matrix. In
[15] so-called latent heat storage systems are considered: they are storage devices to solve the mismatch
between energy demand and supply. They are made of a mixture of high conductivity foams with so-
called phase changing materials (PCM) which can store high volumes of heat per unit volume at the cost
of having very low conductivity. Due to the big difference on material properties and the poor bonding
due to material imperfections on the considered mixture, the resulting system features a heat loss on
the interface between phases. Finally, and this is our true ultimate motivation, in metallic additive
manufacturing structures are often built with the help of supports which are removed after completion
of the manufacturing process [12], [28], [27]. To facilitate their removal, those supports are often weakly
connected to the main structure by means of a jagged or indented layer, which can be modeled, at first
order, as an imperfect interface between the supports and the structure. Optimization of such supports
is a very active field, see [4] and references therein.

Although some motivating examples are in the setting of linear elasticity, the present work focus on
the optimization of imperfect interfaces for the scalar model of heat diffusion. The extension of our
results to the elasticity system case is the topic of a further work. Our model of imperfect interface is
classical: the temperature is discontinuous through the interface but the normal heat flux is continuous
and proportional to the temperature jump with a positive proportionality coefficient, which is called
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the conductance of the interface (see Section 1 for more details). For the steady-state heat conduction
model and for a general cost function, we use the Hadamard boundary variation method in order to
perform a shape sensitivity analysis. As is well known in the case of a perfect interface [32, 14, 41, 5],
the solution of the boundary value problem is not differentiable with respect to the interface in the usual
sense. Nevertheless, the transported solution, in a Lagrangian framework, is indeed differentiable with
respect to the interface. It turns out to be enough for computing the shape (or interface) derivative of the
cost function, using the Céa fast derivation method [17]. The same applies for an imperfect interface but
the method is even more straightforward since the Lagrangian for Céa’s method is simpler, not having to
take into account the continuity of the solution at the interface. Once the expressions of shape derivatives
are obtained, numerical interface optimization can be performed. To do so, we rely on a level set based
mesh evolution method (as presented in [6]) in order to track and exactly mesh the interface. This is
crucial because the imperfect interface condition leads to integral terms in the variational formulation
which are carried by the interface. If a fixed mesh were used, it would require some interpolation process
or a smoothed-interface model like in [5, 44]. Clearly, resorting to an exact meshing of the interface avoids
many further numerical errors and guarantees an accurate modeling during the optimization process.

As pointed out in previous works (see [15] and references therein), using continuous finite elements
does not allow to evaluate discontinuous quantities properly, notably the jumps across interfaces. Rather,
it requires to consider more ad-hoc techniques such as extended finite element methods (XFEM, see [25]
for example). Since the interface is exactly meshed, we propose a simpler but effective method to compute
the solution which is discontinuous through the interface. As explained in Section 5 we define two fields
in the entire domain: each one correspond to the solution in one phase, but not in the other. A small
penalization term in the other phase for each field allows to obtain a well-posed coupled system which
approximates the exact equation.

The paper is organized as follows. In Section 1, the model and the optimization problem are presented.
Section 2 discusses the functional framework for the governing system and some results of interest.
Section 3 is devoted to the shape-sensitivity analysis, obtaining expressions for the shape derivative
for a general class of objective functions. In Section 4 we briefly recall the level set method in our
context, namely to perform a mesh evolution to track efficiently the interface. Finally Section 5 gives
the implementation details and the optimization algorithm, while Section 6 contains our 2-d numerical
experiments which are motivated by optimal design or by inverse problems.

1 Problem Formulation

We consider a working domain D ⊂ Rd with d = 2, 3, which is a smooth bounded open set, divided in
two open subsets Ω1 and Ω2 = D \ Ω1, with piecewise-C2 regularity. The subsets Ω1 and Ω2 are refered
as phases since different material properties hold inside. The phases are separated by a smooth interface
Γ and two different cases are considered. First, Γ is a surface without boundary, included in D, and we
have Γ = ∂Ω1 with Γ∩∂D = ∅ (with this we can see Ω1 as the interior phase or immersed phase and Ω2

as the exterior phase, with respect to Γ). Second, Γ is a surface which touches the exterior boundary ∂D,
meaning that it has a boundary ∂Γ such that ∂Γ ⊂ ∂D (see Figure 1 for examples of the two possible
configurations).

We consider a function u defined in D such that the restrictions to Ω1 and Ω2, denoted by u1 and u2

respectively, satisfy [u] := u2 − u1 6= 0 on Γ, i.e. u is allowed to be discontinuous across the interface Γ.
This function u is the solution of the governing system:

−div (A∇ui) = f in Ωi

(A∇u1) · n1 = (A∇u2) · n1 on Γ

(A∇u) · n1 = α(u2 − u1) = α[u] on Γ

A∇u · n = gN on ΓN ⊂ ∂D
u = gD on ΓD ⊂ ∂D,

(1.1)

where A = A(x) = A1(x)χ1 + A2(x)χ2, χi the characteristic function of the set Ωi, i = 1, 2, A1, A2 ∈
C1(D) are the conductivities on each phase with infx∈D Ai > 0 and possibly A2(x) − A1(x) 6= 0 on Γ,

α ∈ C1(D) is the so-called conductance of the interface Γ and is such that minx∈D α > 0, [u] = u2 − u1

is the jump of u across the interface Γ, n1 is the exterior normal of Ω1, n is the exterior normal to D,
∂D = ΓD ∪ ΓN with ΓD 6= ∅ and f ∈ H1(D), gD ∈ H1/2(ΓD), gN ∈ L2(∂D) are given (see the next
section for a statement about existence of solutions to (1.1)).
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Our aim is to determine an optimal distribution for Ω1 and Ω2, or equivalently, we want to find the
optimal location for the interface Γ, such that the following cost functional is minimized:

J(Γ) =

∫
D

j(u)dx+

∫
ΓN

k(u)ds, (1.2)

where u ≡ u(Γ) is the unique solution of (1.1), j and k are smooth functions satisfying quadratic growth
conditions. In order to avoid ‘obvious configurations’ on the minimization of J (e.g. filling completely
with the ‘best’ material with respect to the functional) a volume constraint for the phase Ω1 is added.

ΓD

ΓNΩ2

Ω1

Γ
Γ Ω1

ΓD

ΓN

Ω2

Figure 1: Two possible configurations of the interface Γ.

With this, our optimization problem reads:

min
Γ∈Uad

J(Γ) (1.3)

s.t.

∫
Ω1

dx = Vtar, (1.4)

where Uad is a set of admissible interfaces (for example, uniformly smooth) and Vtar is a target volume
for the phase Ω1.

