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Every polynomial is characterized by its complex roots, up to the leading coeffi-
cient. Moreover, since the complex numbers have a well established geometric struc-
ture, it is natural to investigate geometric aspects related to polynomial roots. In the
following we will often identify a point in the plane with the associated complex num-
ber. Given a non-constant polynomial P of degree at least equal to two, consider the
derivative P ′ and its roots, called critical points pf P . The well known Gauss-Lucas
theorem says that the critical points lie in the convex hull of the roots of P . Various
works in the literature search for relations between roots and critical points. Among
these, there is the following famous conjecture by Sendov [11], solved for degP ≤ 8
in [4] and for all sufficiently large degrees in [16].

Conjecture 1. Suppose the roots of P lie in the unit disk. Then if a is one of these
roots, there is a critical point at distace at most 1 from a.

There is one particular case where the connection between the roots of P and its
critical points is made explicit geometrically. Given three noncolinear points a,b, c ∈
C, consider the cubic poynomial P (z) = (z − a)(z − b)(z − c), whose derivative
P ′(z) has two roots f1, f2. It was first observed by Siebeck [15] and later on by Mar-
den [10] that f1, f2 are the focal points of the Steiner inellipse associated to the triangle
∆abc, the unique ellipse tangent to the sides of ∆abc at its midpoints. This result
generated a lot of interest in the past years. Various elementary proofs exploiting as-
pects related to complex numbers were given in [2], [6], [9], [12], [13], [14]. A proof
based solely on geometric arguments was given in [3].

When presenting Sendov’s conjecture in [10], Marden already gave the geometric
interpretation, that if ∆abc is contained in the unit disk, then each one of the vertices
a,b, c is at a distance at most one from the focal points f1 or f2 of the Steiner inellipse.
A direct proof, using complex numbers may be found in [8, p. 22]. The goal of this note
is to give a purely geometrical proof of Sendov’s conjecture for cubic polynomials.
Moreover, the sharpness of this result can be explored geometrically, investigating
polynomials of high degree having only three distinct roots.

1. A SURPRISING PROPERTY RELATED TO THE STEINER INELLIPSE In
[1] the following identity is proved for any inellipse tangent to the sides of the triangle
∆abc and having focal points f1, f2:

af1 · af2
ab · ac

+
bf1 · bf2
ba · bc

+
cf1 · cf2
ca · cb

= 1. (1)

The proof given in [1] is elegant and uses synthetic geometry arguments, by sym-
metrizing one of the focal points fi about the sides of the triangle. For the Steiner
inellipse, one has the stronger property that all three terms in (1) are equal

af1 · af2
ab · ac

=
bf1 · bf2
ba · bc

=
cf1 · cf2
ca · cb

=
1

3
. (2)



Proofs of (2), based on the Siebeck-Marden theorem, using relations between polyno-
mial roots and critical points are rather straightforward and well known. Nevertheless,
it is possible to prove (2) with purely geometric arguments, using only the basic prop-
erties of the Steiner inellipse, which we recall below.

Theorem 2. 1. (Reflection property) If the inellipse is tangent to the side ab at the
interior point d then the angle bisector of ∠f1df2 is orthogonal to ab.

2. The focal ponts f1, f2 of any inellipse are isogonal conjugates in ∆abc.
3. An inellipse is uniquely determined by its center. In particular, the Steiner inel-

lipse is the unique inellipse whose center coincides with the centroid of ∆abc.

Proofs of these facts can be found in many classical references. The proof of 1.
is a simple consequence of the minimality of xf1 + xf2 for x ∈ ab, also known as
Heron’s problem. A geometric proof of 2. is recalled in [3]. The proof of 3. may be
found in [5] or [3, Theorem 2].

In order to prove the sequence of equalities shown in (2) consider the reflection f ′1
of f1 with respect to ab and denote by d the tangency point of the Steiner inellipse
with ab, as shown in Figure 1. Of course, d is the midpoint of ab and f ′1,d, f2 are
colinear, in view of the reflection property recalled in Theorem 2. Then one can write
the following equalities regarding triangle areas:

S∆af ′1f2
= S∆af ′1d

+ S∆adf2 = S∆adf1 + S∆adf2 = 2S∆adg,

where g is the midpoint of f1, f2, i.e. the center of the Steiner inellipse and the centroid
of ∆abc. The last of the above area equalities comes from the fact that the correspond-
ing triangles have a common basis ad and the average of the distances from f1 and f2
to ad is equal to the distance from g to ad (see Figure 1).

