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Abstract. This paper stems from the idea of adopting a new appraoch to solve some classical
optimal packing problems for balls. In fact, we attack this kind of problems (which are of discrete
nature) by means of shape optimization techniques, applied to suitable Γ-converging sequences
of energies associated to Cheeger type problems. More precisely, in a first step we prove that
different optimal packing problems are limits of sequences of optimal clusters associated to the
minimization of energies involving suitable (generalized) Cheeger constants. In a second step, we
propose an efficient phase field approach based on a multiphase Γ-convergence result of Modica-
Mortola type, in order to compute those generalized Cheeger constants, their optimal clusters
and, as a consequence of the asymptotic result, optimal packings. Numerical experiments are
carried over in two and three space dimensions. Our continuous shape optimization approach to
solve discrete packing problems circumvents the NP-hard character of these ones, and efficiently
leads to configurations close to the global minima.

1. Introduction

In recent years, some discrete shape optimization problems which are NP-hard, like the compu-
tation of a Steiner tree or some minimal partition problems, have been approached by continuous
models involving tools of geometric measure theory, as well as shape optimization techniques
associated with PDEs. The main point is that such discrete problems have, in general, a huge
number of local minima, and their resolution through combinatorial algorithms is quite involved.
For these reasons, several authors proposed a continuous approach which can be roughly de-
scribed as follows. The basic idea consists in finding a sequence of continuous models, depending
on some parameter, possibly involving PDEs, whose energy functionals converge in a variational
sense (e.g., Γ-convergence) to the discrete problem energy. The advantage of using those contin-
uous models depending on some parameter is often related to the decomposition of the energy
functional of the approximated problem into the sum of a convex and a non-convex part. More
precisely, choosing the parameter sufficiently large may enhance the convex term, thus leading
close to a global minimum of the approximating problem, whereas, decreasing the value of the
parameter, one expects to get close to a global minimum of the discrete model.

The reader can find successful applications of this variational approach, for instance, in [27,
5, 15, 24] regarding the computation of Steiner trees in two and three dimensions and in [8,
31], concerning the optimization in two dimensions of free interfaces of circular type and their
junctions (emerging, for instance, between different fluids).

This paper was originally motivated by the classical optimal packing problem which consists
in finding a family of equal balls of maximal volume fitting a given two or three-dimensional
container. Precisely, given a box of arbitrary shape and a fixed positive integer k, one has to
find the maximal size of k equal balls fitting in the container, as well as their position. This
problem, which is NP-hard, is related to the Kepler conjecture solved by Hales (see [20]).

We approach this optimal packing problem from the variational point of view recalled above.
More precisely, we find a suitable family of continuous shape optimization problems which ap-
proximate the discrete one. In fact, we prove that a solution to the optimal packing problem
is the limit, when some parameter converges to a critical value, of optimal clusters involving
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generalized Cheeger constants (according to the definition given in the next section). We em-
phasize that when we are given a value of the parameter, the associated Cheeger clusters do not
consist of balls. However when the parameter becomes closer and closer to the critical value
these clusters do converge to an optimal packing of balls.

As stated above, the motivation for developing this variational formulation is to be able to
build a numerical framework for computing optimal Cheeger clusters and optimal packings of
circles and balls. One of the key ingredients in the variational and numerical approximation
is the Γ-convergence result of Modica-Mortola type. For the perimeter alone, such numerical
approaches were already described in [31] for the approximation of minimal partitions of hon-
eycomb type. Additional difficulties arise in our case, as the Cheeger constant is related to the
ratio perimeter/volume, and thus we need to treat carefully the volume term in the denominator.

We point out that, to the best of our knowledge, no general numerical method seems to be
available in the literature to compute Cheeger clusters, even for planar domains. On the other
hand, the literature related to circle packings is quite vast, and different algorithms are known
to work for thousands of cells. However, they rely on heuristic combinatorial and geometric
ideas in order to search for the optimal configuration (see for instance [18, 26]). Based on our
Γ-convergence results, our approach is a global one: we initialize each cell with a random density
function and we perform a direct gradient based optimization to reach the final configuration.
This approach works rather well, as our examples show in the last section. We underline the
fact that the search of optimal circle packings is a non-smooth problem. The desired configu-
ration corresponds to maximizing the minimal distance between centers satisfying the inclusion
constraints in the container (see (6) for a precise mathematical formulation). Any standard gra-
dient descent algorithm will get stuck as soon as the pairwise distances between centers contain
repeated minimal values. The method we present can consistently get near an optimal candi-
date, or produce a good starting point for other algorithms. Nevertheless, we point out that our
method does not provide an exact mathematical solution to the optimal packing problem.

The paper is organized as follows: theoretical results are stated and discussed in Section 2;
proofs and numerical results are then given respectively in Sections 3 and 4.

2. Statement of the results

In order to fix ideas and introduce our results, let N ≥ 2 be the space dimension and α > N−1
N

be a fixed constant. For every bounded measurable subset E of RN , we introduce the following
generalized Cheeger constant. Precisely, we define the α-Cheeger constant of E by

(1) hα(E) := min{H
N−1(∂∗Ω)

|Ω|α
: Ω ⊆ E, Ω measurable}.

Above, HN−1 denotes the (N−1)-dimensional Hausdorff measure and, if Ω has finite perimeter,
∂∗Ω is its reduced boundary, in the measure theoretical sense. If Ω is negligible or it has positive

measure but does not have finite perimeter, the ratio H
N−1(∂∗Ω)
|Ω|α is assumed by convention to be

equal to +∞.
For α = 1, definition (1) corresponds to the classical Cheeger constant, which was thoroughly

studied in the last years, see for instance the review papers [25, 32]; for α 6= 1, and strictly larger
than the scale invariance exponent N−1

N , the notion of α-Cheeger constant is a variant which has
appeared in the literature more recently, we refer in particular to [33] and references therein.

Object of this paper are the following optimal partition problems

(2) min
{

max
i=1,...,k

hα(Ei) : (E1, . . . , Ek) ∈ Pk(D)
}

(3) min
{ k∑
i=1

hα(Ei) : (E1, . . . , Ek) ∈ Pk(D)
}
,
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where D is a given open bounded subset of RN , and

Pk(D) =
{

(E1, . . . , Ek) : ∀i, j = 1, . . . , k, Ei ⊆ D, Ei ∩ Ej = ∅, Ei measurable
}
.

