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Abstract

The volume of a Meissner polyhedron is computed in terms of the lengths of its dual edges.
This allows to reformulate the Meissner conjecture regarding constant width bodies with minimal
volume as a series of explicit finite dimensional problems. A direct consequence is the minimality
of the volume of Meissner tetrahedras among Meissner pyramids.

1 Introduction

Certain convex shapes have the remarkable property that any two parallel tangent or supporting
planes which contain the shape between them are at a fixed distance apart. The ball is an obvious
example, but there are infinitely many more. In dimension two the famous Reuleaux triangle (the
intersection of three unit disks centered at the vertices of a unit equilateral triangle) has constant
width, together with the whole class of Reuleaux polygons. See [14, Chapter 7] for an introduction
regarding shapes of constant width. For simplicity, all constant width shapes have unit diameter in
the following.

The Reuleaux triangle is a particular shape of constant width, since it solves various optimization
problems in the class of constant width:

• it minimizes the area [5], [19], [9], [14];
• it minimizes the inradius [14, Chapter 7], or equivalently, it maximizes the circumradius;
• it maximizes the Cheeger constant [10], [6].

In dimension three fewer results are known regarding extremal shapes of constant width. The
minimality of the inradius and the maximality of the circumradius are achieved by constant width
shapes containing a unit tetrahedron [21, Section 14.3]. In [1] it is proved that any body of constant
width minimizing the volume resembles the Meissner tetrahedron in the sense that any diameter has
one endpoint corresponding to a singular part of the boundary. Procedures for producing shapes of
constant width in arbitrary dimension were given in [18] and analytical parametrizations for three
dimensional constant width bodies were proposed in [3].

Nevertheless, there is are three dimensional bodies which are conjectured to minimize the volume.
These bodies are called Meissner tetrahedra [22] and are constructed as follows:

• Intersect four unit balls centered at the vertices of a regular tetrahedron of unit diameter.
The body obtained is called a Reuleaux tetrahedron, but it does not have constant width (see
[21, Section 8.2] for more details)

• One side is chosen among each pair of opposite sides and a smoothing procedure is performed.
This is described in [14, Chapter 7] or [21, Section 8.3]. The smoothing procedure can give
rise to two types of Meissner tetrahedra: either all edges coming from a vertex are smoothed
or all edges adjacent to one of the faces are smoothed.

It is conjectured by Bonnesen and Fenchel [7] that Meissner tetrahedra minimize the volume. More
historical and bibliographical aspects related to this problem are given in [15]. Numerical simulations
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presented in [2] further suggest that the Meissner tetrahedra are indeed minimizers for the volume.
The conjecture is still open today and we state it below:

Conjecture 1. The Meissner tetrahedra minimize the volume among all three dimensional bodies
with fixed constant width.

Many proofs of the analogue two dimensional result rely on showing that any Reuleaux polygon
which is not the Reuleaux triangle is not a minimizer for the area. The density of Reuleaux polygons
in the class of two dimensional shapes of constant width implies the result.

Until recently, a similar class of discrete constant width shape was missing in dimension three.
In [26] the class of Reuleaux polytopes was introduced, defined using intersection of balls. Although
these polytopes can approximate arbitrarily well all bodies of constant width, they have a drawback:
they do not have constant width themselves. This was remedied recently in [25] where the authors
show how to obtain constant width bodies in dimension three starting from a Reuleaux polytope.
The resulting bodies are called Meissner polyhedra, since they generalize the Meissner tetrahedron.
More details regarding these bodies, including their connections with extremal sets of diameter one
and their density in the class of shapes of constant width are presented in [12]. It turns out that
Meissner polyhedra give a natural context for studying Conjecture 1, since the Meissner tetrahedron
naturally belongs to all classes of Meissner polyhedra which have an upper bound on the number
of vertices.

The study of Meissner polyhedra gives rise to complex combinatorial aspects and connections
with graph theory. The graphs behind the Reuleaux and Meissner polyhedra are studied in [23]. In
particular, on associated the Github page

https://github.com/mraggi/ReuleauxPolyhedra

the graphs giving rise to Meissner polyhedra up to 14 vertices are presented. These graphs are used
for creating some of the illustrations in this paper. Recently, in [13] the surface area and volume of
Reuleaux and Meissner polyhedra are computed, giving new tools for attacking Conjecture 1.

The purpose of this paper is to present observations and computations which lead to a simple
formula for the surface area and volume of Meissner polyhedra. Section 2 presents details regarding
the construction of Meissner polyhedra. Section 3 presents the detailed computation of the area and
volume of Meissner polyhedra. In particular, Conjecture 1 is reduced to a maximization problem
involving a completely explicit two dimensional function and the lengths of pairs of dual edges in
a Meissner polyhedron. In Section 4 the particular case of Meissner pyramids, generalizing the
Meissner tetrahedron is discussed, establishing that the tetrahedron is the body of constant width
with minimal volume among all pyramids of constant width. In Section 5 we show that Conjecture
1 may be reduced to a series of finite dimensional problems for which the Meissner tetrahedra are
natural solution candidates.

Illustrations shown in the paper were produced using Metapost or Matlab. The codes associated
to [29] were used to create drawings from spherical geometry.

2 Meissner Polyhedra

All constant width bodies considered in the following have unit diameter. The Meissner Polyhedra
are introduced in [25] and are the 3D analogue of Reuleaux polygons. In [25] it is mentioned that
these polyhedra are dense in the class of 3D constant width bodies using arguments based on [26].
The density of Meissner polyhedra in the class of three dimensional constant width bodies was
revisited in [12] where a detailed description is given regarding the construction of these bodies.

2

https://github.com/mraggi/ReuleauxPolyhedra


Moreover, a detailed description of the computation of the volume and surface area for the Meissner
tetrahedra is given. The surface area and the volume of Meissner polyhedra is computed in [13]. In
this paper an alternate computation is proposed, resulting in a simple formula depending only on
the lengths of the pairs of dual edges.

The volume of a constant width body K is related to the surface area using the Blaschke Formula

|K| = 1

2
|∂K| − π

3
. (2.1)

Therefore, to study the bodies having minimal volume it is enough to find constant width bodies
having minimal surface areas. Moreover, since the Meissner polyhedra are dense in the class of
constant width bodies if one proves that an arbitrary Meissner polyhedron has surface area bigger
than the Meissner tetrahedron, the Meissner conjecture, i.e. the Blaschke-Lebesgue problem in
dimension three is proved.