Since d is the midpoint of ab and g is the centroid, we conclude by observing that

S∆af ′1f2
= 2S∆adg = S∆abg =

1

3
S∆abc.

Triangles ∆af ′1f2 and ∆abc have equal angles in the vertex a, since f1, f2 are isogonal
conjugates. Therefore we have

1

3
=
S∆af ′1f2

S∆abc

=
af ′1 · af2
ab · ac

=
af1 · af2
ab · ac

,

hence (2) holds.

Remark 3. It should be noted that (2) provides yet another geometric proof of the
Siebeck-Marden theorem. Indeed, since f1, f2 are isogonal conjugates and (2) implies
the equality |a − b||a − c| = 3|a − f1||a − f2|, we also have (a − b)(a − c) =
3(a− f1)(a− f2). Analogue identies are obtained for vertices b and c. This it implies
that the second degree polynomials

P ′(z) = (z − a)(z − b) + (z − b)(z − c) + (z − c)(z − a)

and

Q(z) = 3(z − f1)(z − f2)

are equal for three distinct points z ∈ {a,b, c} and have the same leading coefficient.
Therefore, P ′(z) = Q(z).
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Figure 1. (left) The Steiner inellipse: symmetrize the focal point f1 with respect to ab. (right) Proving that
2S∆agd = S∆af1d + S∆af2d: observe that 2d(g,ad) = d(f1,ad) + d(f2,ad).

2. GEOMETRIC PROOF OF SENDOV’S CONJECTURE FOR CUBIC POLY-
NOMIALS The geometric interpretation of Sendov’s conjecture is the following: if
f1, f2 are the focal points for the Steiner inellipse then at least one of the lengths
af1,af2 is smaller than R, the circumradius of ∆abc. Observing that f1, f2 can get
arbitrarily close and they coincide for an equilateral triangle, it is reasonable to attempt
proving that a certain mean of af1,af2 is smaller than R.

Since we have precise information regarding the product of af1 and af2, let us first
compare the geometric mean of af1,af2 with R. In view of (2) and the law of sines
we have

√
af1 · af2 =

√
ab · ac

3
=

√
4 sin b̂ sin ĉ

3
R.

Since there exist triangles with angles b̂ = ĉ = π/2− ε, the geometric mean can get
arbitrarily close to 2√

3
R. Therefore, R cannot be an upper bound for this mean.

The next classical mean, smaller than the geometric one is the harmonic mean. This
mean contains af1 + af2 at the denominator, therefore a lower bound is needed for
this quantity. It is classical, and immediate to prove, that the median is at most equal
to the average of the neighboring sides, implying that af1 + af2 ≥ 2ag. A classical
proof of this fact constructs the parallelogram af1a

′f2 and uses the triangle inequality
in ∆af1a

′, showing moreover that equality can hold if and only if a, f1, f2 are colinear.
Denoting by m the midpoint of bc we have ag = 2

3
am which, using again the law

of sines a = 2R sin â, gives

min{af1,af2} ≤
2af1 · af2
af1 + af2

≤ ab · ac
2am

=
2S∆abc

2am · sin â
=

ha

am
R, (3)

where ha is the length of the height of ∆abc from vertex a. Since the height always
has a smaller length than the median, we are done. We have, therefore proved the
following result.

Theorem 4. The harmonic mean of af1 and af2 is at most equal to R. As a conse-
quence, Sendov’s conjecture holds for cubic polynomials.

When presenting Conjecture 1 in [11], Marden talks about extremal polynomi-
als, i.e. polynomials for which equality is attained in Sendov’s estimate. Assuming
that min{af1,af2} = R, the sequence of inequalities in (3) becomes a sequence of
equalities. The equality of the minimum and the harmonic mean implies af1 = af2.



The equality af1 + af2 = ag can hold only if a, f1, f2,g are colinear. Moreover,
ha = am, implying that ∆abc is isosceles. Since a, f1, f2 are colinear and af1 = af2
it follows that f1 = f2 = g. This implies that the Steiner inellipse is a circle, therefore
∆abc is equilateral. Thus, we arrive at a geometric proof of [11, Conjecture II] for
cubic polynomials.

Theorem 5. If min{af1,af2} = R then ∆abc is equilateral. Polynomials of degree
3 for which equality is attained in Sendov’s estimate have three equidistant roots on
the unit disk.

3. SHARPNESS OF SENDOV’S CONJECTURE It is well known that Sendov’s
result is sharp as the following well known examples illustrate:

• P (z) = zn − z has a root at the origin, while P ′(z) has n roots with modulus
n1/n → 1 as n→∞.

• P (z) = zn − 1 has n roots on the unit circle, while P ′(z) has all roots equal to 0.

