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Abstract

We develop methods based on fundamental solutions to compute the Steklov, Wentzell and

Laplace-Beltrami eigenvalues in the context of shape optimization. In the class of smooth simply

connected two dimensional domains the numerical method is accurate and fast. A theoretical er-

ror bound is given along with comparisons with mesh-based methods. We illustrate the use of this

method in the study of a wide class of shape optimization problems in two dimensions. We extend

the method to the computation of the Laplace-Beltrami eigenvalues on surfaces and we investigate

some spectral optimal partitioning problems.
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1 Introduction

The purpose of this article is to provide some tools which facilitate the numerical study of some shape

optimization problems. Such problems consist of minimizing or maximizing a certain quantity which

depends on the domain geometry. The cost function which is to be optimized may depend on the geomet-

ric properties of the domain (perimeter, area) or on some more complex quantities given, for example,

by some partial differential equations (eigenvalues, integral energies). Finding explicitly solutions to

shape optimization problems may be difficult or even impossible in some cases. Thus, having efficient

numerical methods which can allow the study of shape optimization problems is an important issue.

This article treats the numerical optimization of functionals which depend on eigenvalue problems

defined on the boundary of the considered domain. The numerical algorithms presented in the sequel

allow the computation of the eigenvalues of the Steklov, Wentzell and Laplace-Beltrami spectra. In

order to compute these eigenvalues for a given domain we develop a method based on fundamental

solutions. This type of methods has been introduced in [32] and has been used by Antunes and Alvez

in the study of various eigenvalue problems [2],[3],[4]. The advantage of such a method is the fact that

there is no need for a mesh generation at each function evaluation and for a large class of domains the

corresponding eigenvalue computation is fast. This fact allows an important time economy if we wish

to use the algorithm for numerical shape optimization. Another advantage is that the method based on

fundamental solutions is precise. We provide a theoretical result which estimates this error in the case of

the Steklov and Wentzell eigenvalues.

There are a few works which present applications of such mesh-less computation methods to the nu-

merical study of shape optimization problems. Among these we mention the minimization of the Laplace

Dirichlet eigenvalues by Antunes and Freitas in [6], where the authors also use the method of fundamen-

tal solutions. Other functionals depending on the Dirichlet Laplace eigenvalues have been studied by

Antunes in [5], using fundamental solutions, and by Osting in [35] using the method of particular so-

lutions for the eigenvalue computation. Optimal convex combinations of Dirichlet Laplace eigenvalues

have been studied in [36] and [37] using the MpsPack Matlab toolbox [8] for the eigenvalue computation.

In a recent result of Akhmetgaliyev, Kao and Osting [1] the authors provide a numerical method based

on a single layer potential in order to compute the Steklov eigenvalues on a two dimensional domain.

They also optimize numerically the Steklov eigenvalues under area constraint in dimension two.
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We recall that for Ω ⊂ R
n an open set with Lipschitz boundary we can define the Steklov eigenvalues

as the real values σ for which the following problem has a non trivial solution:
{

−∆u = 0 in Ω,
∂u
∂n = σu on ∂Ω.

It is easy to see that 0 is a Steklov eigenvalue corresponding to constant functions. This problem has a

discrete spectrum given by an increasing sequence

0 = σ0(Ω) ≤ σ1(Ω) ≤ σ2(Ω) ≤ σ3(Ω) ≤ ...→ +∞

As usual, we can provide a variational characterization using Rayleigh quotients

σn(Ω) = inf
Sn

sup
u∈Sn\{0}

∫

Ω |∇u|2dx
∫

∂Ω u
2dσ

, n = 1, 2, ...

where Sn is an n dimensional linear subspace of H1(Ω) ∩ {
∫

∂Ω u = 0}. This variational formulations

allows us to deduce immediately the behaviour of the Steklov eigenvalues under homotheties: σk(tΩ) =
σk(Ω)/t for all t > 0.

The study of the Steklov spectrum is and has been a very active field of research. We cite here some

notable results concerning the optimization of these eigenvalues. Weinstock proved in [41] that the first

non-zero Steklov eigenvalue is maximized by the disk in the class of simply connected two dimensional

domains with fixed perimeter. This result was generalized in further directions by Hersch, Payne and

Schiffer in [31]. Brock proved in [15] that the first non-zero Steklov eigenvalue is maximized by the ball

in every dimension when considering a volume constraint, without any restrictions on the topology of the

domain. Other results concerning the optimization of the Steklov spectrum under perimeter constraint are

presented in [24]. As underlined in [10], all these optimization results are proved by precisely identifying

the optimal shape and then proving that the shape is indeed the desired optimizer. There are cases

where the optimal shape cannot be determined explicitly and thus we have a good motivation to develop

numerical tools. Concerning the existence of the optimal shapes, some general results are given in [10]

in the class of convex sets or the class of sets which satisfy a uniform ε-cone property. General results

concerning the existence of optimal shapes for the Steklov problem in the class of simply connected

domains can be found in [11].

The Wentzell spectrum consists of the real values λ for which the following problem has non-trivial

solutions:
{

−∆u = 0 in Ω,

−β∆τu+ ∂un = λu on ∂Ω.