As mentioned in the introduction, the governing system can be seen as a stationary thermal conduction
between two different materials with conductivities A1, A2, where the interface Γ between them has a
resistance, which is due to poor mechanical and chemical bounds between the phases. This resistance
induces a heat loss, modeled by a discontinuity of the solution across Γ and a Fourier type law for the
continuous normal flux through Γ (see [15, 42] for a more detailed explanaiton of this phenomenon).
In the context of elasticity, in [36], imperfect bonding or partial adhesion is described as the result of
interfacial damage due to service or as a consequence of the surface properties of the fiber and matrix
materials. In any case, this is represented as a discontinuity of the solution for the considered governing
system across the interface. A more detailed deduction of this type of interfacial conditions can be found
in [1, 35].

The well-posedness of the optimal design problem is not discussed here. However, as explained in
several works (see [11, 18, 19]), existence of optimal designs for this type of problems usually requires to
include in the definition of Uad some uniform smoothness, or geometrical or topological constraints.

Remark 1.1. We recall that the outer boundary ∂D and its subsets, where boundary conditions hold, are
not allowed to move (for example, due to design reasons). The only optimization variable is the interface
Γ.

Notation 1.2. In order to avoid confusion between the different normals (to the domain D, or to the
interface Γ), the normal to the interaface Γ is denoted by ν = n1 = −n2, where ni stands for the exterior
normal with respect to Ωi, and the notation n is reserved for the exterior normal to the domain D.

2 Review of Broken Sobolev Spaces

In order to study problem (1.1), we introduce so-called broken Sobolev spaces, where the functions are
allowed to be discontinuous at the interface between phases. These spaces are also relevant in the context
of discontinuous Galerkin methods (dG) in numerical analysis. In order to simplify the presentation, we
present these spaces and their results in our particular context (the more interested reader is invited to
study the following references [22, 24], where the treatment is general).
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Given a smooth bounded domain D we denote by Lp(D) with p > 0 and Hs(D) with s > 0 the usual
Lebesgue and Sobolev spaces. Also, given a relatively open part of the boundary ΓD ⊂ ∂D with non-zero
(d− 1)-dimensional measure, we consider the space:

H1
ΓD

(D) :=
{
v ∈ H1(D), v = 0 on ΓD

}
.

Now, suppose that D is such that D = Ω1 ∪Ω2, where Ω1 and Ω2 are disjoint open sets, Ω1 ∩Ω2 = ∅,
which are separated by an interface Γ = ∂Ω1 ∩ ∂Ω2, the broken space H1

b (D; Ω1,Ω2) is defined by

H1
b (D; Ω1,Ω2) :=

{
u ∈ L2(D) such that u1 := u|Ω1 ∈ H1(Ω1), u2 := u|Ω2 ∈ H1(Ω2)

}
. (2.1)

We simply write H1
b for this space, except when explicit mention of the partition of D is needed. This

space is endowed with the so-called broken norm:

‖u‖H1
b

:=
(
‖u1‖2H1(Ω1) + ‖u2‖2H1(Ω2)

)1/2

, (2.2)

with this norm, H1
b is a Hilbert space. From the definition of H1

b is clear that H1(D) ⊂ H1
b and in general

the inclusion is strict, as we allow the function in H1
b to have jump discontinuities along Γ. In fact, the

following result (see [22]) states a natural condition for functions in H1
b to be in H1(D).

Lemma 2.1. A function v ∈ H1
b (D; Ω1,Ω2) belongs to H1(D) if and only if

[v] := v|Ω2 − v|Ω1 = 0 on Γ.

We recall a result of [15] for the well-posedness of problem (1.1) (actually, the proof in [15] focuses on
the case when Γ is a closed surface but the extension to the general case follows the same arguments).
Define the subspace

H1
b,0 :=

{
v ∈ H1

b : v = 0 on ΓD
}
. (2.3)

Then, (1.1) admits the following variational formulationFind u ∈ H1
b , such that u = gD on ΓD and, for all v ∈ H1

b,0,∫
Ω1

A1∇u1 · ∇v1 , dx+

∫
Ω2

A2∇u2 · ∇v2 dx+

∫
Γ

α[u][v] ds =

∫
D

fv dx+

∫
ΓN

gNv ds.
(2.4)

For this variational problem, we have the following result.

Theorem 2.2. For any data f ∈ L2(D), gD ∈ H1/2(ΓD), gN ∈ L2(∂D), the problem (1.1) or (2.4) has
a unique solution u ∈ H1

b . This solution satisfies

‖u‖H1
b
≤ C

(
‖f‖L2(D) + ‖gD‖H1/2(ΓD) + ‖gN‖L2(ΓN )

)
. (2.5)

Assumption 2.3. In the following, we assume that the solution u of system (1.1) is smooth in each
phase, namely ui = u|Ωi

∈ H2(Ωi). This assumption can be proved to hold true if the data f, gN , gD are
smooth, as well as the interface Γ. The only difficulty comes from the possible interface between ΓD and
ΓN . Indeed, it is well known that at points in ΓD ∩ΓN the solution u may feature a singularity such that
it does not belong to H2(Ωi). We exclude this possibility which creates technical difficulties which are not
at the core of our study. It does not happen, for example, if we assume that ΓD and ΓN are two different
connected components of ∂D.

Notice that, when α is a constant, it can be seen as a penalization parameter for the jump [u]. So, if
we let α → +∞, it is expected that [u] goes to zero and therefore, in this limit, a perfect transmission
condition is recovered at the interface Γ. The following result formalizes this idea.

Lemma 2.4. Denote by uα the solution of (2.4) for a given α > 0. We have:

lim
α→+∞

uα = u∗ in the H1
b (D; Ω1,Ω2)− strong sense. (2.6)

where u∗ ∈ H1(D) is the solution of the following boundary value problem, which is referred as the ‘perfect
interface’ problem: 

−div (A∇ui) = f in Ωi

u1 = u2 on Γ

A1∇u1 · ν = A2∇u2 · ν on Γ

A∇u · n = gN on ΓN

u = gD on ΓD,

(2.7)
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Proof. Without loss of generality, we can take gD = 0, so that uα ∈ H1
b,0. From Theorem 2.2 and using

the variational formulation (2.4) with v = uα we have:

‖uα‖H1
b
≤ C and ‖[uα]‖L2(Γ) ≤

C

α

with C independent of α. Letting α → +∞ we deduce from the first inequality the existence of a
subsequence and a limit u∗ ∈ H1

b,0 such that uα converges weakly to u∗ in H1
b,0. In particular, introducing

u∗i = u∗|Ωi
∈ H1(Ωi), u

i
α converges weakly to u∗i in H1(Ωi). From the second inequality we deduce that

the jump [uα] converges strongly to zero in L2(Γ) and, by the trace theorem, that the jump of the limit
vanishes, [u∗] = 0. Thus, from Lemma (2.1), it implies u∗ ∈ H1(D). Now, taking v ∈ H1

ΓD
(D) as

a test function in the variational formulation (2.4) and passing to the limit we obtain that u∗ solves
(2.7). For the strong convergence it suffices to take in the variational formulation (2.4) the test function
v = uα − u∗ ∈ H1

b,0.