However, it turns out that considering polynomials of the form P (z) = (z − a)m(z −
b)n(z − c)p, which in view of [3, 10] are also related to inscribed ellipses, one can
find examples where the roots of P ′(z) different from a,b, c are at distance larger
than 1 from at least one of the vertices of the triangle.

As already observed in [10], a polynomial of the form

P (z) = (z − a)m(z − b)n(z − c)p (4)

has only two critical points lying strictly inside ∆abc which are the focal points of an
inellipse. More generally, in [3] it was observed that for α, β, γ > 0 the critical points
of the logarithmic potentialL(z) = α log(z − a) + β log(z − b) + γ log(z − c) are
the focal points of an inellipse dividing the sides of ∆abc into ratios β/γ, γ/α, α/β.
Conversely, given any inellipse E , there exists a logarithmic potentialL(z) of the same
form whose critical points are the focal points of E .

Counterexample 1. Let ∆abc be a non-equilateral triangle having two angles b̂, ĉ
greater than π/3. The distance from the incenter to a is given by 4R sin(b̂/2) sin(ĉ/2)
and is greater than R in this case. Then there exist positive integers m,n, p such that
the critical points f1, f2 of (4) different from a,b, c are in an ε neighborhood of the
incenter, not containing the circumcenter. It is enough to consider m,n, p positive
integers such that m

m+n+p
, n
m+n+p

, p
m+n+p

are approximations of the coefficients of
the logarithmic potential L(z) whose associated inellipse is the incircle. Therefore,
for the vertex a and the considered inellipse we have min{af1,af2} > R. It may be
observed that if m,n, p give such an example, choosing exponents km, kn, kp, for
any integer k ≥ 1 in (4) produces the same critical points.

Counterexample 2. Furthermore, consider the case of only one multiple root, given
by P (z) = (z − a)m(z − b)(z − c) form ≥ 2. The critical points of P are the focal
points fm1 , f

m
2 of an inellipse Em tangent to the sides at points dividing the sides into

ratios m/1, 1/1, 1/m. Let us observe the behavior of fm1 , f
m
2 as m→∞. See Figure

2 for a graphical representation. The inellipse Em is tangent to bc at its midpoint m
and at ab, ac at pm,nm, respectively. The points nm,pm divide ac, ab into segments
having ratios m/1. It is classical that the line joining b to the midpoint qm of mpm

passes through the center of Em. For a proof, it is enough to transform Em into a circle
via an affine transformation. In the same way the line going through c and the midpoint
rm of mnm passes through the center of Em. Thus, the center cm of Em is given by
bqm ∩ crm.
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Figure 2. (left) Construction of Em for m = 1, ..., 15. The centers cm and focal points are also represented.
The focal points converge to b and c as m → ∞. (right) Constructing an inellipse starting from tangency
points.

It is straightforward to observe that cm converges to m and fm1 , f
m
2 converge to

b, c as m→∞. When min{ab,ac} > R, or equivalently, min{b̂, ĉ} > π/6, this
produces a class of polynomials of arbitrarily large degree for which the distance from
the only multiple root a to the critical points different from a is larger than R.

Therefore, there exist polynomials P of arbitrarily large degree with roots in the
unit disk such that the distance from one zero of P to all critical points which are not
roots is greater than 1.

Remark 6. For more geometric constructions related to ellipses [7, Chapter IV] is a
great reference. All figures involving inellipses in this paper are constructed using the
software Metapost and constructive ideas from this reference. For the sake of com-
pleteness, let us describe the steps for constructing an inellipse E starting from the
tangency points m ∈ bc,n∈ac,p ∈ ab. It is classical that a necessary and sufficient
condition for E to exist is that am,bn, cp are concurrent.

1. Let q be the midpoint of mp and r be the midpoint of mn. Then the center of
the inellipse is o ∈ bq ∩ cr.

2. Construct m′ the symmetric of m through o. Thus mm′ is a diameter of E .
3. Draw the line d through o parallel to bc. Define s ∈ d ∩ ac and let s′ be the

intersection of d with the parallel to mm′ through n. Construct d ∈ d such
that od2 = os · os′. Then d ∈ E [7, p. 107]. Construct d′, the symmetric of d
through o. In this way we constructed another diameter dd′ conjugate to mm′.

4. Construct the segment ee′, orthogonal to dd′, having midpoint at m′ such that
ee′ = dd′. The angle bisector of ∠eoe′ is the principal axis of E . [7, p. 111]

5. The lengths of the axes of the ellipse are given by oe + oe′ and |oe− oe′|.
The construction is depicted in Figure 2.
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