In the following, we use the notation B(X) to denote the intersection of all balls having unit
radius with centers in X. Let X ⊂ R3 be a finite set of m ≥ 4 points having diameter 1 and suppose
that X is extremal, i.e. the number of diametric pairs of X is maximal. In [12, Theorem 3.4] is
recalled that a set is extremal if and only if there are 2m − 2 diametric pairs among points of X.
Furthermore X is the set of vertices of B(X), i.e. the points where at least three spherical faces
meet. In a similar manner, an edge of B(X) is the intersection of two adjacent spherical faces of
∂B(X). Following [26], [17] and [12] we can define Reuleaux polyhedra.

Definition 2.1. (Reuleaux polyhedra) Given X ⊂ R3 a finite set of m ≥ 4 points which is an
extremal finite set of unit diameter, the associated Reuleaux polyhedron is R = B(X).

The resulting ball polytope does not have constant width. Nevertheless, any body of constant
width can be approximated arbitrarily well using Reuleaux polyhedra.

Let X be an extremal set of diameter one. Reuleaux polyhedra have natural definitions for
vertices, edges and faces, which are analogue to classical polyhedra. In particular, vertices are
points x belonging to at least two diameters. Faces are spherical portions of ∂B(X), each face
being opposite to a vertex which is the center of the respective sphere. Two adjacent faces meet
along an edge, which is a circular arc. See [12] for a detailed discussion.

If x, y are the endpoints of an edge e of B(X) then there is a unique edge e′ of B(X) with
endpoints x′, y′ such that |x−x′| = |x− y′| = |y−x| = |y− y′| = 1. See Figure 1 for an illustration.
The pair (e, e′) is a pair of dual edges of B(X). See [12, Section 3] for more details.

The Meissner polyhedra are defined as follows. Consider an extremal diameter one set X ⊂ R3

having m ≥ 4, which according to [12] has m− 1 pairs of dual edges

(e1, e
′
1), ..., (em−1, e

′
m−1). (2.2)

Meissner bodies were introduced in [25] and we give the following equivalent definition according
to [12].

Definition 2.2. (Meissner polyhedra) Consider X ⊂ R3 a finite set of m ≥ 4 points which is
an extremal finite set of unit diameter having the pair of dual edges given by (2.2). The convex body

B(X ∪ e1 ∪ ... ∪ em−1) (2.3)

is a Meissner polyhedron based on X. Every Meissner polyhedron is a body of constant width.
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Figure 1: Configuration of a pair of dual edges (e, e′). All other four edges in the corresponding
tetrahedron have unit length. θ(e) denotes the spherical length of the edge e and φ(e) represents
the dihedral angle corresponding to edge e in the tetrahedron determined by (e, e′).

Note that it consists on intersection of balls with centers in X and on one edge among every
pair of dual edges. For every extremal finite set of unit diameter having m points there exist 2m−1

choices of Meissner polyhedra which can be constructed. Among these choices there is one having
minimal volume. This choice will be made more precise in the next section. The fact that this
construction produces bodies of constant width is well established and proved in detail in [25] and
[12]. An example of Reuleaux polyhedron and the associated Meissner polyhedron is shown in
Figure 2. This example is taken from the database associated to the paper [23].

Consider the following elements associated to an extremal diameter 1 set:
• A generic pair of dual edges from (2.2) will be denoted by (e, e′).
• For each edge e consider the associated angle θ(e) made by e at the center of a unit ball

which determines e. More precisely, the endpoints of x, y of e are put on a disk of radius 1
and the angle at the center is measured. In particular θ(e) measures the geodesic distance
from the endpoints of e on a unit sphere. Since the vertices form a set of diameter 1 we
must have |x − y| ≤ 1 which implies θ(e) ∈ [0, π/3]. Moreover, if θ(e) = θ(e′) = π/3 then
x, y, x′, y′ must coincide with the vertices of the regular tetrahedron. We have the explicit
formula sin(θ(e)/2) = |x− y|/2.

• For each edge e consider the tetrahedron determined by the vertices in the dual pair (e, e′)
shown in Figure 1. In this tetrahedron, edges e, e′ are orthogonal since all remaining edges
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Figure 2: An example of Reuleaux polyhedron with 10 vertices (left) and the associated Meissner
polyhedron (right) obtained by smoothing some of the edges. Non-smoothed edges are represented
in red, smoothed edges are represented with green and spherical geodesic polygons contained in the
faces are colored in blue.

have unit length. We denote by φ(e) the dihedral angle of this tetrahedron associated to the
edge determined by e. A simple computation involving elementary trigonometry implies the
following relation between θ(e), θ(e′) and φ(e):

sin
φ(e)

2
=

sin θ(e′)
2

cos θ(e)2

.

The elements of this tetrahedron are completely determined by θ(e), θ(e′).
• For each vertex x consider the opposite face τ(x) determined by vertices x1, ..., xk, k ≥ 3 situ-

ated at unit Euclidean distance from x. The extremal diameter one sets generating Meissner
polyhedra have the self-dual property: x ∈ τ(y) ⇐⇒ y ∈ τ(x). This notation for opposite
faces is used for Meissner or Reuleaux polyhedra.

At each pair of dual edges (e, e′) in a Meissner polyhedron two types of surfaces appear. If
points of e are chosen as centers of balls in the intersection determining the Meissner polyhedron M
then the surface of M near e′ consists of a spindle surface, i.e. a surface obtained by rotating an arc
of circle of radius 1 around a symmetry axis. We say that such an edge is smoothed. More details
regarding the geometry of this configurations are given in [12, Section 4.1] and in the following.

Definition 2.3. Wedge surface. Consider (e, e′) a pair of dual edges in the Meissner polyhedron
M . Endpoints x, y of the edge e belong to the intersection of two spheres of radii 1 centered at
x′, y′, the endpoints of e′. Denote by >xy the small arc associated to e in the circle ∂B(x′)∩ ∂B(y′).
Consider gx′ , gy′ the geodesic arcs joining x, y on ∂B(x′), ∂B(y′), respectively. The wedge W (e) at
edge e is defined as the region bounded by >xy and gx′ in ∂B(x′) and >xy and gy′ in ∂B(y′). It is
obvious that W (e) is symmetric about e. See Figure 4 for an illustration.