3 Shape-sensitivity analysis

As the goal is to determine the optimal location of the interface Γ in order to minimize (1.2), we rely on
the concept of shape derivatives, based on the Hadamard boundary variation method (see [31]). More
precisely, the interface Γ is perturbed by a vector field θ ∈W 1,∞(Rd,Rd) in the following sense:

θ 7→ Γθ := (Id+ θ)(Γ) or θ 7→ Ω1,θ := (Id+ θ)(Ω1)

where (Id + θ)(Γ) := {x+ θ(x) : x ∈ Γ}. Because Γ is restricted to belong to D, we introduce the
following set of admissible deformations Θad

Θad :=
{
θ ∈W 1,∞(D,Rd) : θ · n = 0 on ∂D

}
. (3.1)

Note in passing that Θad could be used to define a possible set of admissible interfaces: given a reference
smooth interface Γ0, all possible interfaces are perturbation of Γ0 by an admissible deformation θ ∈ Θad,
namely

Uad :=
{

Γ ⊂ D : ∃θ ∈ Θad such that Γ = (Id+ θ)(Γ0)
}
.

With this, we can define the concept of shape derivative of a functional.

Definition 3.1. A function J(Γ) will be shape differentiable at Γ if the map θ ∈ Θad 7→ J(Γθ) is
Fréchet-differentiable at 0. The corresponding derivative is denoted by J ′(Γ) and the following asymptotic
expansion holds in a neighborhood of 0 ∈W 1,∞(D,Rd):

J(Γθ) = J(Γ) + 〈J ′(Γ), θ〉+ o(θ), with lim
θ→0

|o(θ)|
‖θ‖W 1,∞

= 0.

The Hadamard method is widely used to determine derivatives with respect to single phase problems,
or shape optimization problems (see for example the textbooks [3, 31, 21]). In an interface context there
are fewer works: we mention for the scalar case [32, 41, 14], and in an elasticity context in [5, 10, 8, 33].
Finally, we can consider multi-physics problems, where not only several phases are considered, but also on
each one there are different physical phenomena, see for example [26] for an in-depth analysis of several
problems of this type. It is worth to mention that in all these works the interfaces are assumed to be
perfect, this is, there are no discontinuities allowed across them.

In the following, we compute the shape derivatives using the Céa fast derivation method [17]. We
recall the results for a perfect interface setting and we present new results in the imperfect interface
setting. We first recall a classical but essential result regarding the shape derivation of costs functionals
where fixed functions are integrated on a perturbed domain:

Lemma 3.2. Let O be a smooth bounded open set of Rd and θ ∈ W 1,∞(Rd,Rd). Let f ∈ H1(Rd) and
g ∈ H2(Rd) be two given functions. Assume that γ is a smooth subset of ∂O with boundary ∂γ. Then,
the shape derivatives of

J1(O) =

∫
O
f dx and J2(γ) =

∫
γ

g ds

are given by:

〈J ′1(O), θ〉 =

∫
∂O

fθ · ν ds (3.2)
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and

〈J ′2(γ), θ〉 =

∫
γ

(
∂g

∂ν
+ gκ

)
θ · ν ds+

∫
∂γ

gθ · τ dl, (3.3)

respectively, where ν is the unit normal vector to ∂O, κ is the mean curvature and τ is the unit tangent
vector to ∂O such that τ is normal to both ∂γ and ν, and dl is the (d−2) dimensional measure along ∂γ.

Remark 3.3. The result (3.3) is usually stated when γ = ∂O (see [31]) and thus has no boundary ∂γ.
When γ has a boundary, the proof of (3.3) yields an additional term on ∂γ which is due to an integration
by parts on the surface γ (see [34]). In the two dimensional case γ (or each of its connected component)
is an oriented smooth curve with endpoints P and Q, the last integral in (3.3) is understood as:∫

∂γ

gθ · τ dl = g(Q)θ(Q) · τ(Q) + g(P )θ(P ) · τ(P ). (3.4)

3.1 Perfect bonding

In this context, the state equation is (2.7) and we define the adjoint problem:

−div (A∇pi) = −j′(ui) in Ωi

p1 = p2 on Γ

A1∂νp1 = A2∂νp2 on Γ

p = 0 on ΓD

A∂np = −k′(u) on ΓN

(3.5)

Due to the smoothness and growth conditions given on f, gD, gN , j and k, the problems (2.7) and (3.5)
are well posed and their unique solutions satisfy u, p ∈ H1(D), with their restrictions on each phase being
smooth, namely u1, p1 ∈ H2(Ω1), u2, p2 ∈ H2(Ω2). The computation of the shape derivative for (1.2) is
well known [41].

Theorem 3.4. The function J is shape differentiable with respect to variations of the interface Γ, and
we have, for θ ∈ Θad:

〈J ′(Γ), θ〉 = −
∫

Γ

[A](∂τu)(∂τp)θ · ν ds+

∫
Γ

[A−1](A∂νu)(A∂νp)θ · ν ds (3.6)

where u solves (2.7), p solves (3.5), the jump [·] is defined as [ϕ] = ϕ2 − ϕ1 and ν = n1 = −n2.

It is remarkable that formula (3.6) depends explicitly on the jumps of physical properties. Obviously,
if A1 = A2 on Γ, then 〈J ′(Γ), θ〉 = 0 which makes sense because in that case the materials have the same
properties and therefore a motion of the interface does not imply any improvement of the cost functional.

Remark 3.5. The formula (3.6) is presented with the opposite sign with respect to [41]. This is due to
the sign chosen for the right hand side in the adjoint problem (3.5).

Proof. Fort the sake of completeness, we recall the main idea for the actual computation of the shape
derivative of J , which relies on Céa’s fast derivation method [17]. A complete proof can be found in [41]
(see also [7]).