We point out that the hypothesis that D has Lipschitz boundary is not necessary for most of our
results. Indeed, the main role of the “box” D in our problem is merely to contain the sets Ei, of
which we compute the full perimeter, not only in D but in the whole RN (i.e., the BV -norm of
the characteristic function 1Ei in RN ); in particular, the perimeters of the common boundaries
of Ei and D are counted in our problem. Consequently, for most of our results we do not need
the compactness of the embedding of the space BV (D) into L1(D) (which is a consequence of
the Lipschitz regularity of D), but just the compactness of the embedding

(4) {u ∈ BV (B∗) : u = 0 a.e. on B∗ \D} ↪→ L1(B∗),

where B∗ denotes an open ball containing D (which does not require any regularity on D). On
the other hand, the Lipschitz regularity of D will be required in order to validate the phase
field approach via the Modica-Mortola theorem, so it must be assumed essentially for numerical
purposes. In each statement we give, we shall specify if the Lipschitz regularity of D is required.

Let us also emphasize that the condition that the union of the sets Ei covers the given box
D (up to a negligible set) is not required in the definition Pk(D), so that there is some abuse of
notation in adopting the usual epithet of optimal “partitions” as done above, and in the sequel
we prefer to speak rather about “clusters”. Thus, solutions of (2)-(3) will be generically called
α-Cheeger clusters.

For α = 1, problem (3) has been firstly studied by Caroccia in the paper [13], where the
existence of solutions and some regularity results for the free boundaries are obtained. In fact,
for arbitrary α > N−1

N , the existence of solutions (E1, . . . , Ek) for both problems (2)-(3) is quite
immediate, and for convenience of the reader it will be briefly discussed in Section 3 below. On
the other hand, the analysis of their qualitative properties may require some more attention (in
particular for the maximum problem (2)), but it is not our purpose to discuss here regularity
issues.

Let us also mention that the asymptotics as k → +∞ of the energies in (2)-(3) has received a
lot of attention in some recent works focused on the honeycomb conjecture. This celebrated con-
jecture, which was proved by Hales in [19], states loosely speaking that the hexagonal honeycomb
solves the optimal partition problem in which the criterion is minimizing the total perimeter
of k mutually disjoint cells having equal area and covering a given planar domain. A similar
conjecture was formulated in [13] for the problem of minimizing the sum of the Cheeger con-
stants of k mutually disjoint cells contained into a planar box (in fact, this was inspired by a ten
years old conjecture by Caffarelli and Lin involving optimal partitions of spectral type [11]). A
proof of the honeycomb conjecture for the α-Cheeger constant when α = 1 and α = 2 has been
obtained very recently, respectively in [10] and in [9], under the restriction that the admissible
clusters are made by convex cells.

We are now going to focus on the study of α-Cheeger clusters, with the following twofold aim:

I. To get qualitative results describing the behaviour of α-Cheeger clusters, in the limit

when α→
(
N−1
N

)
+

or α→ +∞.

II. To give an efficient phase field numerical approach for the computation of optimal α-
Cheeger clusters and, as a consequence of their asymptotic behaviour, of optimal packings
of balls in arbitrary boxes D.

The theoretical results are presented and discussed in the two subsections hereafter.

2.1. Limiting behaviour of α-Cheeger clusters. Our main asymptotical results show that,

as α→
(
N−1
N

)
+

, solutions to problems (2) and (3) converge to solutions to two different optimal

packing problems for balls. More precisely: solutions of problem (2) converge to a solution of
the classical packing problem, which consists in finding k mutually disjoint equal balls with
maximal radius in D; solutions of problem (3) converge to a solution of a more peculiar packing
problem, which consists in finding k mutually disjoint balls in D maximizing the product of their
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volumes. The statements read as follows, where the L1(D,Rk)-convergence has to be meant as
the convergence of the characteristic functions {1Ωα1

, . . . , 1Ωαk
} of solutions of (5) or (7) to the

characteristic functions of balls {1B(x1,r1), . . . , 1B(xk,rk)} solving (6) or (8).

Theorem 1. Let D be an open bounded subset of RN . Then a solution to problem

(5) min
{

max
i=1,...,k

HN−1(∂∗Ωi)

|Ωi|α
: {Ωi} ∈ Pk(D)

}
exists and, as α→

(
N−1
N

)
+

, it converges in L1(D,Rk) (up to subsequences) to a family of balls

solving the following optimal packing problem

(6) max
{
r : ∃{xi, ri ≥ r}i=1,...,k , B(xi, ri) ⊂ D , B(xi, ri) ∩B(xj , rj) = ∅

}
.

Theorem 2. Let D be an open bounded subset of RN . Then a solution to problem

(7) min
{ k∑
i=1

HN−1(∂∗Ωi)

|Ωi|α
: {Ωi} ∈ Pk(D)

}
exists and, as α→

(
N−1
N

)
+

, it converges in L1(D,Rk) (up to subsequences) to a family of balls

solving the following optimal packing problem

(8) max
{ k∏
i=1

ri : ∃{xi, ri}i=1,...,k , B(xi, ri) ⊂ D , B(xi, ri) ∩B(xj , rj) = ∅
}
.

Remark 3. We point out that the above statements are not phrased in terms of Γ-convergence
results for the functionals

Φα({Ωi}) := max
i=1,...,k

HN−1(∂∗Ωi)

|Ωi|α
, Ψα({Ωi}) :=

k∑
i=1

HN−1(∂∗Ωi)

|Ωi|α
.

Actually, the scale-invariant behaviour of their limit functionals as α →
(
N−1
N

)
+

makes any

family of balls optimal in the limit, so that studying the Γ-convergence of Φα and Ψα is not
meaningful to the purpose of determining optimal packings.

Remark 4. To get an intuitive glance about the proof of Theorems 1 and 2, let us say in advance
that we will repeatedly use the equality

HN−1(∂∗Ωi)

|Ωi|α
=
HN−1(∂∗Ωi)

|Ωi|
N−1
N

1

|Ωi|α−
N−1
N

,

which allows to decompose the α-Cheeger quotient as the product between a scaling invariant
quantity (which by the isoperimetric inequality favours balls-shaped sets), and the volume to a
negative power (which favours large volumes).

When α→ +∞, we are not able to give a complete description of the asymptotic behaviour of
α-Cheeger clusters. Nevertheless we observe that, in case of problem (5), such behaviour seems to
be related to an optimal partition problem into cells of equal volume which minimize the product
of their perimeters. This question is naturally linked to the possible validity of a stronger version
of the classical honeycomb conjecture solved by Hales. The picture is detailed in the statement
given hereafter, along with a conjecture. For every k ∈ N, we call k-cell a connected region
obtained as the union of k unit area regular hexagons taken from the hexagonal tiling of R2.