Definition 2.4. Spindle surface. Consider (e, e′) a pair of dual edges in M . Using the notation
defined previously, the geodesic arcs gx′ , gy′ are constructed around the edge e bounded by vertices
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Figure 3: Meissner tetrahedra of the two types. Either three edges having a common vertex are
smoothed (first row) or three edges adjacent to a common face are smoothed (second row). Spherical
parts are represented in blue, wedge surfaces are shown in red and spindle surfaces in green.

x and y on spheres ∂B(x′), ∂B(y′). Both gx′ and gy′ are geodesic arcs in sphere of radius 1, they
are arcs of circles of radius 1 having length θ(e). The spindle surface S(e) is the surface obtained
by rotating gx′ towards gy′ around the axis xy. It is part of a surface of revolution determined by
the dihedral angle φ(e) associated to edge xy in the tetrahedron x, y, x′, y′. See Figure 5 for an
illustration.

Remark 2.5. In [25] spindle surfaces are called wedges, however this does not reflect the meaning
of the word wedge which is a triangular shaped tool, implying the existence of an angle. In [12] the
wedge surfaces are called silver surfaces.

From the previous definitions of wedge and spindle surfaces, it is apparent that their surface
areas depend only on the parameters θ(e), θ(e′) characterizing the tetrahedron x, y, x′, y′. Moreover,
if θ(e) = θ(e′), i.e. the tetrahedron is symmetric, choosing (e′, e) instead of (e, e′) in (2.3) will not
change the area or volume of the Meissner polyhedron M .

If m = 4 then the only extremal set of diameter 1 consists of the vertices of a regular tetrahedron
of edge length 1. In this case, the Meissner polyhedra coincide with one of the two Meissner
tetrahedra [14, Chapter 7], [21, Section 8.3]. Note that the 23 choices of smoothing one edge among
the three pair of opposite edges only produces two types of Meissner tetrahedra. Either all edges
starting from a common vertex are smoothed or the edges adjacent to a given face are smoothed.
See Figure 3 for an illustration.

The two Meissner tetrahedra have the same volume and the same area. As already underlined in
[12, Section 4], for a given extremal finite set of diameter one, the corresponding Meissner polyhedra
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Figure 4: Wedge surface associated to an edge e with vertices x, y of a Meissner polyhedron. The
two adjacent spherical faces centered at x′, y′ endpoints of the dual edge e′ are continued until they
intersect across the geodesics connecting x, y on these faces.

differ only in the exterior dihedral angles associated to edges e = xy, e′ = x′y′ in the tetrahedron
x, y, x′, y′. Indeed, all other regions of ∂M are portions of spheres centered at the vertices of M .
Moreover, wedge or spindle surfaces in ∂M intersect only at vertices. Since the vertices of a Meissner
tetrahedron form a regular tetrahedron, any choice of smoothing one edge among pairs of dual edges
will give the same area and the same volume.

Given M a Meissner polyhedron, its surface area is composed of the following elements:
• For every face τ(x) of M , having vertices v1, ..., vk consider the spherical polygon determined

by v1, ..., vk on the sphere centered at the vertex x opposite to τ(x). This provides a series of
spherical geodesic spherical polygons.

• For every pair of opposite edges (e, e′), consider the intersection of ∂M with the dihedral
angles at e, e′ in the tetrahedron determined by the vertices of these edges. This produces two
surfaces: a spherical spindle S(e′) (Figure 5) and a wedge W (e) (Figure 4). The areas of these
two surfaces will be established explicitly in the following in terms of the lengths θ(e), θ(e′).

The surface area of M is made of geometric surfaces which have explicit formulas for their areas.
For example, it seems obvious that S(e′) and W (e) can be computed in terms of the spherical lengths
of edges e, e′, given by θ(e), θ(e′). Nevertheless, it is not clear for the moment how the area of the
portions of the sphere present in the faces of M could be computed in terms of the same parameters.
This will be addressed in the next section.

3 Surface areas of Meissner polyhedra

3.1 Linked rectangles on the sphere

Let M be a Meissner polyhedron given by (2.3). If xi is one of its vertices then the opposite face
contains a spherical polygon S(xi) having common vertices with M , i.e. a region bounded by a
sequence of geodesic arcs >vivi+1 on a sphere of radius 1, where vi, i = 0, ..., k − 1 are vertices of M .
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Figure 5: Spindle surface associated to an edge e with vertices x, y of a Meissner polyhedron. The
geodesics connecting x, y on the adjacent spherical faces are rotated around xy.

The classical Gauss-Bonnet formula allows to compute the area of a spherical polygon in terms of
its angles, but it involves the turning angles of the spherical polygon which are not explicit in terms
of θ(e), θ(e′). We show below how a simple observation can lead to an explicit formula for the total
area of all such spherical regions in ∂M .

Consider the following definition of a normal vector for a bounded convex body M .

Definition 3.1. Let M be a bounded convex body in R3 and x ∈ ∂M be a point on its boundary.
A normal vector to M at x is a unit vector which is a normal vector for a supporting plane α for
M at x, pointing in the half-space determined by α which does not contain M . Denote by N(x) the
set of unit normal vectors to M at x, identified with a subset of the unit sphere S2.

We have the following elementary properties.

Proposition 3.2. a) The map N : ∂M → S2 is surjective.
b) Suppose M is strictly convex. Then x 6= y implies N(x) ∩N(y) = ∅.
c) If M0 ⊂M is a spherical surface of unit radius then N(M0) is a translation of M0.
d) If M is a Meissner polyhedron and x is a vertex then N(x) contains the antipodal set in S2

of the spherical surface N(S(x)).