Consider the Lagrangian L : Θad × H1(D) × H1(D) × H1
ΓD

(D) × H1
ΓD

(D) × H1(D) × H1(D) → R
given by:

L(θ, v1, v2, q1, q2, λ1, λ2) :=

2∑
i=1

∫
(I+θ)Ωi

j(vi)dx+

∫
(I+θ)Ωi

Ai∇vi · ∇qidx−
∫

(I+θ)Ωi

fqidx

−
∫

ΓN∩∂Ωi

gN · qids+
1

2

∫
(I+θ)Γ

(A1∂νq1 +A2∂νq2) · (v2 − v1)ds

+
1

2

∫
(I+θ)Γ

(A1∂νv1 +A2∂νv2) · (q2 − q1)ds+

2∑
i=1

∫
ΓN∩∂Ωi

k(vi)ds

+

∫
ΓD∩∂Ωi

λi(vi − gD) ds.

(3.7)
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As usual, differentiating L with respect to q1, q2, λ1, λ2 and setting to 0 the obtained derivatives evaluated
at v1 = u1, v2 = u2 provide the state equation (2.7). An analogous argument, differentiating with respect
to v1, v2, provides the adjoint system (3.5). Now, we get ∀q1, q2, λ1, λ2:

L(θ, u1, u2, q1, q2, λ1, λ2) = J(Γ),

and then, using the chain rule lemma and imposing the previous optimality conditions we get:

〈J ′(Γ), θ〉 = ∂θL(0, u1, u2, p1, p2, λ1(p1), λ2(p2))(θ).

This derivative is computed using Lemma 3.2, decomposing the gradient in its normal and tangential
part and imposing the conditions satisfied by state and adjoint boundary value problems. Notice that no
additional terms on ∂Γ are present, this is due to the transmission conditions.

Remark 3.6. An alternative expression for the shape derivative (3.6) is:

〈J ′(Γ), θ〉 =

∫
Γ

(A1∇u1 · ∇p1 −A2∇u2 · ∇p2 + 2A2∂νu2∂νp2 − 2A1∂νu1∂νp1)θ · ν ds. (3.8)

3.2 Imperfect bonding

In the case of imperfect bonding, we have to consider the lack of continuity for the solution of the state
equation (1.1) on the interface Γ. We introduce the corresponding adjoint problem:

−div (A∇pi) = −j′(ui) in Ωi,

A1∂νp1 = A2∂νp2 on Γ,

A∂νp = α(p2 − p1) on Γ,

p = 0 on ΓD,

A∂np = −k′(u) on ΓN ,

(3.9)

where p is the adjoint state defined in D, with its restrictions to Ω1 and Ω2, denoted by p1 and p2.
Thanks to the smoothness and growth conditions on f, gD, gN , j and k, by Theorem 2.2 problems (1.1)
and (3.9) are well posed in the broken space H1

b , with unique solutions u, p ∈ H1
b and they are such that

their restrictions on each phase satisfy u1, p1 ∈ H2(Ω1), u2, p2 ∈ H2(Ω2).

Theorem 3.7. The shape derivative of the functional J , for θ ∈ Θad is given by:

〈J ′(Γ), θ〉 =

∫
Γ

(
−[j(u)]− [A∂τu · ∂τp] + f [p] + (ακ+ α2[A−1] + ∂να)[u][p]

)
θ · ν ds

+

∫
∂Γ∩ΓN

(gN [p]− [k(u)])θ · τ dl +

∫
∂Γ

α[u][p]θ · τ dl (3.10)

where u solves (1.1), p solves (3.9), κ stands for the mean curvature, the jump [·] is defined as [ϕ] =
ϕ2 − ϕ1, ν = n1 = −n2 and τ is the unit tangent vector to Γ which is normal to ν and ∂Γ.

Proof. We proceed, as in the case of a perfect bonding, by Céa’s method. Introduce the Lagrangian:

L : Θad ×H1(D)×H1(D)×H1
ΓD

(D)×H1
ΓD

(D)×H1(D)×H1(D)→ R

L(θ, v1, v2, q1, q2, λ1, λ2) :=

2∑
i=1

∫
(I+θ)Ωi

j(vi)dx+

∫
(I+θ)Ωi

Ai∇vi · ∇qidx−
∫

(I+θ)Ωi

fqidx

−
∫

ΓN∩∂Ωi

gN · qids+

∫
(I+θ)Γ

α(v2 − v1)(q2 − q1)ds

+

2∑
i=1

∫
ΓN∩∂Ωi

k(vi)ds+

∫
ΓD∩∂Ωi

λi(vi − gD) ds.

(3.11)

As usual, differentiating with respect to v1, v2 and imposing the optimality condition, lead to the adjoint
problem (3.9). Differentiating with respect to q1, q2, λ1, λ2 and imposing the optimality condition, yield
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the state equation (1.1). Recognizing the variational formulation (2.4), the Lagrangian simplifies when
(v1, v2) = (u1, u2) and ∀q1, q2, λ1, λ2 we have:

L(θ, u1, u2, q1, q2, λ1, λ2) = J(Γ).

Then, using the chain rule lemma and imposing the previous optimality conditions we deduce:

〈J ′(Γ), θ〉 = ∂θL(0, u1, u2, p1, p2, λ1(p1), λ2(p2))(θ),

where the right hand side has to be computed by using Lemma 3.2. As the functions u1, u2, p1, p2 are
fixed when differentiating with respect to θ (we drop the reference to λ1, λ2 as their integrals vanishes
when we evaluate at u1, u2), we obtain:

∂θL(0, u1, u2, p1, p2)(θ) =

∫
Γ

(θ · ν)(j(u1)− j(u2))ds+

∫
Γ

(θ · ν)(A1∇u1 · ∇p1 −A2∇u2 · ∇p2)ds∫
Γ

(θ · ν)(fp2 − fp1 + κα(u2 − u1)(p2 − p1) + ∂ν(α(u2 − u1)(p2 − p1))ds

+

∫
∂Γ

α[u][p]θ · τ dl +

∫
∂Γ∩ΓN

(gN [p]− [k(u)])θ · τ dl.