Proposition 5. As α → +∞, up to subsequences a solution to problem (5) converges in
L1(D,Rk) to a partition of D into k mutually disjoint subsets of equal measure. Moreover,
if N = 2, D is a k-cell, and Conjecture 6 below holds true, this partition is the hexagonal one.
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Conjecture 6. Let D be a k-cell. Then we expect that Hales’ celebrated result [19] can be
strengthened into the following product-version of the honeycomb conjecture

min
{ k∏
i=1

H1(∂∗Ωi) : {Ωi} ∈ Pk(D) , |Ωi| = 1
}

=
(
H1(∂H)

)k
.

Here H denotes the unit area regular hexagon, and the hexagonal configuration is expected to
be the unique minimizer up to negligible sets (cf. [19, Theorem 3], [30, Theorem 4.1]).

The proof of this new conjecture seems to be non-trivial, as it would require a product form
of the hexagonal isoperimetric inequality in the spirit of Theorem 4 in [19]. It is not a purpose
of this paper to discuss such issue in detail. We limit ourselves to support the validity of the
conjecture by performing a few simulations using algorithms similar to those introduced in [31].
In order to avoid numerical instabilities, we minimize the logarithm of the product of perimeters,
which leads to the following equivalent problem

min
{ k∑
i=1

log
(
H1(∂∗Ωi)

)
: {Ωi} ∈ Pk(D) , |Ωi| = 1

}
.

The numerical results presented in Figure 1 are obtained using the method presented in [31].
In particular, the perimeter is computed using the Modica-Mortola approximation and the
partition is represented as a family of density functions with sum identically equal to one and
with prescribed integrals, in order to have equal area cells. In Figure 1 we present results for
8, 16 and 32 cells in the flat torus. The choice of the torus instead of a k-cell is based on the
observation that, if Conjecture 6 would fail on some k-cell which tiles the plane, then it will also
fail on the torus.

Figure 1. Illustration of Conjecture 6 for 8, 16, 32 cells in the torus

Concerning the asymptotic behaviour of α-Cheeger clusters for problem (7) when α → +∞,
the same arguments used to obtain Proposition 5 can be used to show that, up to subsequences,
a solution to such problem converges as well in L1 to a partition of D into k mutually disjoint
subsets of equal measure. Anyway in this case we have no conjecture about the optimization
problem solved by this limit configuration.

2.2. Phase field approach for computing α-Cheeger clusters and optimal packings.
There exist various works in the literature dealing with the computation of the Cheeger sets of
a given domain D (which corresponds to take α = 1 and k = 1), using techniques related to
convex optimization as, for instance, [14]. In [12] the authors exploit a projection algorithm in
order to solve a more general weighted Cheeger problem, while in [23] a convex hull method is
used for the optimization in the class of convex bodies. In [21] a characterization of the Cheeger
set for convex domains is given, which can easily provide an algorithm for the computation
of the Cheeger set for convex polygons. To our knowledge, no algorithm was implemented
for the numerical computation of Cheeger clusters. An algorithm for computing numerically
partitions of minimal length was introduced in [31], based on the approximation of perimeter
by Γ-convergence using the classical Modica-Mortola theorem [29].
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Our approach is as well of Γ-convergence type and relies on the Modica-Mortola theorem for
the approximation of the perimeter term, at the numerator in the α-Cheeger ratio. Since in
problem (5) we have to minimize a maximum, in order to launch a phase field approach it is
convenient to introduce a “p-approximation”, namely to consider the functional F (Ω1, . . . ,Ωk)
defined as in (9) below, in the perspective of passing then to the limit as p→ +∞. Nevertheless,
in studying the approximation by Γ-convergenge of the functional F (Ω1, . . . ,Ωk) for a fixed
exponent p, two additional difficulties arise: on one hand, even for the computation of the α-
Cheeger constant of a set (corresponding to the case k = 1), one has to handle the approximation
of the measure term in the denominator. This is done by considering a Lq-norm of the phase field
function for q sufficiently high, as the more natural L1 or L2 norms are not suitable. Precisely,

the measure of the set is efficiently approximated by the L
2N
N−1 -norm, this choice being available

for every α. On the other hand, one has to cope with the collective behaviour of the different
phases and the empty regions, this being handled in the spirit of the partitioning algorithm
introduced in [6], with the novelty of the presence of the empty regions. The outcoming Γ-
convergence result reads as follows. For the definition and main properties of Γ-convergence, we
refer the reader to [7, 16].

Theorem 7. Let D be a bounded, open and Lipschitz domain in RN . For any fixed α > N−1
N

and p > 1, consider the sequence of functionals defined on L1(D,Rk) by

Fp,ε(u1, . . . , uk) :=
k∑
i=1

(ε ∫D |∇ui|2dx+ 9
ε

∫
D u

2
i (1− ui)2( ∫

D |ui|
2N
N−1dx

)α )p
if ui ∈ H1

0 (D), ui ≥ 0,
∑k

i=1 ui ≤ 1, and +∞ if not. Then, for every sequence uεi ∈ H1
0 (D) \{0}

such that lim supε→0 Fε(u
ε
1, . . . , u

ε
k) < +∞, (uε1, . . . , u

ε
k) converges up to subsequences to some

limit (u1, . . . , uk) in L1(D,Rk). Moreover, the sequence Fp,ε Γ-converges as ε→ 0 in L1(D,Rk)
to the functional

(9) Fp(Ω1, . . . ,Ωk) :=

k∑
i=1

(HN−1(∂∗Ωi)

|Ωi|α
)p
.

In the above statement, the separation of phases is related to the constraints ui ≥ 0,
∑k

i=1 ui ≤
1, and to the fact that each phase will naturally converge to a bang-bang configuration (namely
to a function which takes only the values 0 and 1). In order to avoid handling the constraint∑k

i=1 ui ≤ 1, we use a penalization approach inspired by the paper of Caffarelli and Lin [11].

Namely, we slightly change our functional by introducing the penalty term 1
ε

∑
1≤i<j≤k

∫
D u

2
iu

2
jdx.