Proof: a) For every orientation there exists a supporting plane orthogonal to it, leaving M on
the opposite side, therefore the normal map is surjective.

b) If x 6= y and n ∈ N(x)∩N(y) then parallel supporting planes exist at x and y, showing that
these planes should coincide, contradicting the strict convexity.

c) This property is obvious by definition.
d) If x is a vertex and S(x) is the spherical polygon contained in the face opposite to x then

any supporting plane α at a point in S(x) has a unique corresponding parallel supporting plane at
x. The desired conclusion follows. �

We arrive at the following result:

Proposition 3.3. Let M be a Meissner polyhedron. The unit sphere S2 can be partitioned in the
following regions:
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N(S(x′))

N(S(y′))

−N(S(x))

−N(S(y))

θ(e)

θ(e)

θ(e′)

θ(e′)

Figure 6: Example of spherical rectangle corresponding to normals for a wedge or spin-
dle surface around the edge e with endpoints x, y and dual to e′ with endpoints x′, y′.
The adjacent spherical polygons to e are S(x′), S(y′). The spherical region bounded by
N(S(x′)), N(S(y′)),−N(S(x)),−N(S(y)) is a spherical rectangle with edge lengths θ(e), θ(e′).

(A) Translations of the spherical polygons S(xi) contained in the faces opposite to xi of M and
their antipodals in S2 which contain normals to xi.

(B) A series of pairs of antipodal rectangles having spherical edge lengths (θ(ei), θ(e
′
i)), i =

1, ...,m− 1, where (ei, e
′
i) are the pairs of dual edges in M .

Proof: Following results of Proposition 3.2, the images of S(xi) through the normal map N are
spherical geodesic polygons which are translations of S(xi). Every normal to S(xi) has an opposite
one at xi.

Let us now consider the complentary region to
⋃m−1
i=1 (N(S(xi))∪−N(S(xi))) in S2. Given a pair

of dual edges (e, e′) of M , with x, y and x′, y′ endpoints of e, e′, respectively we have the following
observations.

Normals considered in part (A) for vertices x, y and faces τ(x′), τ(y′) adjacent to the edge >xy
have the following representations in S2:

• the spherical polygons N(S(x′)), N(S(y′)), having an edge equal to θ(e) corresponding to the
image through N of a geodesic from x to y.

• the spherical polygons −N(S(x)),−N(S(y)) having an edge equal to θ(e′) corresponding to
the image through N of a geodesic from x′ to y′.

An illustration is given in Figure 6. Therefore, normals to W (e) or S(e) not considered in part
(A) are contained in a spherical rectangle having edges θ(e), θ(e′). Indeed, this region is a spherical
quadrilateral with equal opposite sides and two planes of symmetry. Moreover, its vertices form an
Euclidean rectangle. This is a consequence of the fact that spindle and wedge surfaces also have
two planes of symmetry. This determines a spherical rectangle, i.e. a spherical quadrilateral with
equal opposite sides and equal angles.

The same configuration arises for normals around e′ not considered at part (A). The resulting
spherical rectangle is the antipodal for the one obtained for e. �

To compute the surface area of a Meissner polyhedron M a clear strategy emerges, following the
previous results. The area of spherical regions in ∂M is the complementary of a series of spherical

9



Figure 7: Examples of partitions of the sphere containing spherical parts of Meissner or Reuleaux
polyhedra and spherical rectangles.

rectangles with lengths (θ(ei), θ(e
′
i))

m−1
i=1 . The remaining parts are wedge and spindle surfaces whose

area will be computed. We start by computing the area of a spherical rectangle.

Lemma 1. A spherical rectangle is a spherical quadrilateral with equal angles and equal opposite
sides. The area of a spherical rectangle with geodesic side lengths θ, θ′ ∈ (0, π) is given by

R(θ, θ′) = 4 arcsin

(
tan

θ

2
tan

θ′

2

)
.

Proof: Let a, b, c, d be the vertices of the spherical rectangle such that
>
ab,

>
cd have lengths θ and

>
bc,

>
da have lengths θ′. To compute the area of a spherical geodesic polygon, its angles need to be

computed. See Figure 8 for an illustration.
Draw the great circles containing

>
ab,

>
cd and denote by x the intersection point closer to

>
bc and

x′ the other point of intersection. By the symmetry of the rectangle, the arc
>
ab is symmetric about

the midpoint of the half circle
>
xx′ containing

>
ab. For simplicity, we use the same notation for an arc

and for its spherical length. Thus, in the spherical triangle xbc all edge lengths are known:
>
bc = θ′,

>
bx = >cx = π

2 −
θ
2 . Denoting by α the angle at b in the triangle bcx, the spherical law of cosines gives

cos >cx = cos
>
bc cos

>
bx+ sin

>
bc sin

>
bx cosα.

Therefore, using basic trigonometric identities, we obtain

cosα =
cos
(
π
2 −

θ
2

)
− cos θ′ cos cos

(
π
2 −

θ
2

)
sin θ′ sin

(
π
2 −

θ
2

) =
sin θ

2(1− cos θ′)

sin θ′ cos θ2
= tan

θ

2
tan

θ′

2
.

The Gauss-Bonnet formula combined with the result above shows that the area of the rectangle is

R(θ, θ′) = 2π − 4α = 4
(π

2
− α

)
= 4 arcsin

(
tan

θ

2
tan

θ′

2

)
.

�
The area of S2 is 4π. Therefore, keeping in mind that every spherical part counted in (A) in

Proposition 3.3 and every rectangle appears twice on the sphere in Proposition 3.3, it follows that
the total area of the spherical polygons contained in ∂M is

2π −
m−1∑
i=1

R(θ(ei), θ(e
′
i)).
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Figure 8: Computing the area of a spherical rectangle in terms of its side lengths.

Thus, we arrive at an initial formula for the area of a Meissner polyhedron, which is given by:

|∂M | = 2π −
m−1∑
i=1

R(ei, e
′
i) +

m−1∑
i=1

(|W (ei)|+ |S(e′i)|), (3.1)

where |W (ei)|, |S(e′i)| represent the areas of wedge and spindle regions, respectively.
Thus, the Blascke-Lebesgue problem in dimension three amounts to solving

max
m−1∑
i=1

(
R(ei, e

′
i)− |W (ei)| − |S(e′i)|.

)
. (3.2)

In the following section |W (ei)| and |S(e′i)| are computed explicitly in terms of θ(ei), θ(e
′
i).

3.2 Computation of areas of wedge and spindle surfaces

Computations regarding spindle and wedge surfaces are also presented [13], [12]. The computations
made below sometimes use different arguments, therefore we present the computations in full detail,
for the sake of completeness.