Expressing the gradient in the local basis (τ, ν) we have ∇u = ∂τuτ + ∂νuν, and then:

∂θL(0, u1, u2, p1, p2)(θ) = −
∫

Γ

(θ · ν)[j(u)]ds+

∫
Γ

(θ · ν)(−[A∂τu∂τp] +A1∂νu1∂νp1 −A2∂νu∂νp)ds∫
Γ

(θ · ν)(f [p] + κα[u][p] + ∂να[u][p] + α∂ν(u2 − u1)[p] + α∂ν(p2 − p1)[u])ds

+

∫
∂Γ

α[u][p]θ · τ dl +

∫
∂Γ∩ΓN

(gN [p]− [k(u)])θ · τ dl

=

∫
Γ

(θ · ν)(−[j(u)]− [A∂τu∂τp] + f [p] + [u][p](ακ+ ∂να))ds

+

∫
Γ

(θ · ν)(A1∂νu1∂νp1 −A2∂νu∂νp2 + α∂ν(u2 − u1)[p] + α∂ν(p2 − p1)[u])ds

+

∫
∂Γ

α[u][p]θ · τ dl +

∫
∂Γ∩ΓN

(gN [p]− [k(u)])θ · τ dl.

To conclude we have to do some algebra:

A1∂νu1∂νp1 −A2∂νu∂νp2 + α∂ν(u2 − u1)[p] + α∂ν(p2 − p1)[u]

= A∂νu∂ν(p1 − p2) + ∂ν(u2 − u1)α[p] + ∂ν(p2 − p1)α[u]

= A∂νu∂ν(p1 − p2) + ∂ν(u2 − u1)α[p] + ∂ν(p2 − p1)A∂νu

= ∂ν(u2 − u1)α[p],

and for this final term:

∂ν(u2 − u1) =
1

A2
A2∂νu2 −

1

A1
A1∂νu1 =

1

A2
α[u]− 1

A1
α[u] = α[u]

(
1

A2
− 1

A1

)
= α[u][A−1],

from which we deduce the desired formula.

Remark 3.8. • The Lagrangian given by (3.11) has a simpler expression in comparison with the
Lagrangian of the perfect interface case given by (3.7). This is due to the fact that in the first
case the expression comes naturally from the variational formulation (2.4) of (1.1), while in the
latter the variational formulation of (2.7) hides the transmission conditions on Γ, so they should
be imposed in the Lagrangian via carefully chosen Lagrange multipliers.

• If θ ∈ Θad we have θ ·n = 0 on ∂D, so the term θ · τ on ∂Γ = Γ∩ ∂D is θt · τ with θt = θ− (θ ·n)n
on ∂D, the tangential component of θ on ∂D.

Lemma 3.9. Let us denote by Jα the cost functional (1.2) where the imperfect interface model is con-
sidered, and by J∗ the same cost functional (1.2) with u∗ solution of the perfect bonding equation (2.7).
Then, for fixed θ ∈ Θad:

lim
α→+∞

Jα(Γ) = J∗(Γ) and lim
α→+∞

〈J ′α(Γ), θ〉 = 〈J∗′(Γ), θ〉.
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Proof. The first result is immediate thanks to Lemma 2.4. For the second one, using the interface
conditions A∂νu = α[u] and A∂νp = α[p], we can write the derivative of Jα as:

〈J ′α(Γ), θ〉 =

∫
Γ

(
−[j(u)]− [A∂τu · ∂τp] + f

A∂νp

α
+A∂νuA∂νp

(
κ

α
+ [A−1] +

∂να

α2

))
θ · ν ds

+

∫
∂Γ

(
1

α
A∂νuA∂νp

)
θ · τ dl +

∫
∂Γ∩ΓN

(
A∂νp

α
gN − [k(u)])θ · τ dl, (3.12)

using Lemma 2.4 (and a similar result for the adjoint p) and the regularity of j and k we have, as α→∞:

〈J ′α(Γ), θ〉 →
∫

Γ

(
−[A∂τu

∗ · ∂τp∗] +A∂νu
∗A∂νp

∗[A−1]
)
θ · ν ds.

As the limits u∗, p∗ belong to H1(D), they satisfy [u∗] = 0 and [p∗] = 0 on Γ. Therefore [A∂τu
∗ · ∂τp∗] =

[A]∂τu
∗ · ∂τp∗ and we conclude.

Remark 3.10. From Theorem 3.7, at least formally (ignoring possible smoothness issues) and for a
surface Γ without boundary, we can find a descent direction θ for the cost function J , as we have:

〈J ′(Γ), θ〉 = −
∫

Γ

vΓ θ · ν, (3.13)

so, it suffices to take the field θ(s) = vΓ(s)ν(s), s ∈ Γ, which implies:

〈J ′(Γ), θ〉 = −
∫

Γ

v2
Γds ≤ 0.

However, this choice may not belong to Θad, and (3.13) does not take into account the possible boundary
of Γ. In the next section we propose an alternative to obtain a well defined descent direction by means of
identifying the linear form 〈J ′(Γ), θ〉 with a scalar product.

4 The Level Set Method

The level set method has been proposed by Osher and Sethian [40] for tracking fronts and free boundaries.
It is often used in structural optimization because it allows to perform shape and topology optimization.
Usually, it relies on a fixed mesh of a working domain. However, we shall not follow this usual approach
since, as we are dealing with imperfect transmission conditions across the interface, we need to keep the
most accurate possible track of Γ. Rather, we rely on a level set based mesh evolution method for the
optimization process, following the strategy introduced in [6].

We consider a fixed computational working domain D ⊂ Rd in which all admissible phase subdomains
Ω1,Ω2 are included and such that the loaded boundaries ΓD,ΓN are included in ∂D. The mesh on D is
not fixed: we remesh it along iterations, based on a level set function φ for the internal phase Ω1, whose
zero level set defines the interface Γ. The level set φ is defined on D by:

φ(x) < 0⇔ x ∈ Ω1

φ(x) = 0⇔ x ∈ Γ

φ(x) > 0⇔ x ∈ Ω2

(4.1)

In order to track the evolution of the interface Γ as we perform the minimization of the cost functional,
we relate the motion of the level set function φ for Γk−1 (the interface at the (k − 1) iteration of the
numerical algorithm) and the normal velocity θ = −vn given by (3.13), which ensures that the new shape
Γk := Γk−1

tθ is such that J(Γk) < J(Γk−1) for a descent step t > 0. To move Γ we solve the following
linear transport equation (introducing a pseudo-time variable for the descent step t):

∂tφ+ θ · ∇φ = 0 on [0, τ ]×D, (4.2)

with initial condition φ(0, x) taken as the input level set. The new level set will correspond to φ(τ, x).
For this task, we use the solver advect, which solves equation (4.2) using a numerical scheme based on
the method of characteristics (see [16] for more details on this solver).
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Finally, in order to solve equation (4.2) the velocity field θ is required on the whole domain D, instead
of just its expression on Γ, as can be deduced from (3.13). To this end, following [9] an extension-
regularization of the velocity is performed by solving the variational problem:Find Q ∈ V :=

{
v ∈ H1(Rd,Rd), v · n = 0 on ∂D

}
such that:

∀v ∈ V, a(Q, v) =

∫
D

(
γ2
reg∇Q : ∇v +Q · v

)
dx = 〈J ′(Γ), v〉

(4.3)

where the regularization parameter γreg > 0 is taken of the order of the minimal cell size from the mesh
of D. Notice that this process is guaranteed to provide a descent direction. Indeed, taking v = −Q, we
have

〈J ′(Γ),−Q〉 = −
∫
D

(
γ2
reg∇Q : ∇Q+ |Q|2

)
dx ≤ 0.