This term enhances the separation of phases during the computational process and avoids (at
least the) local minima consisting on flat functions at an intermediate level between 0 and 1. At
the same time, the presence of this term, together with the bounds 0 ≤ ui ≤ 1, still ensure that
the Γ-convergence holds. Thus we state the following proposition, which is the main practical
tool for the numerical implementation our phase field approach:

Proposition 8. Let D be a bounded, open and Lipschitz domain in RN . For any fixed α > N−1
N

and p > 1, the sequence of functionals defined on L1(D,Rk) by

(10) F̃p,ε(u1, . . . , uk) :=
k∑
i=1

(ε ∫D |∇ui|2dx+ 9
ε

∫
D u

2
i (1− ui)2( ∫

D |ui|
2N
N−1dx

)α )p
+

1

ε

∑
1≤i<j≤k

∫
D
u2
iu

2
jdx

if ui ∈ H1
0 (D), 0 ≤ ui ≤ 1 and +∞ if not , Γ-converges as ε→ 0 in L1(D,RN ) to the functional

Fp(Ω1, . . . ,Ωk) :=

k∑
i=1

(HN−1(∂∗Ωi)

|Ωi|α
)p
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Moreover, if for any p > 1 we denote (Ωp
1, . . . ,Ω

p
k) a minimizer in Pk(D) of Fp then, for

p→ +∞, possibly extracting a subsequence, we have

(Ωp
1, . . . ,Ω

p
k)

L1(D,Rk)−→ (Ω1, . . . ,Ωk),

being (Ω1, . . . ,Ωk) a solution to (5).

Our algorithm is very efficient in computing clusters or just Cheeger sets in arbitrary (Lip-
schitz) boxes D, in two or three space dimensions. In Section 4, we give several numerical
experiments with different values of α and k, in R2 and in R3. In particular, for α close to

the critical value
(
N−1
N

)
+

, we recover some classical results for optimal circle/sphere packings,

underlining the interest of Theorems 1 and 2.

3. Proofs

Throughout this section, we set ωN := HN−1(∂B)/|B|
N−1
N , being B a ball in RN . Moreover,

as done in (4), we denote by B∗ a fixed open ball containing the closure of the bounded box D.

Existence of α-Cheeger clusters. Before giving the proofs of our results, for the benefit
of the reader we briefly discuss the existence of solutions to problems (2) and (3) for a fixed
α > N−1

N . This question relies on classical compactness results in BV -spaces and, for α = 1 and
problem (3), has been extensively discussed in [13]. For shortness, we only deal with problem
(2) (the arguments being the same for problem (3)). Assume that {Ωn

1 , . . . ,Ω
n
k} is an element

of Pk(D) such that

max
i=1,...,k

HN−1(∂∗Ωn
i )

|Ωn
i |α

−→ inf
{

max
i=1,...,k

HN−1(∂∗Ωi)

|Ωi|α
: {Ωi} ∈ Pk(D)

}
as n→ +∞.

One has first to observe that

(11) lim inf
n→+∞

|Ωn
i | > 0 ∀i = 1, . . . , k .

Indeed, we can assume that there exists some M > 0 such that maxi=1,...,k
HN−1(∂∗Ωni )
|Ωni |α

≤ M .

Then, using the isoperimetric inequality on each cell Ωn
i we get

ωN
1

|Ωn
i |
α−N−1

N

≤ H
N−1(∂∗Ωn

i )

|Ωn
i |α

≤M,

hence, (11) is true. Exploiting also the fact that

HN−1(∂∗Ωn
i ) ≤M |D|k,

we get that the sequence (1Ωni
)n is bounded in BV (B∗). By the compactness of the injection

(4), we can assume that, up to a subsequence, (1Ωni
)n converges strongly in L1(D) to some limit

which can be written as 1Ωi . Since |Ωn
i | → |Ωi| as n → +∞, the sets Ωi have strictly positive

measure and, for i 6= j, they have a negligible intersection. Moreover, by lower semicontinuity
of the perimeter, we have

lim inf
n→+∞

HN−1(∂∗Ωn
i ) ≥ HN−1(∂∗Ωi),

hence {Ω1, . . . ,Ωk} is a solution to problem (2).

Proof of Theorem 1. We write α = N−1
N + δ for some δ > 0, and we consider the auxiliary

problems

Mk,δ(D) := min
{

max
i=1,...,k

(
HN−1(∂∗Ωi)

ωN |Ωi|
N−1
N

+δ

) 1
δ

: {Ωi} ∈ Pk(D)
}

= min
{

max
i=1,...,k

(
HN−1(∂∗Ωi)

ωN |Ωi|
N−1
N

) 1
δ 1

|Ωi|
: {Ωi} ∈ Pk(D)

}
,
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which have the same optimal clusters as our initial problems (5).
If D contains k mutually disjoint balls of radius rD, we have

(12) Mk,δ(D) ≤ 1

|BrD |
.

Then, if {Ω1
δ , . . .Ω

k
δ} is a competitor for an optimal cluster for Mk,δ(D), we have

(13)

(
HN−1(∂∗Ωδ

i )

ωN |Ωδ
i |
N−1
N

) 1
δ 1

|Ωδ
i |
≤ 1

|BrD |
∀i = 1, . . . , k .

Using (13) and the isoperimetric inequality, we get

(14) |Ωδ
i | ≥ |BrD | ∀i = 1, . . . , k .

Moreover, using (13) and the upper bound |Ωδ
i | ≤ |D|, we get

(15) HN−1(∂∗Ωδ
i ) ≤ ωN |D|

N−1
N

( |D|
|BrD |

)δ
∀i = 1, . . . , k .

The previous observations insure that good competitors for optimal clusters for Mk,δ(D) have
measures uniformly bounded from below and above, and uniformly bounded perimeters. In other
words, the class of candidates is compact in L1(D), so that we get immediately the existence of
an optimal cluster {Ω1

δ , . . .Ω
k
δ} for Mk,δ(D).

Moreover, we deduce that a (not relabeled) subsequence of {Ωδ
1, . . .Ω

δ
k} converges in L1(D,Rk)

to a limit cluster, that we denote by {Ω1, . . . ,Ωk}, satisfying |Ωi| ≥ |BrD |. Let us show first that
all the sets Ωi’s are balls, and then that they solve the optimal packing problem (6).

By using the definitions of Mk,δ(D) and rD, we have the following estimate:

HN−1(∂∗Ωδ
i )

|Ωδ
i |
N−1
N

+δ
≤ ωN (Mk,δ(D))δ ≤ ωN

|BrD |δ
∀i = 1, . . . , k .

Then, passing to the liminf as δ → 0, we obtain

HN−1(∂∗Ωi)

|Ωi|
N−1
N

≤ ωN ∀i = 1, . . . , k ,

which implies that the sets Ωi’s are balls, as a consequence of the uniqueness part in the isoperi-
metric inequality.