In the following (e, e′) denotes a generic pair of dual edges and θ(e), θ(e′) denote their spherical
lengths. Recalling that φ(e) is the dihedral angle at edge e of the tetrahedron determined by e and
e′, we have the relation

sin
φ(e)

2
=

sin θ(e′)
2

cos θ(e)2

. (3.3)

Since θ(e) ∈ [0, π/3] for every edge, we find that sin φ(e)
2 ≤ sin π

6
cos π

6
=
√
3
3 . This gives cosφ(e) =

1− 2 sin2 φ(e)
2 ≥

1
3 and as a consequence all dihedral angles φ(e) verify

φ(e) ∈ [0, arccos
1

3
]. (3.4)
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Moreover, denoting d(e, e′) the distance between the midpoints of the segments determined by
vertices of the dual pair (e, e′) we have

cos
φ(e)

2
=
d(e, e′)

cos θ(e)2

. (3.5)

Since d(e, e′) depends only on φ(e), θ(e) via (3.5) it follows that

cos
φ(e)

2
cos

θ(e)

2
= cos

φ(e′)

2
cos

θ(e′)

2
. (3.6)

The wedge W (e) (see Definition 2.3) is the union of two spherical regions contained between
two circles. Gauss-Bonnet formula can be used to compute its surface area, provided the radii of
the two circles and the angle made by the two circles are known.

Angle made by two circles on the sphere. A circle on the unit sphere is determined by
a point C on the sphere and a spherical distance θ ∈ [0, π/2] and consists of all points X on the
sphere at spherical (or angular) distance θ to P . A spherical circle is, of course, an Euclidean circle
of radius sin θ.

Lemma 2. Consider intersecting circles on the unit sphere having centers C1, C2 and spherical radii
θ1, θ2 ∈ [0, π/2]. Suppose that their axes of symmetry make an angle equal to φ. Then, denoting by
α the angle made by the two circles at one intersection point, we have

cosφ = cos θ1 cos θ2 + sin θ1 sin θ2 cosα.

Proof: An illustration of the configuration is given in Figure 9. Assume the two circles intersect:
a necessary and sufficient condition is that φ, θ1, θ2 are the sides of a spherical triangle, i.e., they
verify the usual triangular inequalities. Let X be a point of intersection of the two circles. Then the
arcs

>
C1X,

>
C2X are orthogonal to the tangent vectors to the two circles at X. The angle of the two

tangent vectors is the angle X in the spherical triangle XC1C2. The sides of this spherical triangle
are known, starting from the hypothesis: C1X = θ1, C2X = θ2, C1C2 = φ. The spherical law of
cosines coincides with the desired formula, since the spherical angle α = ∠C1XC2 is opposite to the
side C1C2. �

Area of a wedge surface. A wedge surface is twice the area of the intersection of a circle of
a given radius smaller than 1 and a great circle of the same sphere of radius 1. It can be explicited
using Lemma 2.

For a pair of dual edges (e, e′) consider the endpoints x, y of e and x′, y′ of e′. Denoting >xy the
small arc between x and y in ∂B(x′) ∩ ∂B(y′) let us find the angle made by >xy with the geodesic
linking x and y on ∂B(x′) (or ∂B(y′). Let us identify all elements used in Lemma 2.

• The arc >xy lies on the circle ∂B(x′) ∩ ∂B(y′) which has spherical radius π/2− θ(e′).
• The geodesic lies on a big circle of spherical radius θ2 = π/2.
• The angle φ made by the symmetry axes of the two circles is equal to the dihedral angle of the

planes of the two circles. This is half of the dihedral angle at edge e = xy in the tetrahedron

x, y, x′, y′. Indeed, the arc
>
{xy} is contained in the bisector plane of the tetrahedron at edge

xy, while the geodesic is contained in one of the planes x′xy or y′xy. Thus φ = φ(e)/2.

Plugging this information into Lemma 2 we find that the corresponding angle α(e) between the
arc >xy and a geodesic arc at e verifies

cosα(e) cos
θ(e′)

2
= cos

φ(e)

2
. (3.7)
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C1

C2

X

θ1

θ2

φ

Figure 9: Configuration for computing the angle between two circles on the sphere. The two circles
have centers Ci and spherical radii θi, i = 1, 2 and meet at point X.

In view of (3.5), (3.6), notice that this angle is the same for the two pairs of opposite edges, i.e.
α(e) = α(e′). It should be noted that (3.7) has solutions since (3.3) implies φ(e) ≥ θ(e′), therefore

cos φ(e)2 ≤ cos θ(e
′)

2 .
For a spherical region p1, ..., pk bounded by arcs of circle on the unit sphere, having radii

r1, ..., rk ∈ (0, 1], denoting γ1, ..., γk the turning (exterior angles) at the respective vertices, the
Gauss-Bonnet formula states that its area is given by

A = 2π −
k∑
i=1

γi −
k∑
i=1

∫
pi

√
1− r2i
ri

.

The last term corresponds to the integral of the geodesic curvature, equal to
√
1−r2
r for a circle of

radius r.
One half of the wedge W (e) is determined by two arcs of circles, meeting at an angle α(e) given

by (3.7). The geodesic arc has zero geodesic curvature. The arc >xy belongs to a circle of radius

cos θ(e
′)

2 , has geodesic curvature tan θ(e′)
2 and has an angular measure equal to φ(e′) (see Figure 1).

We arrive, thus at the following result.

Proposition 3.4. The area of a wedge surface W (e) at the edge e in the dual pair (e, e′) is given
by

|W (e)| = 4 arccos

(
cos φ(e)2

cos θ(e
′)

2

)
− 2 sin

θ(e′)

2
φ(e′).

Proof: The proof is immediate, noting that the turning angles at the two vertices of We are
equal to π − α(e), where α(e) verifies (3.7). Furthermore, the integral of the geodesic curvature
on >xy gives the second term. The result is multiplied by two, since W (e) contains two congruent
spherical regions. �

The area of a spindle surface at edge e (see Definition 2.4) is computed in [12]. Nevertheless,
since its computation is immediate via integrals on surfaces of revolution, we give a brief proof
below.
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Proposition 3.5. The area of a spindle surface S(e) at the edge e in the dual pair (e, e′) is given
by

|S(e)| = 2φ(e)

(
− cos

θ(e)

2

θ(e)

2
+ sin

θ(e)

2

)
.