We recall that this process is very flexible and the bilinear form a(·, ·) and/or the space V could be
changed (see [7]).

5 Numerical Implementation

We explain how to solve the systems (1.1), (3.9) and to compute the shape derivatives (3.6), (3.10) in
numerial practice.

5.1 Resolution of Direct Problems

In the case of perfect bonding, it is completely standard to solve equations (2.7) and (3.5), which are
posed in classical functional spaces, so any finite element software can do the job. However, for an
imperfect interface, things become a bit more difficult due to the fact that the variational formulation
(2.4) is not obvious to implement in classical finite element softwares (such as FreeFEM [30]) as there is
no implementation of a discretization of the space H1

b . In order to circumvent this difficulty, we propose
to extend the function ui, solely defined in Ωi, to a function ũi defined in the entire domain D. In
other words, we introduce the following approximated variational formulation, which relies on the use of
standard finite element spaces.

Find ũ1, ũ2 ∈ H1(D) such that, for all ṽ1, ṽ2 ∈ H1
ΓD

(D):

2∑
i=1

(∫
Ωi

Ai∇ũi · ∇ṽidx−
∫

Ωi

fṽidx

)
+

∫
Γ

α(ũ2 − ũ1)(ṽ2 − ṽ1)ds

+ε

(∫
Ω1

ũ2ṽ2dx+

∫
Ω2

ũ1ṽ1dx

)
−
∫

ΓN∩∂Ω2

gN ṽ2ds−
∫

ΓN∩∂Ω1

gN ṽ1ds = 0,

with a parameter 0 < ε � 1 (ε = 10−5 in our computations). Extra terms of order zero are included
to make this variational formulation well posed. Of course, only the restrictions of ũi on Ωi are used in
practice.

5.2 Remeshing to track the interface accurately: level set based mesh evo-
lution method

As is clear from the variational formulation of the direct problem, an accurate evaluation of the jump on
Γ is required. As already said, the so-called level set based mesh evolution method proposed in [6], and
used for example in multi-physics problems as in [26], fits our needs. The MMG platform [23, 20] allows
to perform the remeshing operations starting from a level set function φ such that Γ is the zero iso-level
and providing several options of interest (exact mesh of interface, minimal mesh size, maximal mesh size,
graduation, etc.). We refer to [26, Chapter 6] for additional practical details.

5.3 Normal and curvature computations

Another delicate issue is the computation of the curvature, which appears in formula (3.10) of the shape
derivative for an imperfect interface. We can rely on the signed distance function (as proposed in [26]),
for which we have κ = div (∇dΩ1) where dΩ1 stands for the signed distance to the set Ω1. However, as
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the signed distance function is discretized as a P1 function dh, it is not possible to compute κ directly.
We propose to compute the curvature κ by solving the following variational problem:Find κ ∈ H1(D), such that, for all w ∈ H1(D)∫

D

(
γ2∇κ · ∇w + κw

)
dx =

∫
D

div (n)w dx,
(5.1)

where the normal n is computed via an H1(D) regularization of the P0 field ∇dΩ1 . With this we have a
P1 discretized normal defined on D such that n = ν on Γ.

5.4 Constraints: Simple and Augmented Lagrangian

As we have mentioned before, if we perform the minimization of J without any additional requirement,
the optimization algorithm will often fill the whole computational domain D with the ‘best’ material
(with respect to the functional J). Therefore, we take into account a volume constraint on phase Ω1.
There are, at least, two alternatives to prescribe a constraint in an optimization problem.

The simplest one is to introduce a Lagrangian, given by

L(Ω1) := J(Γ) + `

(∫
Ω1

dx− Vtar
)
, (5.2)

where ` is a Lagrange multiplier which is updated during the optimization process in order to satisfy the
constraint at convergence. This is the simplest method but its convergence is rather slow.

On the other hand, the Augmented Lagrangian method allows to actually impose a series of constraints
during the optimization process, it is based on considering a merit function to be optimized. For example,
if we want to impose n equality constraints, given by the equations ci(Ω1) = 0, we take:

L(Γ, λ, µ) := J(Γ)−
n∑
i=1

λici(Ω1) +

n∑
i=1

µi
2
c2i (Ω1),

where each λi is expected to converge to the Lagrange multipliers of each constraint and µi > is a penalty
parameter for each constraint. In order to do this, the theory (see [39]), suggest to update λk+1

i as:

λk+1
i = λki − µki ci(Ω1), (5.3)

is important to notice that, in this case, it is not necessary to take a sequence of µki such that µki → +∞.
The general algorithm used in our simulations is illustrated in Algorithm 1.

6 Numerical Examples

All the simulations were performed on a personal laptop and the computations were sequential. The
finite element analysis is performed with the FreeFEM package [30], the advection step of the level set
is performed using the advect tool [16] from the ISCDtoolbox, the computation of the signed distance
function to a given domain is done with the mshdist tool also from the ISCDtoolbox and, finally, the
remeshing steps are performed using the MMG platform [23, 20]. In the following examples, when two
materials with different conductivities are considered, we depict the weaker material in gray, and the
stronger material in white.

6.1 Example 1: The Radiator

Consider a square domain D = (−0.5, 0.5)2. There is no bulk source term, f = 0, but an incoming unit
heat flux gN = 1 on the upper side ΓN = [−0.5, 0.5] × {0.5}, with an homogeneous Dirichlet boundary
condition gD = 0 at ΓD = [−0.5,−0.4]×{−0.5}∪[0.4, 0.5]×{−0.5} and adiabatic walls on ∂D\(ΓD∪ΓN ).
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Algorithm 1 Interface optimization by a level set based mesh evolution method

Require: Γ0, D0 = Ω0
1 ∪ Ω0

2 and φ0.
while k ≤ kmaxiter do

Solve direct and adjoint systems on Dk = Ωk1 ∪ Ωk2 . Update normal and curvature.
Compute the descent direction V k solving the extension-regularization problem (4.3) and using
formula (3.13) with vΓ provided by the shape derivative.
Put t = initial step and let φkj := φk, Dk

j := Dk.
while j ≤ jmax (Line search) do

Transport φkj solving (4.2) with θ = −V kn using τ = t.

