Partitions of minimal length on surfaces PICOF - 2016

Beniamin Bogosel

LJK, Grenoble

Objective

Problem

Find numerically partitions which minimize the total length of the boundaries under area constraints

- efficient, flexible numerical method
- compare with existing results

Practical motivation

Minimize the cost of hand sewn balls

Known results

Bernstein 1905 - two half-spheres

Masters 1996 - the Y partition - angles $2 \pi / 3$

Engelstein 2009-4 triangles - the regular tetrahedron
open problem - 6 squares - the cube

Hales 2002 - the dodecahedron

Qualitative results

F. Morgan

The minimal partitions into cells of fixed areas exists and satisfies the following properties :

- the borders of the cells have constant geodesic curvatures
- the singular points are triple and satisfy the 120° condition.

Previous works

Cox, Flikkema 2010 - Evolver

- 2D partitions : equilateral triangle, square, pentagon, hexagon, circle $N \leq 42$
- spherical partitions $N \leq 32$.

Description of the method (sphere)

- evolution starting from triangles
- topology changes/random search
- for $n \geq 14$: enumerate ALL partitions of the sphere into pentagons and hexagons
- for each partition find the associated local minimum
- keep the candidate with the smallest length

Functional formulation - Euclidean case

$$
\begin{gathered}
F_{\varepsilon}(u)=\varepsilon \int_{D}|\nabla u|^{2}+\frac{1}{\varepsilon} \int_{D} u^{2}(u-1)^{2}, \int_{D} u=\text { const. } \\
F_{\varepsilon} \xrightarrow{\ulcorner } \frac{1}{3} \operatorname{Per}()
\end{gathered}
$$

for the L^{1} topology.
The minimisers of F_{ε} converge towards the minimizers of Per at fixed area when $\varepsilon \rightarrow 0$.

Oudet 2011. Same computational region for every phase!
Kelvin's conjecture in 3D.

Pros and cons

Advantages:

- shape \rightarrow function on a fixed domain
- fixed computation grid
- automatic treatment of singular points

Weak points:

- approximate cost function
- optimal cost depends on ε
- large optimization problems

How does the method work?

$$
\min _{|\Omega|=1 / 7} \operatorname{Per}(\Omega)
$$

Analytical value: $2 \sqrt{\pi / 7}=1.3398$

1.3216
$\varepsilon=1 / 150$

1.3276
$\varepsilon=1 / 200$

1.3311
$\varepsilon=1 / 250$

1.3398
$\varepsilon=1 / 300$

Some examples - 2D partitions

- Numerical method: finite differences
- quasi-Newton (LBFGS) optimization
- $\mathrm{n}+\mathrm{N}$ constraints
- partition constraint: $\varphi_{1}+\ldots+\varphi_{n}=1$

Non-rectangular domains

1. Finite differences - neglect points outside the domain

- problems near boundary
- needs high resolution

Non-rectangular domains

2. Finite elements

- no problems near boundaries

Extend the method to surfaces?

$$
\operatorname{Per}(\Omega) \approx \varepsilon \int_{S}\left|\nabla_{\tau} u\right|^{2}+\frac{1}{\varepsilon} \int_{S} u^{2}(1-u)^{2}
$$

Γ-convergence theorem ?

- BV spaces on surfaces (tangential divergence)

$$
\operatorname{Per}(\omega)=\sup \left\{\int_{\omega} \operatorname{div}_{\tau} g d \sigma: g \in C^{1}\left(S ; \mathbb{R}^{d}\right),|g| \leq 1\right\}<+\infty
$$

Γ-convergence theorem

$$
F_{\varepsilon}(u)= \begin{cases}\int_{S}\left(\varepsilon\left|\nabla_{\tau} u\right|^{2}+\frac{1}{\varepsilon} u^{2}(1-u)^{2}\right) & \text { if } u \in H^{1}(S) \\ +\infty & \text { otherwise }\end{cases}
$$

$$
F(u)= \begin{cases}\frac{1}{3} \operatorname{Per}(\omega) & \text { if } u=\chi_{\omega} \in B V(S) \\ +\infty & \text { otherwise }\end{cases}
$$

$F_{\varepsilon} \xrightarrow{\ulcorner } F$ for the $L^{1}(S)$ topology.

True also in the case of partitions

Numerical formulation

- P_{1} finite elements \rightarrow stiffness and mass matrices K, M.
- if $v=u(1-u)$ (point-wise multiplication)

$$
\varepsilon \int_{S}\left|\nabla_{\tau} u\right|^{2}+\frac{1}{\varepsilon} \int_{S} u^{2}(1-u)^{2}=\varepsilon u^{T} K u+\frac{1}{\varepsilon} v^{T} M v
$$

- quasi-Newton (LBFGS) algorithm (5 $\cdot 10^{6}$ dof)
- partition constraint : $u_{1}+\ldots+u_{n}=1$.
- fixed area constraints :

$$
\int_{S} u_{i}=c \Leftrightarrow(1,1, \ldots, 1) M u_{i}=c
$$

Results - the sphere

Other surfaces

Comparison Cox-Flikkema - spherical case

- relaxed cost - not precise enough

Comparison Cox-Flikkema - spherical case

- relaxed cost - not precise enough
- extract polyhedral structure : triple points, edges, faces

Comparison Cox-Flikkema - spherical case

- relaxed cost - not precise enough
- extract polyhedral structure : triple points, edges, faces
- constant geodesic curvature \rightarrow arcs of circles

Comparison Cox-Flikkema - spherical case

- relaxed cost - not precise enough
- extract polyhedral structure : triple points, edges, faces
- constant geodesic curvature \rightarrow arcs of circles
- Gauss-Bonnet \longrightarrow area computation

$$
\int_{M} K+\int_{\partial M} k_{g}+\sum \theta_{i}=2 \pi \chi(M)
$$

Comparison Cox-Flikkema - spherical case

- relaxed cost - not precise enough
- extract polyhedral structure : triple points, edges, faces
- constant geodesic curvature \rightarrow arcs of circles
- Gauss-Bonnet \longrightarrow area computation

$$
\int_{M} K+\int_{\partial M} k_{g}+\sum \theta_{i}=2 \pi \chi(M)
$$

The boundaries are not all geodesics

Comparison Cox-Flikkema - spherical case

- relaxed cost - not precise enough
- extract polyhedral structure : triple points, edges, faces
- constant geodesic curvature \rightarrow arcs of circles
- Gauss-Bonnet \longrightarrow area computation
- treatment of the constraints

$$
G_{\varepsilon}\left(\left(\omega_{i}\right)\right)=\sum_{i=1}^{n} \operatorname{Per}\left(\omega_{i}\right)+\frac{1}{\varepsilon} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n}\left(\operatorname{Area}\left(\omega_{i}\right)-\operatorname{Area}\left(\omega_{j}\right)\right)^{2}
$$

Two examples, $n=9,20$

- Same results as Cox-Flikkema
- no need to search the polyhedral configuration
- one single optimization step $n \in[3,24] \cup\{32\}$.
- a few tests for $n \in[25,31]$

Cost computation - general surfaces

- extract the contours : $\omega_{i} \rightarrow u_{i}>\max _{j \neq i} u_{j}$
- optimization on the triangulated surface

Details

Details

Future work

- asymptotic behavior - large number of cells
- other discretization techniques - spectral methods?
- understand Hales' proof for $n=12$. see if it works for $n=6$?

Thank you!