Let us show that they solve the optimal packing problem (6). Note that this problem is finite
dimensional and the existence of a solution follows directly by a compactness/continuity argu-
ment. Denote by r1, . . . rk the radii of the sets Ω1, . . .Ωk found above, set rmin := min{r1, . . . , rk}
and let r∗ denote the maximal radius in the optimal packing problem (6). Clearly, by the def-
inition of r∗, it holds r∗ ≥ rmin. On the other hand, since D contains k mutually disjoint balls
of radius r∗, by definition of Mk,δ(D) we have

Mk,δ(D) ≤ 1

|Br∗ |
.

Hence the inequalities (13) and (14) are in force with r∗ in place of rD and therefore, passing to
the limit as δ → 0, we obtain

|Ωi| ≥ |Br∗ | ∀i = 1, . . . , k .

Then rmin ≥ r∗ and we conclude that rmin = r∗. �

Proof of Theorem 2. For fixed α > N−1
N the existence of a solution for problem (7) is

obtained as in Theorem 1. We write α = N−1
N + δ for some δ > 0, and we set

mk,δ(D) := min
{ k∑
i=1

HN−1(∂∗Ωi)

ωN |Ωi|
N−1
N

+δ
: {Ωi} ∈ Pk(D)

}
,



9

(where we have introduced just for convenience the constant ωN with respect to our initial
problems (7)).

Let (Ωδ
1, . . . ,Ω

δ
k) be an optimal cluster for mk,δ(D). From the inclusion Ωδ

i ⊂ D, we know
that

(16) lim sup
δ→0

|Ωδ
i |δ ≤ lim sup

δ→0
|D|δ = 1 ∀i = 1, . . . , k .

We claim that

(17) lim
δ→0
|Ωδ
i |δ = 1 ∀i = 1, . . . , k .

Indeed, assume by contradiction that (17) is not satisfied. Then for some index i we have

lim infδ→0 |Ωδ
i |δ < 1, so that for a subsequence δn → 0 we have limn→+∞ |Ωδn

i |δn < 1.
On the other hand notice that, if D contains k mutually disjoint balls of radius rD, it holds

(18)

k∑
i=1

1

|Ωδ
i |δ
≤

k∑
i=1

HN−1(∂∗Ωδ
i )

ωN |Ωδ
i |
N−1
N

1

|Ωδ
i |δ

= mk,δ(D) ≤ k

|BrD |δ
.

By passing to the limit as δ → 0 in (18), we get

k∑
i=1

1

lim supδ→0 |Ωδ
i |δ
≤ k .

which in view of (16) implies lim supδ→0 |Ωδ
i |δ = 1 for every i = 1, . . . , k. Then, for the sequence

δn, the passage to the limit in (18) would give

1

lim supn→+∞ |Ωδn
i |δn

< 1 ,

contradiction.
We write

k∑
i=1

HN−1(∂∗Ωδ
i )

ωN |Ωδ
i |
N−1
N

1

|Ωδ
i |δ

= mk,δ(D) ≤ k

|BrD |δ
.

In the limit as δ → 0+, thanks to (17) and to the isoperimetric inequality, we deduce that for
every index i

(19) lim sup
δ→0

HN−1(∂∗Ωδ
i )

ωN |Ωδ
i |
N−1
N

≤ 1 ,

which implies in particular

(20) lim sup
δ→0

HN−1(∂∗Ωδ
i ) ≤ ωN |D|

N−1
N .

Moreover, we get that mk,δ(D)→ k as δ → 0.

Next, let us show that the measures of Ωδ
i are bounded from below for every i = 1, . . . , k. We

use the Jensen inequality, taking advantage from the concavity of the logarithm function. We
have

1

k

k∑
i=1

ln
( 1

|Ωδ
i |δ
)
≤ ln

(1

k

k∑
i=1

1

|Ωδ
i |δ
)
≤ ln

( 1

|BrD |δ
)
,

the last inequality being a consequence of (18). We conclude that |Ωδ
i | is bounded below for

every i = 1, . . . , k.
So far, we have obtained that, for every i = 1, . . . , k, the sets Ωδ

i have perimeters bounded from
above and measures bounded from below uniformly as δ → 0+; hence, up to a (not relabeled)
subsequence, they admit a k-uple of (non trivial) limit sets, and from inequalities (19) we see
that these limit sets are necessarily balls. Let us denote them by (B0

1 , . . . , B
0
k), and let us show

that they solve the optimal packing problem (8).
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To that aim, we are going to estimate from above and from below the quotient

mk,δ(D)− k
δ

.

We already know that mk,δ(D)→ k as δ → 0. In the sequel we estimate the first order term in
the development of mk,δ(D) as δ → 0. On one hand, if (B∗1 , . . . , B

∗
k) are balls which solve the

optimal packing problem (8), taking them as a test cluster in the definition of mk,δ(D), we get
the upper bound

mk,δ(D)− k
δ

≤ 1

δ

k∑
i=1

( 1

|B∗i |δ
− 1
)

=

k∑
i=1

1

δ

(
exp

(
δ log

1

|B∗i |

)
− 1
)
.

Hence,

(21) lim sup
δ→0

mk,δ(D)− k
δ

≤ log
( k∏
i=1

1

|B∗i |

)
.

On the other hand, by applying as usual the isoperimetric inequality, we have

mk,δ(D)− k
δ

≥ 1

δ

k∑
i=1

( 1

|Ωδ
i |δ
− 1
)
.

Now we exploit the fact that |Ωδ
i | → |B0

i | as δ → 0+, so that, for every fixed η > 0, we can find

δ = δ(η) such that

|Ωδ
i | ≤ |(1 + η)B0

i | ∀δ ≤ δ(η) , ∀i = 1, . . . , k .

Therefore,

mk,δ(D)− k
δ

≥ 1

δ

k∑
i=1

( 1

|(1 + η)B0
i |δ
− 1
)
.

Then, by arguing as above and using the arbitrariness of η, we arrive at

(22) lim inf
δ→0

mk,δ(D)− k
δ

≥ log
( k∏
i=1

1

|B0
i |

)
.

Eventually, combining (21) and (22), we obtain

k∏
i=1

1

|B0
i |
≤

k∏
i=1

1

|B∗i |
.

By the definition of B∗i , the above inequality holds necessarily with equality sign, which amounts
to say that the limit balls B0

i maximize the product of volumes of a family of k mutually disjoint
balls contained into D, namely they solve problem (8). �

Proof of Proposition 5. Let (Ωα
1 , . . . ,Ω

α
k ) by a solution to problem (5). Assuming without

loss of generality that |D| = k, we consider a k-uple (Ω̂1, . . . , Ω̂k) ∈ Pk(D) of sets with finite

perimeter, such that |Ω̂i| = 1 for every i = 1, . . . , k. Then we have

(23)
HN−1(∂∗Ωα

i )

|Ωα
i |α

≤ C := max
i=1,...,k

HN−1(∂∗Ω̂i) ∀i = 1, . . . , k .