Proof: We compute the full surface area of a complete spindle and recover the result for a
spindle of angle φ(e) as a byproduct. Recall that if f : [a, b] → R+ is a C1 function then the
area of the surface of revolution determined by the graph of f around the x-axis is simply A =
2π
∫ b
a f(x)

√
1 + (f ′(x))2)dx.

We apply this result for the function f : [− sin θ(e)
2 , sin θ(e)

2 ] which verifies

x2 +

(
f(x) + cos

θ(e)

2

)2

= 1.

We obtain

f(x) =
√

1− x2 − cos
θ(e)

2
, f ′(x) =

−x√
1− x2

.

The result follows immediately from the integral formula. �
Notice that if in the definition of the Meissner polyhedron M we consider balls with centers on

e, then close to edges in the dual pair (e, e′) the boundary ∂M is made of the wedge W (e) and
the spindle surface S(e′). It is already apparent from Propositions 3.4, 3.5 that when computing
|W (e)|+ |S(e′)| some terms cancel. More precisely,

|W (e)|+ |S(e′)| = 4α(e)− φ(e′)θ(e′) cos
θ(e′)

2
.

Moreover, using the classical identity arcsinx = arccos
√

1− x2 for x = tan θ(e)
2 tan θ(e′)

2 ∈ [0, 1],
we find, remarkably, that

arcsin

(
tan

θ(e)

2
tan

θ(e′)

2

)
= arccos


√

cos2 θ(e)2 − sin2 θ(e′)
2

cos θ(e)2 cos θ(e
′)

2

 = arccos
(cos φ(e)2 )

cos θ(e
′)

2

)
.

Therefore, 4α(e) coincides with the area of the spherical rectangle with edges (θ(e), θ(e′)), which
further simplifies the expression (3.1).

3.3 Area of Meissner polyhedra

Gathering all the results from previous sections we observe that (3.1) becomes

|∂M | = 2π −
m−1∑
i=1

φ(e′)θ(e′) cos
θ(e′)

2
.

Using φ(e′) = 2 arcsin

(
sin

θ(e)
2

cos
θ(e′)

2

)
we obtain the following result:

Theorem 3.6. The Meissner polyhedron M = B(X ∪ e1 ∪ ...∪ em−1) given by (2.3) has the surface
area

|∂M | = 2π − 2

m−1∑
i=1

f(θ(ei), θ(e
′
i)) (3.8)

with

f(x, y) = y cos
y

2
arcsin

(
sin x

2

cos y2

)
(3.9)
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The maximal value of f(x, y) given in (3.9) for {(x, y) ∈ [0, π/3]2 : x ≤ y} is attained at
(π/3, π/3) and f is increasing in both x, y and is convex in the x and y directions. Results regarding
the function f are gathered in Appendix A.

Remark 3.7. We have the following geometric interpretation for f(θ(ei), θ(e
′
i)). Observe that

cos θ(e
′)

2 φ(e′) is the length `(e) of the circle arc between x, y inB(x′)∩B(y′). Therefore 2f(θ(ei), θ(e
′
i)) =

`(e)θ(e′).

We obtain the following direct consequence of Theorem 3.6.

Corollary 3.8. (a) The area of a Meissner tetrahedron is equal to

2π − 6f(π/3, π/3) = 2π −
√

3π

2
arccos

1

3
.

The volume of a Meissner polyhedron is obtained using the Blascke formula (2.1).
(b) Among the 2m−1 possible choices of Meissner polyhedra for a given extremal set of diameter

one consisting of m points, the one with minimal area verifies

θ(ei) ≤ θ(e′i), i = 1, ...,m− 1.

In other words, the longest edge among each pair of dual edges should be smoothed, i.e. replaced by
a spindle surface.

(c) The three dimensional Blaschke-Lebesgue problem is equivalent to solving

max
m−1∑
i=1

f(θ(ei), θ(e
′
i)),

assuming that in all dual pairs we have θ(ei) ≤ θ(e′i).

Proof: (a) The Meissner tetrahedron corresponds to m = 3 and all edges have spherical length
π/3. The result follows after evaluating f(π/3, π/3).

(b) We observe that on [0, π/3]2 we always have

x ≤ y =⇒ f(x, y) ≥ f(y, x). (3.10)

A proof is given in the Appendix A. Therefore the conclusion follows.
(c) A simple consequence of the area formula (3.8). �

Remark 3.9. The strategy employed here can also be used to compute the area of Reuleaux
polyhedra R, like in [13]. Compared to Meissner polyhedra, for any pair of dual edges (e, e′) the
corresponding wedge surfaces W (e),W (e′) are present in the boundary of a Reuleaux polyhedron.
Therefore, its surface area is simply

|∂R| = 2π −
m−1∑
i=1

R(ei, e
′
i) +

m−1∑
i=1

(|W (ei)|+ |W (e′i)|)

= 2π +

m−1∑
i=1

(4α(ei)− 2 sin
θ(ei)

2
φ(ei)− 2 sin

θ(e′i)

2
φ(e′i)), (3.11)

The resulting expression is slightly more complex than (3.8) since fewer terms simplify. On the
other hand the expression is symmetric in θ(ei), θ(e

′
i) as expected, recalling that α(ei) = α(e′i).
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Figure 10: Different views of a Reuleaux pyramid. The edges connecting the central node a to the
vertices of the opposite face are smoothed. The rightmost picture shows the face opposite to the
central node a and is a spherical Reuleaux polygon of constant width equal to π/3 (in spherical
distance).

4 Meissner pyramids

Given an extremal three dimensional finite set of diameter 1 having m points it is possible to attach
a graph structure to it: two points x, y are connected through an edge if and only if |x − y| = 1.
Such a graph will be called diameter-graph in the following. These graphs are studied in detail in
[23], [8] and [24]. In [23] all possible diameter graphs for m ≤ 14 are investigated, giving rise to
many examples of Meissner polyhedra.