Remesh Dk to capture the transported level set φkj : new mesh is Dk
tθ

if L(Dk
tθ) < L(Dk) + tol|L(Dk)| then

Dk ← Dk
tθ, φ

k ← Transport(φkj ), t← 1.2t
break

else
φk ← φkj (No transport), Dk ← Dk

j (No remeshing), t← max(0.5t, tmin)
end if
j ← j + 1

end while
New interface Γk is defined by

{
x ∈ D : φk(x) = 0

}
and is exactly meshed on Dk.

Update parameters following (5.3) (augmented Lagrangian case)
k ← k + 1

end while

Figure 2: Radiator setting, initial and final distribution for Example 1 - Perfect interface

We have two different materials with conductivities A1 = 0.01 and A2 = 1.0, the aim is to determine
the distribution of the materials which, for a given volume, minimizes the thermal compliance. So, we
consider:

J(Γ) =

∫
ΓN

u ds

i.e. j(u) = 0, k(u) = u. This is a self-adjoint problem, with p = −u. The temperature u solves (2.7) in
the case of a perfect interface or (1.1) for an imperfect interface. In this example we consider Vtar = 0.5
and the initialization is the same for the two cases (see Figure 2).

12



Figure 3: Convergence history for Figure 2

Figure 4: Final distribution and convergence history for Example 1 - Imperfect interface with α = 1

For this example, we compare optimal designs obtained with a perfect interface (Figure 2) and with an
imperfect interface (Figure 4). Although we plot only the result for α = 1, we performed many other tests
with different values of α and they all give very similar designs. It is not surprising that for different α
the obtained configuration is essentially the same as for the perfect interface. The interface acts basically
as an isolating barrier: the smaller α, the stronger the isolation. But, since the phase A1 is already a
poor conductor, isolating it from A2 does not add much to its weak behavior. Thus the obtained optimal
configurations are all very similar. Notice also that it is reasonable for the weak phase to avoid the region
of the heat source: the isolation imposed by the interface will not allow to let it go through the cold end.
We will see an application of this idea on Example 4.

As can be checked on Figures 3 and 4 the optimization convergence is smooth and takes roughly 100
iterations. The final mesh has 21,219 elements for Figure 2 and 20,154 elements for Figure 4.

6.2 Example 2: Optimal heat conduction

Consider the following configuration (see [26, 38] for the original setting): we have a square domain
D = (0, 1)2 heated with an uniform bulk source f = 10, with a cold end with homogeneous Dirichlet
boundary condition on ΓD = [0.45, 0.55]×{0} and adiabatic walls on ∂D\ΓD. We have in this region two
different materials with conductivities A1 = 1.0 and A2 = 0.001, we want to determine the distribution
of the materials which, for a given volume on the strong material (V1 = 0.16), minimizes the average
temperature. So, in this context we have: gD = 0, f = 10 and

J(Γ) =

∫
Ω1

u1dx+

∫
Ω1

u2 dx

i.e. j(u) = u, k(u) = 0. This problem is also self-adjoint, with p = −u/f .
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Figure 5: Initial and final distribution for Example 2 - Perfect interface

Figure 6: Convergence history for Figure 5

Figure 7: Final distribution for Example 2 - Imperfect interface with α = 1.0 (left), α = 0.1 (right)

Test Case Initial Compliance Final Compliance Perimeter of Γ
Perfect Interface 4808.91 37.86 12.13
Imperfect α = 1.0 4903.89 89.77 6.66
Imperfect α = 0.1 5183.36 116.03 5.97

Table 1: Obtained compliance on each test for Example 2

The goal of this example is to show that the value of the interface conductance α may have a strong
influence on the optimal design. We compare the optimal design for the perfect interface (Figure 5) with
two values of the imperfect interface (Figure 7). Clearly, as α increases (meaning an improvement of the
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heat transmission through the interface), the design becomes more and more complex with many small
branches, as well as its perimeter increases (see Table 1). For finite values of α there is a competition
between the complexity of Ω1, which allows to extract efficiently the heat produced by the bulk source
f , and the length of the interface Γ which is a thermal barrier.

The final mesh has 29,027 elements for Figure 5 (right), 18,794 elements for Figure 7 (left) and 17,736
elements for Figure 7 (right). The convergence is smooth as can be checked on Figure 6.

6.3 Example 3: Maximization of the compliance - The impact of the imper-
fect interface

The domain is D = (0, 1)2 filled with a single phase with a unit conductivity A1 = A2 = 1, heated with
an uniform bulk source f = 1 with homogeneous Dirichlet boundary condtions on ∂D. Since the two
phases are identical, the interface Γ is truly the only design variable. Its conductance is taken as α = 1.
The goal is to maximize the thermal compliance:

J(Γ) :=

∫
Ω1

u1 dx+

∫
Ω2

u2 dx.

Of course, the longer the imperfect interface and the closer to the boundary, the larger the compliance.
Nevertheless, the initialization matters and different optimal designs are obtained when varying the initial
interface. Notice that in this example, the problem is again self-adjoint with p = u.

Figure 8: Initial, final distribution and convergence history for Example 3

Figure 9: Another initial, final distribution and convergence history for Example 3

With two different initializations two different optimal interfaces are obtained in Figures 8 and 9. In
both cases, the imperfect interface is very close to the exterior boundary since it acts as an isolating
barrier, separating the interior, where the heat source is applied, from the boundary ∂D, where heat can
be evacuated. The compliance is almost doubled in Figure 9 compared to Figure 8, with values 0.244 and
0.451 on each case. The length of the interface is clearly important as can be checked in Figure 10 where
Γ is initialized as 8 concentric circles. Notice that the obtained value for the compliance is higher than
the previously seen cases: 0.508. Also, it is worth to notice that the components of Γ tend to approach
themselves, until there is no more room (the minimal resolution for the mesh is the lilmitation) and we
cannot improve the value of J anymore. The final mesh has 4,800 elements in the case of Figure 8, 6,717
elements in the case of Figure 9 and 31,264 elements in the case of Figure 10.
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Figure 10: Initial and final distribution for Example 3

6.4 Example 4: A quadratic cost.

The goal of the this example is to provide a numerical test for a non self-adjoint problem. The domain D is
still a square D = (−0.5, 0.5)2, with a unit flux (gN = 1) imposed on the top boundaries ΓN = [−0.5, 0.5]×
{0.5}, a homogeneous Dirichlet boundary condition gD = 0 (cold end) on ΓD = {0.5} × [−0.2, 0.2] and
adiabatic walls (A∂nu = 0) on the rest of the boundary ∂D \ (ΓD ∪ ΓN ). The domain D is filled with
two phases A1 = 1.0 and A2 = 0.5 (with a relatively low contrast). To define the objective function, we
introduce a measuring region Γm ⊂ ∂D which is Γm = {−0.5} × [−0.5,−0.2]. The goal is to minimize
the quadratic cost:

J(Γ) :=

∫
Γm

u(Γ)2 ds,

which yields a non self-adjoint optimization problem. The corresponding adjoint system is defined by:

−div (A∇pi) = 0 in Ωi,

A∂νp = α(p2 − p1) on Γ,

p = 0 on ΓD,

A∂np = 0 on ΓN \ Γm,

A∂np = −2u on Γm.