By applying the isoperimetric inequality, we obtain

ωN |Ωα
i |

N−1
N

|Ωα
i |α

≤ C ∀i = 1, . . . , k ,

or equivalently

|Ωα
i | ≥

(ωN
C

) 1

α−N−1
N ∀i = 1, . . . , k .
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Hence,

(24) lim inf
α→+∞

|Ωα
i | ≥ 1 ∀i = 1, . . . , k .

Moreover, from inequality (23), we know that

k∑
i=1

(HN−1(∂∗Ωα
i )

C

) 1
α ≤

k∑
i=1

|Ωα
i | ≤ k .

Using again the concavity of the logarithm function, we get directly

1

α

k∑
i=1

log
(HN−1(∂∗Ωα

i )

C

)
≤ 0 ,

which means that

(25)
k∏
i=1

HN−1(∂∗Ωα
i ) ≤ Ck .

We observe that, by (24), HN−1(∂∗Ωα
i ) is bounded from below for every i = 1, . . . , k; then

inequality (25) ensures that HN−1(∂∗Ωα
i ) is also bounded from above for every i = 1, . . . , k. We

conclude that (Ωα
1 , . . . ,Ω

α
k ) admits a limit in L1, hereafter denoted by (Ω∞1 , . . . ,Ω

∞
k ), and in

view of (24) this limit turns out to be a partition of D.

Finally, if N = 2 and D is a k-cell, by taking the sets Ω̂i’s in (23) equal to the k-copies of H
which compose the k-cell, inequality (25) implies

(26)
k∏
i=1

H1(∂∗Ω∞i ) ≤
(
H1(∂H)

)k
.

Therefore, if Conjecture 6 is satisfied, we conclude that

k∏
i=1

H1(∂∗Ω∞i ) ≤ min
{ k∏
i=1

H1(∂∗Ωi) : {Ωi} ∈ Pk(D) , |Ωi| = 1
}
.

Hence the above inequality holds with equality sign, and the partition {Ω∞i } is optimal for the
minimization problem at the right hand side. �

Proof of Theorem 7. We prove separately the so-called Γ-liminf and Γ-limsup inequalities
(see the monograph [16] for an introduction to Γ-convergence).

Γ-liminf inequality. Let uεi ∈ H1
0 (D) \ {0}, such that uεi ≥ 0,

∑k
i=1 u

ε
i ≤ 1 and

lim sup
ε→0

Fε(u
ε
1, . . . , u

ε
k) < +∞.

In a first step, we notice the existence of a constant M , such that for small ε and for every i we
have

ε

∫
D
|∇uεi |2dx+

9

ε

∫
D

(uεi )
2(1− uεi )2dx ≤M |D|α.

This inequality, together with the L∞ bound of uεi , ensures the boundedness of the sequence
(uεi )ε in BV (B∗), hence compactness in L1(D). Up to passing to subsequences, we can assume

that (uε1, . . . , u
ε
k)

L1(D,Rk)−→ (u1, . . . , uk). The limit functions ui belong to BV (B∗, {0, 1}) (we refer
the reader to the Modica-Mortola theorem, see for instance [28]). Thus we can write ui = 1Ωi ,
where Ωi are pairwise disjoint and satisfy

HN−1(∂∗Ωi) ≤ lim inf
ε→0

ε

∫
D
|∇uεi |2dx+

9

ε

∫
D

(uεi )
2(1− uεi )2dx.

We notice that 1 = 2
∫ 1

0 3t(1− t)dt, which ensures that the constant multiplying the perimeter
on the left hand side above, equals to 1. The fact that Ωi are pairwise disjoint is a consequence
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of the passage to the limit as ε→ 0 in the inequality
∑k

i=1 u
ε
i ≤ 1 a.e., leading to

∑k
i=1 1Ωi ≤ 1

a.e.
Let us prove that Ωi 6= ∅. We know that

ε

∫
D
|∇uεi |2dx+

9

ε

∫
D

(uεi )
2(1− uεi )2dx ≤M

(∫
D

(uεi )
2N
N−1dx

)α
.

Setting δ := 2N
N−1α− 2 > 0 and using the Cauchy-Schwartz inequality on the left hand side, we

get

6

∫
D
|∇uεi |uεi (1− uεi )dx ≤M‖uεi‖2+δ

L
2N
N−1 (D)

,

or, by the chain rule,

6

∫
D

∣∣∣∇((uεi )
2

2
− (uεi )

3

3

)∣∣∣dx ≤M‖uεi‖2+δ

L
2N
N−1 (D)

.

Using the Sobolev inequality with a dimensional constant SN , we get

6SN‖
(uεi )

2

2
− (uεi )

3

3
‖
L

N
N−1 (D)

≤M‖uεi‖2+δ

L
2N
N−1 (D)

.

Since 0 ≤ uεi ≤ 1 we get
(uεi )

2

2 − (uεi )
3

3 ≥ (uεi )
2

6 so

SN‖uεi‖2
L

2N
N−1 (D)

≤M‖uεi‖2+δ

L
2N
N−1 (D)

,

or
SN
M
≤ ‖uεi‖δ

L
2N
N−1 (D)

.

Passing to the limit, we get |Ωi| ≥ SN
M . Since

∫
D(uεi )

2N
N−1dx → |Ωi| 6= 0, the Γ-liminf property

occurs.

Γ-limsup inequality. For one single set, the Modica-Mortola theorem gives the procedure of
constructing the recovering sequence. For partition problems we refer to the paper by Baldo [1],
where the recovering sequence requires more attention because of the exact partition requirement

which is obtained via the constraint ∀x ∈ D,
∑k

i=1 ui(x) = 1. Since in our problem we do not
have a complete partition of the set D, we can give a direct proof as follows.

