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Objective

Problem

Find numerically partitions which minimize the total length of
the boundaries under area constraints

efficient, flexible numerical method

compare with existing results
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Practical motivation

Minimize the cost of hand sewn balls
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Known results

Bernstein 1905 - two half-spheres

Masters 1996 - the Y partition - angles 2π/3

Engelstein 2009 - 4 triangles - the regular tetrahedron

open problem - 6 squares - the cube

Hales 2002 - the dodecahedron
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Qualitative results

F. Morgan

The minimal partitions into cells of fixed areas exists and
satisfies the following properties :

the borders of the cells have constant geodesic curvatures

the singular points are triple and satisfy the 120◦

condition.
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Previous works

Cox, Flikkema 2010 - Evolver

2D partitions : equilateral triangle, square, pentagon,
hexagon, circle N ≤ 42

spherical partitions N ≤ 32.

Description of the method (sphere)

evolution starting from triangles

topology changes/random search

for n ≥ 14 : enumerate ALL partitions of the sphere into
pentagons and hexagons

for each partition find the associated local minimum

keep the candidate with the smallest length
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Functional formulation - Euclidean case

Fε(u) = ε

∫

D

|∇u|2 +
1

ε

∫

D

u2(u − 1)2,

∫

D

u = const.

Fε
Γ

−→
1

3
Per()

for the L1 topology.

The minimisers of Fε converge towards the minimizers of Per
at fixed area when ε → 0.

Oudet 2011. Same computational region for every phase!

Kelvin’s conjecture in 3D.
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Pros and cons

Advantages:

shape → function on a fixed domain

fixed computation grid

automatic treatment of singular points

Weak points:

approximate cost function

optimal cost depends on ε

large optimization problems
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How does the method work?

min
|Ω|=1/7

Per(Ω).

Analytical value: 2
√

π/7 = 1.3398

1.3216 1.3276 1.3311 1.3398
ε = 1/150 ε = 1/200 ε = 1/250 ε = 1/300
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Some examples - 2D partitions

Numerical method: finite differences

quasi-Newton (LBFGS) optimization

n+N constraints

partition constraint: ϕ1 + ...+ ϕn = 1
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Non-rectangular domains

1. Finite differences - neglect points outside the domain

problems near boundary

needs high resolution
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Non-rectangular domains

2. Finite elements

no problems near boundaries
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Extend the method to surfaces?

Per(Ω) ≈ ε

∫

S

|∇τu|
2 +

1

ε

∫

S

u2(1− u)2

Γ-convergence theorem ?

BV spaces on surfaces (tangential divergence)

Per(ω) = sup{

∫

ω

divτ gdσ : g ∈ C 1(S ;Rd), |g | ≤ 1} < +∞
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Γ-convergence theorem

Fε(u) =







∫

S

(

ε|∇τu|
2 +

1

ε
u2(1− u)2

)

if u ∈ H1(S)

+∞ otherwise

F (u) =

{

1
3
Per(ω) if u = χω ∈ BV (S)

+∞ otherwise

Fε
Γ

−→ F for the L1(S) topology.

True also in the case of partitions
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Numerical formulation

P1 finite elements → stiffness and mass matrices K ,M .

if v = u(1 − u) (point-wise multiplication)

ε

∫

S

|∇τu|
2 +

1

ε

∫

S

u2(1− u)2 = εuTKu +
1

ε
vTMv

quasi-Newton (LBFGS) algorithm (5 · 106 dof)

partition constraint : u1 + ...+ un = 1.

fixed area constraints :
∫

S

ui = c ⇔ (1, 1, ..., 1)Mui = c.
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Results - the sphere
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Other surfaces
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Comparison Cox-Flikkema - spherical case

relaxed cost - not precise enough
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Comparison Cox-Flikkema - spherical case

relaxed cost - not precise enough

extract polyhedral structure : triple points, edges, faces
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Comparison Cox-Flikkema - spherical case

relaxed cost - not precise enough

extract polyhedral structure : triple points, edges, faces

constant geodesic curvature → arcs of circles
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Comparison Cox-Flikkema - spherical case

relaxed cost - not precise enough

extract polyhedral structure : triple points, edges, faces

constant geodesic curvature → arcs of circles

Gauss-Bonnet −→ area computation

∫

M

K +

∫

∂M

kg +
∑

θi = 2πχ(M)
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Comparison Cox-Flikkema - spherical case

relaxed cost - not precise enough

extract polyhedral structure : triple points, edges, faces

constant geodesic curvature → arcs of circles

Gauss-Bonnet −→ area computation

∫

M

K +

∫

∂M

kg +
∑

θi = 2πχ(M)

The boundaries are not all geodesics
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Comparison Cox-Flikkema - spherical case

relaxed cost - not precise enough

extract polyhedral structure : triple points, edges, faces

constant geodesic curvature → arcs of circles

Gauss-Bonnet −→ area computation

treatment of the constraints

Gε((ωi)) =
n

∑

i=1

Per(ωi) +
1

ε

n−1
∑

i=1

n
∑

j=i+1

(Area(ωi)− Area(ωj))
2.
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Two examples, n = 9, 20

Beniamin Bogosel Partitions of minimal length on surfaces 19/24



Same results as Cox-Flikkema

no need to search the polyhedral configuration

one single optimization step n ∈ [3, 24] ∪ {32}.

a few tests for n ∈ [25, 31]
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Cost computation - general surfaces

extract the contours : ωi → ui > maxj 6=i uj

optimization on the triangulated surface
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Details
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Details
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Future work

asymptotic behavior - large number of cells

other discretization techniques - spectral methods?

understand Hales’ proof for n = 12. see if it works for
n = 6?
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Thank you!
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