Partitions of minimal length on surfaces PICOF - 2016

Beniamin Bogosel

LJK, Grenoble

Beniamin Bogosel

Partitions of minimal length on surfaces

伺下 イヨト イヨト

э

Problem

Find numerically partitions which minimize the total length of the boundaries under area constraints

- efficient, flexible numerical method
- compare with existing results

Minimize the cost of hand sewn balls

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Known results

Bernstein 1905 - two half-spheres

```
Masters 1996 - the Y partition - angles 2\pi/3
```

Engelstein 2009 - 4 triangles - the regular tetrahedron

open problem - 6 squares - the cube

Hales 2002 - the dodecahedron

イロト イヨト イヨト イヨト

F. Morgan

The minimal partitions into cells of fixed areas exists and satisfies the following properties :

- the borders of the cells have constant geodesic curvatures
- the singular points are triple and satisfy the 120° condition.

Previous works

Cox, Flikkema 2010 - Evolver

- 2D partitions : equilateral triangle, square, pentagon, hexagon, circle N ≤ 42
- spherical partitions $N \leq 32$.

Description of the method (sphere)

- evolution starting from triangles
- topology changes/random search
- for n ≥ 14 : enumerate ALL partitions of the sphere into pentagons and hexagons
- for each partition find the associated local minimum
- keep the candidate with the smallest length

イロト 人間ト イヨト イヨト

Functional formulation - Euclidean case

$$F_{\varepsilon}(u) = \varepsilon \int_{D} |\nabla u|^2 + \frac{1}{\varepsilon} \int_{D} u^2 (u-1)^2, \int_{D} u = \text{const.}$$

 $F_{\varepsilon} \stackrel{\Gamma}{\longrightarrow} \frac{1}{3} \operatorname{Per}()$

for the L^1 topology.

The minimisers of F_{ε} converge towards the minimizers of Per at fixed area when $\varepsilon \to 0$.

Oudet 2011. Same computational region for every phase!

Kelvin's conjecture in 3D.

Advantages:

- \bullet shape \rightarrow function on a fixed domain
- fixed computation grid
- automatic treatment of singular points

Weak points:

- approximate cost function
- optimal cost depends on ε
- large optimization problems

How does the method work?

 $\min_{ert \Omega ert = 1/7} \mathsf{Per}(\Omega).$ Analytical value: $2\sqrt{\pi/7} = 1.3398$

イロト 不得 トイヨト イヨト

Some examples - 2D partitions

- Numerical method: finite differences
- quasi-Newton (LBFGS) optimization
- n+N constraints
- partition constraint: $\varphi_1 + ... + \varphi_n = 1$

Non-rectangular domains

- 1. Finite differences neglect points outside the domain
 - problems near boundary
 - needs high resolution

Non-rectangular domains

- 2. Finite elements
 - no problems near boundaries

12 N A 12 N

Extend the method to surfaces?

$$\mathsf{Per}(\Omega) pprox arepsilon \int_{\mathcal{S}} |
abla_{ au} u|^2 + rac{1}{arepsilon} \int_{\mathcal{S}} u^2 (1-u)^2$$

 Γ -convergence theorem ?

• BV spaces on surfaces (tangential divergence)

$$\mathsf{Per}(\omega) = \sup\{\int_\omega \mathsf{div}_ au \, g d\sigma : g \in C^1(S; \mathbb{R}^d), |g| \leq 1\} < +\infty$$

Beniamin Bogosel

< A >

- A E N A E N

Γ-convergence theorem

$$F_{\varepsilon}(u) = \begin{cases} \int_{S} \left(\varepsilon |\nabla_{\tau} u|^{2} + \frac{1}{\varepsilon} u^{2} (1-u)^{2} \right) & \text{if } u \in H^{1}(S) \\ +\infty & \text{otherwise} \end{cases}$$

$$F(u) = \begin{cases} \frac{1}{3}\operatorname{Per}(\omega) & \text{ if } u = \chi_{\omega} \in BV(S) \\ +\infty & \text{ otherwise} \end{cases}$$

 $F_{\varepsilon} \stackrel{\Gamma}{\longrightarrow} F$ for the $L^1(S)$ topology.

True also in the case of partitions

Beniamin Bogosel

Numerical formulation

- P_1 finite elements \rightarrow stiffness and mass matrices K, M.
- if v = u(1 u) (point-wise multiplication)

$$\varepsilon \int_{S} |\nabla_{\tau} u|^{2} + \frac{1}{\varepsilon} \int_{S} u^{2} (1-u)^{2} = \varepsilon u^{T} K u + \frac{1}{\varepsilon} v^{T} M v$$

- quasi-Newton (LBFGS) algorithm (5 · 10⁶ dof)
- partition constraint : $u_1 + ... + u_n = 1$.
- fixed area constraints :

$$\int_{\mathcal{S}} u_i = c \Leftrightarrow (1, 1, ..., 1) M u_i = c.$$

イロト 不得下 イヨト イヨト 三日

Results - the sphere

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

Э

Other surfaces

イロン イヨン イヨン ・

Э

Beniamin Bogosel

relaxed cost - not precise enough

- relaxed cost not precise enough
- extract polyhedral structure : triple points, edges, faces

- 4 週 ト - 4 ヨ ト - 4 ヨ ト -

- relaxed cost not precise enough
- extract polyhedral structure : triple points, edges, faces
- constant geodesic curvature \rightarrow arcs of circles

- 4 同 6 4 日 6 4 日 6

- relaxed cost not precise enough
- extract polyhedral structure : triple points, edges, faces
- constant geodesic curvature \rightarrow arcs of circles
- Gauss-Bonnet \longrightarrow area computation

$$\int_{M} K + \int_{\partial M} k_{g} + \sum \theta_{i} = 2\pi \chi(M)$$

- relaxed cost not precise enough
- extract polyhedral structure : triple points, edges, faces
- constant geodesic curvature \rightarrow arcs of circles
- Gauss-Bonnet \longrightarrow area computation

$$\int_{M} K + \int_{\partial M} k_{g} + \sum \theta_{i} = 2\pi \chi(M)$$

The boundaries are not all geodesics

(人間) とうてい くうい

- relaxed cost not precise enough
- extract polyhedral structure : triple points, edges, faces
- constant geodesic curvature \rightarrow arcs of circles
- Gauss-Bonnet → area computation
- treatment of the constraints

$$G_{\varepsilon}((\omega_i)) = \sum_{i=1}^{n} \mathsf{Per}(\omega_i) + \frac{1}{\varepsilon} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} (\mathsf{Area}(\omega_i) - \mathsf{Area}(\omega_j))^2.$$

Two examples, n = 9, 20

(日) (圖) (E) (E) (E)

Beniamin Bogosel

- Same results as Cox-Flikkema
- no need to search the polyhedral configuration
- one single optimization step $n \in [3, 24] \cup \{32\}$.
- a few tests for $n \in [25, 31]$

Cost computation - general surfaces

- extract the contours : $\omega_i \rightarrow u_i > \max_{j \neq i} u_j$
- optimization on the triangulated surface

Details

Beniamin Bogosel

Partitions of minimal length on surfaces

22/24

Details

Beniamin Bogosel

Partitions of minimal length on surfaces

22/24

э

- asymptotic behavior large number of cells
- other discretization techniques spectral methods?
- understand Hales' proof for n = 12. see if it works for n = 6?

イロト 人間ト イヨト イヨト

Thank you!

Beniamin Bogosel

Partitions of minimal length on surfaces

ヘロト 人間ト 人間ト 人間ト