Let (Ω1, . . . ,Ωk) be pairwise disjoint measurable subsets of D with finite perimeter. Relying
on the regularity of D, we can assume that the distances from ∂∗Ωi to ∂D are strictly positive,
otherwise we make an approximation of each Ωi by inner sets having such properties, and then
take a diagonal sequence. Let us fix a positive constant δ > 0. For a standard sequence of
mollifiers (ρη)η satisfying

∫
ρηdx = 1, we have

(27) (

k∑
i=1

1Ωi) ∗ ρη ≤ 1,

and we claim that we can choose η small enough such that for every i = 1, . . . , k we can find
ti ∈ (1

2 , 1) such that the set Aδi := {1Ωi ∗ ρη > ti} is smooth and

HN−1(∂Aδi ) ≤ HN−1(∂∗Ωi) + δ,

|Aδi∆Ωi| ≤ δ.
Indeed, from the Sard theorem, we know that almost all levels sets are smooth. From the strict

convergence ρη ∗ 1Ωi
BV−→ 1Ωi , we get∫

RN
|∇ρη ∗ 1Ωi |dx→ HN−1(∂∗Ωi),

and the co-area formula gives the existence of a level t > 1
2 such that

HN−1(∂∗Ωi) ≥ lim sup
η→0

HN−1(∂{ρη ∗ 1Ωi > t}).
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On the other hand, from (27) and the choice of ti >
1
2 , the sets Aδi are disjoint, at positive

distance. Using now the Modica-Mortola theorem, we can find recovering sequences uεi
L1(D)→ 1Aδi

with

lim sup
ε→0

ε

∫
D
|∇uεi |2dx+

9

ε

∫
D

(uεi )
2(1− uεi )2dx ≤ HN−1(∂Aδi ).

Choosing, a sequence δn → 0, by a diagonal procedure we can find εn small enough such that
the Γ-limsup property holds, and moreover uεni u

εn
j = 0. �

Proof of Proposition 8. The proof of the first part of Proposition 8 is implicitly contained
into the one of Theorem 7. In particular, we point out that the choice of the recovering sequence
for the Γ-limsup property is also suitable for the penalized functionals.

The passage to the limit p → +∞ is standard, being a consequence of the approximation of
the ‖ · ‖∞- norm in Rk by the ‖ · ‖p- norm. �

4. Numerical results

In order to discretize the functional (10), we consider a rectangular box D in R2 or R3

endowed with a finite differences uniform grid with M discretization points along each axis
direction. A function u will be numerically represented by its values at the grid points. We use
basic order 1 centered finite differences in order to compute the gradient terms |∇ui|, and basic
quadrature formulas to compute all integrals. Similar approaches were already used in [31] and
[4]. Moreover, in [4, Section 4] detailed expressions of the gradient with respect to each of the
grid point variables of (10) are given for the Modica-Mortola term. The other integrals, like the
denominator of Fε and the penalization terms, are approximated by their arithmetic mean along
the grid. The optimization is done using a LBFGS quasi-Newton method implemented in Matlab
[34]. The algorithm uses information on a number of previous gradients, 5 in our computations,
in order to build an approximation of the Hessian. In addition to being more efficient in avoiding
local minima than a simple gradient descent algorithm, the LBFGS algorithm recalled above
allows us to impose pointwise bounds for every variable, fact which is important in our approach.
This also motivated us to use a penalized approach, rather than a projected gradient approach.
The optimization procedure is presented in Algorithm 1.

Since we perform an optimization of a non-convex functional, there is no guarantee of con-
vergence to a global minimum. In order to avoid local minima, we choose as initialization some
random densities for each of the functions ui. Moreover, in order to avoid the rapid convergence
to a characteristic function and to diminish the effects of the non-convex potential, we choose
the parameter ε equal to 1/M , where M is the number of discretization points along each axis
direction. The parameter ε dictates the width of the interface where the functions ui go from
0 to 1. Sometimes it is useful to consider larger values of ε, 2/M or 4/M , to allow the cells to
move more freely.

In order to reduce the number of iterations needed to reach an optimum, we propose a grid
refinement procedure as already noted in [6] and [4]. We perform an initial optimization on a
grid of rather low size with M ∈ [20, 50]. Then we interpolate the result on a finer grid, usually
doubling the discretization parameter, and we continue the optimization on this refined grid. We
continue until we reach the desired level of accuracy. In 2D we can easily perform computations
on grids of size up to 400× 400 while in 3D we go up to 100× 100× 100. Our current algorithm
works well if the number of cells is not too large. When considering many phases, computations
become more costly and memory costs become larger. It is possible to use techniques from [2]
in order to address these issues. The idea is that, when dealing with partitioning or multiphase
problems in the phase-field context, one could restrict the computation in a neighborhood of
the significant part of each cell, for example {ui > δ}, for a given threshold δ > 0. This could
significantly reduce the computational and memory cost of the computations and could allow
the use of the algorithm for many cells. However, this goes beyond the scope of this article.
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Algorithm 1 Optimization procedure

Require: · M : initial discretization parameter (M = 20 in 2D, M = 10 in 3D)
· k: number of cells
· d: dimension
· maxit: maximal number of iterations
· ε ∈ [1/M, 4/M ]: Modica-Mortola parameter
· tol: stopping criterion
· n: number of refinements chosen so that the final resolution is as good as we want (in

our case 2n−1M > 300 in 2D and 2n−1M > 100 in 3D)
1: Initialize densities u1, .., uk as k random vectors of Md elements
2: step = 1
3: repeat
4: if step> 1 then
5: M ← 2M
6: interpolate linearly the previous densities (ui)

k
i=1 on the new grid

7: end if
8: Run the LBFGS optimization procedure [34] with the following parameters

· starting point (ui)
k
i=1 (random for first step, interpolated from the previous optimization

result for the next steps)
· tolerances and maximum number of iterations: tol = 10−8, maxit = 10000
· function to optimize: (10). Value and gradient are computed at each iteration
· pointwise upper and lower bounds 0 ≤ ui ≤ 1.

9: The previous algorithm returns the optimized densities (ui)
n
i=1

10: step = step+1 (go to next step)
11: until step> n

return the k density functions

Even if we choose to work on finite differences grid we may still compute α-Cheeger sets
and α-Cheeger clusters corresponding to non-rectangular domains. For a general domain D we
consider a rectangular box D′ ⊃ D on which we construct the finite differences grid. We set all
functions involved in the computations to be equal to zero on grid points outside D and set the
gradient to be equal to zero on the same points lying outside D. In this way the optimization
is made only on points inside the desired domain D.

It is also possible to use a finite element framework in order to minimize (10) on general
domains. In [4, Section 3] one can find a detailed presentation of such a finite element framework
in the context of Modica-Mortola functionals. Once the mass and rigity matrices for the Lagrange
P1 finite elements are obtained, all functionals needed in our computations can be expressed as
vector matrix products.

Now we exemplify the use of the proposed algorithm for computing α-Cheeger sets, α-Cheeger
clusters and optimal packings. We make available an implementation of the algorithm described
above which can be found online at the following link: https://github.com/bbogo/Cheeger_

patch. This implementation uses the finite element framework for the optimization of (10).
As detailed below it is also possible, for convex domains, to compare the Cheeger sets found
by minimizing (10) with the exact Cheeger sets obtained by using the representation formula
provided by Kawohl and Lachand-Robert in [21].