In [8] the authors show that there is a class of graphs which is particular, in the sense that
every edge is on a triangular face. Such a graph is called a wheel graph and has one central
node a connected to nodes b1, ..., bm−1 which form a cycle (see Figure 10). Geometrically, Meissner
polyhedra having wheel diameter graphs resemble a pyramid. Such polyhedra will be called Meissner
pyramids in the following. They consist of a vertex a and a face b1, ..., bm−1 opposite to a. We are
interested in Meissner pyramids of minimal volume, therefore the edges abi should be smoothed.
This implies that the face b1, ..., bm−1, where wedge surfaces are considered at each one of the
edges, resembles a planar Reuleaux polygon, each vertex being at Euclidean unit distance from two
opposite vertices. This is, in fact, a spherical Reuleaux polygon with spherical width π/3.

In this section it is shown that the Meissner tetrahedron minimizes the surface area and volume
among Meissner pyramids.

Theorem 4.1. The minimal surface area of a Meissner pyramid is attained for Meissner tetrahedra.
The same result holds for the volume in view of the Blaschke formula (2.1).

Proof: Consider M = ab1...bm−1 a Meissner pyramid. Every pair of dual edges contains one
edge of the form bibi+1 and one of the form abj . Since |a− bj | = 1, the associated spherical length
is θ(abj) = π/3. According to Corollary 3.8, the minimal area is attained when spindles surfaces
are put along the longest edge of every one of the dual pairs. For Meissner pyramids, all edges of
the form abi have spherical length π/3 and are, therefore larger than their dual edges (of the form
bjbj+1, with the convention bm = b1). Denoting ej = bjbj+1, j = 1, ...,m − 1 the least area of a
Meissner pyramid having the given vertices is equal to

2π − 2

m−1∑
i=1

f(θ(ej), π/3).
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Using the explicit expression of f(x, y) in (3.9) and the Remark 3.7 regarding the alternative ex-
pression we arrive at the equivalent problem

max
m−1∑
i=1

π

3
cos

π

3
φ(abi)⇔ max

m−1∑
i=1

π

3
`(bibi+1), (4.1)

where it should be recalled that φ(abi) is the dihedral angle at abi in the tetrahedron abibjbj+1, where
bjbj+1 is the dual of abi. The faces abibj , abibj+1 of this tetrahedron are equilateral triangles. Also,

according to Remark 3.7, `(bibi+1) is the length of the arc
>
bibi+1 on the intersection ∂B(a)∩∂B(bi).

It is immediate to see that up to a multiplicative function, the objective function to be maximized
is equal to the perimeter of the spherical region determined by the face b1...bm−1, including the
parts coming from the wedge surfaces, on the sphere centered in a with radius 1. Moreover, all

boundary parts of this region are circle arcs of radii
√
3
2 , since they are on the intersection of ∂B(a)

and ∂B(bi), i = 1, ...,m− 1.
Let us make the analogy with planar Reuleaux polygons more precise. The face opposite to

a in the Meissner pyramid whose spindle surfaces are all on edges containing a is the intersection
on ∂B(a) of the spherical circles centered in bi, i = 1, ...,m − 1 having spherical radius π/3. This
is a spherical region of constant width in ∂B(a). Blaschke claimed in [5] that the analogue of the
Blaschke-Lebesgue theorem holds also on the sphere: among all shapes on a sphere of radius 1 of
constant width w ≤ π/2 (in the sense of the spherical distance), the spherical Reuleaux triangle of
width w has the smallest area. This was proved by Leichtweiss in [20] and strengthened to the case
of spherical disk polygons in [4]. For spherical curves of constant width w the length L and the area
A are linked by the formula

L = (2π − F ) tan
w

2
.

This formula is attributed to Blaschke [5] and can also be found in [27]. In particular, at fixed
constant width, the spherical Reuleaux triangle maximizes the perimeter.

In conclusion, the solution to problem (4.1) corresponds to a spherical Reuleaux triangle and
the Meissner pyramid maximizing (4.1) must be a Meissner tetrahedron. �

5 The general case: discrete problems

Given m ≥ 4 denote by Mm the class of Meissner polyhedra with at most m vertices. This set
is non-void if m ≥ 4, as it contains the Meissner tetrahedron. Like in the two dimensional case
discussed in [16] we may formulate a series of finite dimensional problems related to the Meissner
conjecture.

Proposition 5.1. There exists a Meissner polyhedron M ∈Mm which minimizes its surface area,
i.e. the problem

min
M∈Mm

|∂M |

has solutions.

Proof: The standard method in the calculus of variation is employed. Of course, |∂M | has trivial
upper and lower bounds: zero and the area of the unit ball. Therefore there exists a minimizing
sequence (Mk) ⊂Mm such that

|∂Mk| → inf
M∈Mm

|∂M |.
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The classical Blaschke selection theorem [28, Theorem 1.8.7] shows that there exists a subse-
quence of (Mk) which converges in the Hausdorff metric (see [11, Chapter 2]). Suppose, up to
relabeling, that Mk converges to M , which is still of constant width (this is classical, see [2] for
a proof). The goal is to prove that M ∈ Mm, i.e. the class of Meissner polyhedra with a fixed
number of vertices is closed in the Hausdorff metric.

Since each Mk has at most m− 1 pairs of dual edges, there is a subsequence of (Mk), denoted
again with (Mk) which has a constant number m0 of pairs of dual edges. For each of the polyhedra
Mk consider the pairs of dual edges

(ek1, (e
k
1)′), ..., (ekm0

, (ekm0
)′).

Corollary 3.8 shows that among all 2m0 possible choices of smoothing one of any pair of dual edges,
the one verifying θ(eki ) ≤ θ((eki )′) gives the lowest surface area. If this is not the case, modify each
Mk, eventually decreasing its surface area, recovering another minimizing sequence. At convergence
continuity implies that we can assume that the choice of the edge smoothing does not change.

Up to extracting a diagonal sequence, assume that endpoints of eki and (eki )
′ converge so that

the corresponding segments verify
eki → ei, (eki )

′ → e′i

for all i = 1, ...,m0. Since endpoints of edges eki form extremal diameter 1 sets, in the limiting
process, these diameters are preserved. If none of the edges eki , (e

k
i )
′ collapse in the limiting process,

then the discrete set obtained is extremal, having 2m − 2 diameters. If one edge ei collapses and
(eki )

′ does not then two pairs of diameters merge and one vertex is lost in the limiting process, the
resulting set remaining extremal. If both edges in a pair (eki , (e

k
i )
′) collapse in the limiting process

then two vertices and four diameters are lost, the remaining set still being extremal. The m0 vertices
of Mn converge to m1 ≥ 4 distinct points in R3, since the limit set M has constant width.