Notice that in this example there is imposed volume constraint.
The idea is to see if, as one can expect, the interface moves in order to use the weak material as a

barrier, pushing the strong phase near the cold end, letting the temperature flux go out and avoiding to
go further inside the domain in order to minimize the temperature in the measuring region.

Figure 11: Setting, initial and final distribution for Example 4 - Perfect interface
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Figure 12: Convergence history for Figure 11

Figure 13: Initial and final distribution for Example 4 - Imperfect interface with α = 1

As can be seen for the two cases of a perfect interface (Figure 11) and of an imperfect interface
(Figure 13), the weaker material distributes in such a way that it prevents the heat to approach directly
the measuring zone Γm. As could be expected, the imperfect interface, acting as a thermal barrier, leads
to a final value of the cost J which is smaller (0.0599) than for a perfect interface (0.0754). However, the
convergence is faster for the perfect interface, as can be checked on Figure 12. The final mesh has 4,725
elements for Figure 11 right, and 3,428 elements for Figure 13 middle.

6.5 Example 5: Least Square Inverse Problem.

Our last example is a toy model of an inverse problem. The goal is to reconstruct the interface, knowing
the conductivity of the two phases and with some given synthetic data in the full domain. We do not
claim that it is realistic inverse problem but it is a good numerical test for our optimization method.
Recall, as inverse theory asserts, that domain reconstruction is an ill posed problem. The setting is that
of the radiator example in Subsection 6.1 (with the same source term and boundary conditions), except
that the the two phases have a low contrast with known conductivities A1 = 1.0 and A2 = 0.5. The
problem is to determine the target interface Γ∗, displayed on Figure 14 (right). (Note in passing that Γ∗

is the result of a compliance minimization for a perfect interface.) The only known information about
Γ∗ is the synthetic data udata which is the associated temperature computed by solving one of the model
(2.7) or (1.1). In order to recover the interface, we minimize the least square type cost:

J(Γ) :=

∫
D

|u(Γ)− udata|2 dx,

where u(Γ) solves the state equation on D. In all following cases, the optimization problem is initialized
with the interface Γ0 displayed on Figure 14 (left). We do not impose any constraint on the minimization
of J . We perform three numerical tests.
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Figure 14: Initialization Γ0 (left) and target interface Γ∗ (right) for Example 5

A first test amounts to use a perfect interface to compute the data udata and the solution u(Γ).
In other words, they are both solution of equation (2.7). The minimization of J(Γ) involves an adjoint
equation given by (3.5). The results are depicted in Figure 15. It is somehow a reference computation
and one can check that the reconstruction is not very good although the objective function is almost zero.

Figure 15: Obtained distribution and convergence history for test 1 of Example 5 - Perfect interface

A second test amounts to still consider udata as the solution of system (2.7) (perfect interface),
but now u(Γ) solves the state equation (1.1) (imperfect interface) with α = 1. The minimization of
J(Γ) involves a different adjoint equation given by (3.9). The results are depicted in Figure 16 and, of
course, they are worse than for the first test because there is a mismatch between the two models used
for computing the synthetic data on the one hand and for optimizing on the other hand.

Figure 16: Obtained distribution and convergence history for test 2 of Example 5 - Imperfect interface
with α = 1

A third test is concerned with both udata and u(Γ) given by solving equation (1.1) (imperfect
interface) with α = 1. The results are depicted in Figure 17 and the reconstruction of Γ∗ is much better
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than in the previous cases although the value of the objective function is not closer to zero. The reason
for this qualitatively better result is that, since the two phases do not have a large contrast, it is easier
to recognize an imperfect interface than a perfect one.

The final distribution mesh has 5,680 elements in the case of Figure 15, 3,848 elements in the case of
Figure 16 and 6,300 elements in the case of Figure 17. In all three tests the convergence is rather smooth
and takes place after roughly 100 iterations.

Figure 17: Obtained distribution and convergence history for test 3 of Example 5 - Imperfect interface
with α = 1

7 Conclusion

The main objective of this article is to perform shape optimization on a steady-state heat diffusion system
when the design variable is an imperfect interface. For this goal, the shape derivative of a general class of
cost functionals was obtained and a gradient-descent algorithm was successfully implemented in the level
set setting. One key feature of our approach is the use of a remeshing algorithm such that the interface
is exactly meshed at each optimization iteration, thus minimizing the numerical errors in the treatment
of the imperfect interface. Several numerical experiments have been performed, motivated by optimal
design or inverse problems. In all cases our algorithm was able to significantly decrease the objective
function, converging to a local minimum. From these experiences we observed that the influence of the
imperfect interface can be significative, from the point of view of the obtained design and/or the obtained
cost value. However, is some cases, in particular when the contrast between the phases is high, there is no
noticeable differences between the optimized designs with a perfect or an imperfect interface. We plan to
extend our approach to the linearized elasticity setting with an application to the optimization of support
structures in additive manufacturing. Indeed, to ease the removal of these supports, they are often weakly
connected to the main structure by means of a jagged or indented layer, which can be modeled, at first
order, as an imperfect interface between the supports and the built structure. Therefore, our approach
does make sense although it may be possible to enrich the model of elastic imperfect interface by adding
a contact or non-interpenetrating condition.
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[29] J. Haslinger and J. Dvořák. Optimum composite material design. RAIRO Modél. Math. Anal.
Numér., 29(6):657–686, 1995.

[30] F. Hecht. New development in freefem++. J. Numer. Math., 20(3-4):251–265, 2012.

[31] A. Henrot and M. Pierre. Variation et optimisation de formes, volume 48 of Mathématiques & Ap-
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