• Computation of α-Cheeger sets. In this case, corresponding to k = 1, there is no
need to use the penalization term. We optimize directly the non-penalized ratio between the
Modica-Mortola ratio and the volume term with constraints 0 ≤ u ≤ 1. Examples can be seen
in Figure 2 for a domain in R2 and in Figure 3 for a domain in R3.

In order to test the accuracy of our method we compare our algorithm with an implementation
of the Kawohl & Lachand-Robert explicit formula for finding Cheeger sets (α = 1) associated
to convex sets in 2D [21]. As can be seen in Figure 4 the relaxation algorithm we propose is
quite precise. We represent with red the ε-level set of the result obtained when minimizing

https://github.com/bbogo/Cheeger_patch
https://github.com/bbogo/Cheeger_patch
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Figure 2. The α-Cheeger set for a non-convex set in 2D, for α ∈ {0.5001, 0.75, 1, 2}.

Figure 3. The α-Cheeger set for a regular tetrahedron in 3D, for α ∈ {0.667, 0.9, 1, 2}.

0.0040 0.0030 0.0030 0.0037

Figure 4. Comparison between results obtained when minimizing (10) (red)
and the Kawohl & Lachand-Robert formula (dotted-blue). Relative errors for
the Cheeger constants are also given.

(10) and with dotted blue the result obtained using the algorithm described in [21]. The value
of ε used here is the same as the one used in the relaxed formulation (Algorithm 1). Choos-
ing a level set corresponding to a larger value would correspond to a contour which does not
touch the boundary of D, contrary to the known behavior of Cheeger sets. In the test cases
presented below the results given by the two algorithms are almost indistinguishable. We de-
note by ω, ωap the analytic Cheeger set and the approximate one obtained when minimizing
(10). In order to quantify the precision of our algorithm, we show the the relative errors for
the corresponding Cheeger constants. These errors are computed using the following formula:
|H1(ωap)/|ωap|−H1(ω)/|ω||

H1(ω)/|ω| . The errors obtained are small and, as expected, working on finer meshes

leads to better approximations both of the Cheeger sets and of the Cheeger constants.
• Computation of α-Cheeger clusters. Some examples of Cheeger clusters can be seen

in Figure 5. One can notice immediately that the cells are not necessarily convex, for instance
when D is a square and n = 5. The results in the periodic case are in accordance with results
in [10, 9].
• Computation of optimal packings. To this aim, we exploit Theorem 1 combined with

Proposition 8 with a suitable choice for p (see as well the beginning of Section 2.2). Precisely, we
compute α-Cheeger clusters for α very close to N−1

N and p very “large”, which in our computa-

tions means at most 100. Choosing the parameter α close to N−1
N forces the cells in the optimal

configurations to be close to disks. We choose to use a p-norm approach since this regularizes the
non-smooth problem of minimizing the maximal radius of a family of disks. The minimization
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Figure 5. Cheeger clusters for problem (3) in a square: 5 cells, 12 cells, 16 cells (periodical).

of a p-norm instead of the ∞-norm is a natural idea, already used in [3] for the study of par-
titions of a domain which minimize the largest fundamental eigenvalue of the Dirichlet-Laplace
operator.

We want to be able to quantify our results, so we use a local refinement procedure as a
post-treatment. At the end of the optimization process we have access to the density functions
associated to the α-Cheeger cells, which are approximately smoothed characteristic functions of
disks. Using these density functions we approximate the precise location of the centers of the
disks by computing the barycenter of the 0.5 level-set of each density function. Then we use a
very basic local-optimization routine in order to get a precise description of the circle packing
that can be compared with existing results in the literature. The algorithm just computes the
pairwise distances between centers of the disks and between the centers and the boundary and
uses Matlab’s algorithm fmincon with the option active-set to perform a gradient-free local
optimization of the current configuration. We note that the refinement algorithm is not at all
adapted for solving alone the problem, given random starting points for the centers. It is only
useful for locally optimizing the circle packing configuration once localization is obtained by our
approximation procedure.

It is possible to apply this algorithm for computing both optimal circle packings for domains
in R2 or optimal sphere packings for domains in R3. In the planar case, we present some
computational results in Figure 6. In our test cases the numerical algorithm based on the Γ-
convergence result combined with the post-treatment algorithm generally produce configurations
which are comparable to the best known results in the literature. We recall that one of the first
papers regarding the circle packings in a circle was authored by Kravitz in 1967 [22]. In this
paper we can find a conjecture regarding the 19-circle packing in a disk. The optimality of this
19-packing, presented in Figure 6, was proved by Fodor in [17]. Extensive numerical results up to
thousands of circles were performed and collected on the website http://www.packomania.com/,
maintained by Eckard Specht. In all cases, we compared our results with best ones available,
listed on the above cited website. The numerical algorithm manages to capture the right results
in cases where the optimal circle packing configuration is unique and rigid, like the case of 19
disks in a circle or 28 disks in an equilateral triangle. Moreover, we are able to capture the best
known results even in cases where the solution is not unique, like in the case when we have 18
disks in a circle. One may notice that the best known configuration for 18 disks inside a circle
contains disks of the same radius as the best known configuration for 19 disks. Therefore, when
dealing with the circle, removing a disk from the 19-disk optimal packing gives a solution for the
18 disks case. This shows that the optimal configuration is not unique in this case. Our relaxed
algorithm finds a configuration which is equivalent to the best known configurations given by
other algorithms. We may observe slight differences between configurations in the relaxed setting
and the refined results, which are due to the fact that when working with densities cells are not
constrained to be disks.

Some examples of computations of optimal spherical packings for domains in R3 are presented
in Figure 7. In this case, we observe again a good convergence to the best known configurations.

http://www.packomania.com/
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Figure 6. Circle packing examples in 2D for problem (6): density representation
and local optimization.

Figure 7. Sphere packing examples in 3D for problem (6).
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[6] B. Bourdin, D. Bucur, and É. Oudet, Optimal partitions for eigenvalues, SIAM J. Sci. Comput. 31 (2009/10),
no. 6, 4100–4114. MR 2566585

[7] A. Braides, Γ-convergence for beginners, Oxford Lecture Series in Mathematics and its Applications, vol. 22,
Oxford University Press, Oxford, 2002.

[8] E. Bretin and S. Masnou, A new phase field model for inhomogeneous minimal partitions, and applications
to droplets dynamics, Interfaces Free Bound. 19 (2017), no. 2, 141–182. MR 3667698
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