Since Hausdorff limits of balls are balls, and Hausdorff convergence preserves finite intersections
[11, Chapter 2], all spherical parts of Mk converge to spherical parts in M . In particular, wedge
surfaces converge to wedges.

This shows that faces of Mk converge to faces of M and vertices of Mk converge to vertices in
M . Since M contains an extremal diameter one set with m1 vertices, any edge dual to a wedge
will correspond to a spindle surface [12]. Therefore will be a Meissner polyhedron with at most m
vertices, i.e., M ∈Mm. �

Remark 5.2. An alternative proof of Proposition 5.1 can be given using Theorem 3.6. Indeed,
any polyhedron in Mm can be characterized by the lengths (θ(ei), θ(e

′
i))

m−1
i=1 for the pairs of dual

edges. Polyhedra with fewer than m vertices can also be characterized, setting some of the lengths
θ(ei), θ(e

′
i) to zero. The space of lengths of dual edges is finite dimensional, closed and blunded.

According to the area formula (3.8) the result of Proposition 5.1 follows since a continuous function
attains its extremal values on a compact set.

Remark 5.3. The result of Proposition 5.1 suggests that the Meissner conjecture can be reduced
to a series of discrete problems. Ideally it should be proved that a Meissner polyhedron which is
not a tetrahedron cannot be optimal.

A similar result can be formulated if instead of Meissner polyhedra we consider Reuleaux poly-
hedra. In this case, the solution is expected to change as the number of vertices increase. Indeed,
it is known that Reuleaux polyhedra can approximate arbitrarily well any shape of constant width.
However, since these polyhedra do not have constant width themselves, when n→∞ the solution
to the problem will change and converge to a constant width body of minimal volume.
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6 Concluding remarks

In this paper, the surface area and volume of Meissner polyhedra is computed explicitly in terms
of lengths of dual edges (Theorem 3.6). This reduces the study of the Meissner conjecture to a
series of finite dimensional problems. In particular, the minimality of the volume of the Meissner
tetrahedron among Meissner pyramids is established (Theorem 4.1). The answer to Conjecture 1
depends on obtaining a finer understanding of the space of lengths of dual edges (θ(ei), θ(e

′
i))

m−1
i=1 .

In particular, it is expected that a similar phenomenon to the one observed in dimension two occurs:
no Meissner polyhedron which is not a tetrahedron can be a local minimizer for the area or the
volume.

A Analysis of a particular 2D function

The function f(x, y) = y cos y2 arcsin
(

sin(x/2)
cos(y/2)

)
defined in (3.9) is fundamental in understanding

Meissner polyhedra with minimal surface area. In this section multiple properties are proved, with
a special interest regarding the region (x, y) ∈ [0, π/3]2, x ≤ y.

(i) x 7→ f(x, y), y 7→ f(x, y) are increasing and convex on [0, π/3].
Proof: sin is increasing on [0, π/6] and arcsin is increasing, therefore x 7→ f(x, y) is increasing.

To decide the convexity, notice that

∂f

∂x
(x, y) =

y

2

cos x2 cos y2√
1− sin2 x

2 − sin2 y
2

. (A.1)

It is straightforward to see that x 7→ cos x
2
cos y

2√
1−sin2 x

2
−sin2 y

2

is increasing on [0, π/2], therefore x 7→ f(x, y)

is convex on [0, π/3] for any fixed y ∈ [0, π/3].
A straightforward computation leads to

∂f

∂y
= (cos

y

2
− y

2
sin

y

2
) arcsin

(
sin x

2

cos y2

)
+
y

2

sin x
2 sin y

2√
1− sin2 x

2 − sin2 y
2

. (A.2)

A direct analysis of all the terms shows that this partial derivative is positive. To prove convexity,
it is more convenient to use a different formulation.

Integrating the equality (A.1) with respect to x shows that f has the following integral repre-
sentation

f(x, y) =
y

2

∫ x

0

cos t
2 cos y2√

1− sin2 t
2 − sin2 y

2

dt. (A.3)

Therefore, since the integrand is increasing in y we find that y 7→ f(x, y) is increasing. Differntiating
with respect to y gives

∂f

∂y
(x, y) =

1

2

∫ x

0

cos t
2 cos y2√

1− sin2 t
2 − sin2 y

2

dt+
y

2

∫ x

0

sin t
2 sin t sin y

2

4
(
1− sin2 t

2 − sin2 y
2

)3/2 .
It is straightforward that in this formulation y 7→ ∂f

∂y is increasing, and therefore y 7→ f(x, y) is
convex.

(ii) Smoothing the longest among dual edges gives a lower volume:

x ≤ y =⇒ f(x, y) ≥ f(y, x). (A.4)
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Differentiate (A.1) with respect to y to get

∂2f

∂x∂y
(x, y) =

1

2

cos x2 cos y2√
1− sin2 x

2 − sin2 y
2

+
1

4

y sin y
2 cos x2 sin2 x

2

(1− sin2 x
2 − sin2 y

2 )
3
2

. (A.5)

The function x 7→ x
sinx is strictly increasing on [0, π/3]. Therefore, for x ≤ y we have

y sin
y

2
cos

x

2
sin2 x

2
≥ x sin

x

2
cos

y

2
sin2 y

2

(factor sin2 x
2 sin2 y

2 on both sides) and

∂2f

∂x∂y
(x, y) ≥ ∂2f

∂x∂y
(y, x).

Therefore, the mapping

g : x 7→ ∂f

∂y
(x, y)− ∂f

∂x
(y, x)

is increasing with respect to x for x ≤ y. Since g(0) = 0 we have

∂f

∂y
(x, y) ≥ ∂f

∂x
(y, x)

whenever 0 ≤ x ≤ y ≤ π/3. Replacing y by t and integrating this inequality with respect to t on
[x, y] we get f(x, y) ≥ f(y, x) whenever x, y ∈ [0, π/3], x ≤ y, as requested.

Data availability statement. Data sharing not applicable – no new data was generated.
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