We note that the Steklov case corresponds to β = 0. Although it is possible to study this problem for

every real number β, we restrict ourselves to the case β ≥ 0. The Wentzell spectrum is discrete and is

given by an increasing sequence denoted

0 = λ0,β(Ω) ≤ λ1,β(Ω) ≤ λ2,β(Ω) ≤ λ3,β(Ω) ≤ ...→ +∞

The case of the Wentzell problem has been recently studied in [20] where the authors prove that the

ball maximizes locally the first non-zero Wentzell eigenvalue under volume constraint in the class of

sets homeomorphic to a ball. It is conjectured that the ball is the global minimizer in the same class of

admissible sets. We are able to numerically validate this result in the two dimensional case. We also

illustrate the fact that without the topological assumption the conjecture is false.

The second class of problems we study in this article concerns the partitions of a three dimensional

surface which minimize the sum of the first Laplace-Beltrami eigenvalues with Dirichlet boundary con-

ditions. It is well known that the spectrum of Laplace Beltrami operator with Dirichlet boundary

conditions of a subset ω ⊂ ∂Ω consists of the values λ such that the problem
{

−∆τu = λu in ω

u = 0 on ∂ω
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has non trivial solutions. This spectrum is discrete and consists of an increasing sequence denoted

0 = λLB0 (ω) ≤ λLB1 (ω) ≤ λLB1 (ω) ≤ ...→ +∞.

It is known that if ω is homeomorphic to the three dimensional euclidean sphere, then λLB1 (ω) is maxi-

mized by the sphere with the same surface area. For the two dimensional case we know that λLB1 (∂Ω) ≤
λLB1 (∂B) where B is a disk of same area as Ω. For a proof of this fact we refer to [20, Section 2.1]. The

Wentzell and Laplace-Beltrami eigenvalues are related by the property limβ→∞ λk,β(Ω)/β = λLBk (∂Ω).
For a proof we refer to [20, Section 2.1].

Theoretical aspects concerning this type of partitioning problems, like the questions of existence

and regularity, were studied in [18],[27],[28],[29]. The numerical study of this type of partitioning

problems is motivated by an open question due to Bishop [9]. It is conjectured that the partition of the

sphere into three equal 2π/3 slices minimizes the sum of the fundamental Laplace-Beltrami eigenvalues.

One initial objective is to test this conjecture. Previous computations were made by Elliott and Ranner

[22] using a penalized formulation introduced in [16]. Their approach allows the study of partitions on

various three dimensional surfaces using finite element methods. Our approach is significantly different

from theirs and it is related to the computation of the Steklov/Wentzell eigenvalues presented in the first

sections of the article. The method we propose uses techniques inspired by [14] along with a refinement

procedure in the case of the sphere. Among other methods used in the literature for the study of optimal

spectral partitions we cite the rearrangement algorithm used in [38] and the Dirichlet-Neumann approach

presented in [12]. The case of the flat torus has been considered in [13]. These works mainly deal with

planar partitions or graph partitions. In particular [38] briefly mentions the study of Bishop’s conjecture

and the expected Y -partition of the sphere is obtained.

The initial part of our optimization procedure uses a phase field formulation where we replace each

shape by an approximation of its characteristic function. This gives a rough idea of the structure of

the optimal partition. Elliott and Ranner [22] conjectured that the boundaries of the cells are geodesic

polygons. In order to test the validity of this fact, we study the problem in the more restrictive class

of geodesic polygons. Once we have found the optimal candidates in this restrictive class we add more

degrees of freedom to see if the optimal cost decreases. The computation of the Laplace-Beltrami eigen-

values is done using a method based on fundamental solutions. Our numerical results confirm Bishop’s

conjecture and show that for n ∈ {4, 6, 12} it is likely that the optimal partition is the one associated to

the corresponding regular polyhedron. The numerical study of the cases n ∈ {5, 7, 8, 9, 10} as well as a

simple argument based on the Gauss-Bonnet formula, shows that, in general, the corresponding optimal

partitions do not consist of geodesic polygons.

2 A numerical method for computing the Steklov/Wentzell spectrum

Steklov eigenvalues can be computed numerically using mesh-based methods. This can be done rather

quick and in an automatic manner in FreeFem++ [26] and an example code is given in Section 6. Mesh-

based methods have the disadvantage that high precision computations need a very fine mesh. On the

other hand, as meshes become more and more refined computations become slow. We present below a

numerical method which is fast and precise for computing the Steklov spectrum for domains with smooth

boundaries.

The method of fundamental solutions, originally introduced in [32], is a part of the class of so called

mesh-free numerical methods. This type of method was successfully used in [2],[4] in the study of the

eigenvalues of the Dirichlet Laplacian in two and three dimensions. The goal here is to approximate the

solution of a problem of the type
{

Au = 0 in Ω

Bu = 0 on ∂Ω,
(1)

where A,B are suitable linear differential operators. In contrast to methods using meshes, the method of

fundamental solutions considers a sufficiently rich class of functions which satisfyAu = 0 analytically in

3



Ω. Thus a linear combination satisfies directly Au = 0 in Ω and the coefficients in the linear combination

are chosen such that Bu is close to zero on ∂Ω. As we will see in the following, the condition Bu = 0
can only be imposed in a finite number of points, so the condition Bu = 0 will be satisfied only in an

approximate manner on ∂Ω. To justify our numerical approach, an error bound is provided in Section 3,

which basically says that if Bu is small enough, then u is close to the real solution.

In our case, the operator A is the Dirichlet Laplacian and the operator B is given by −β∆τ +
∂
∂n −

λ Id, where ∆τ is the Laplace-Beltrami operator associated to ∂Ω. Our set of fundamental solutions

consists of harmonic, radial functions, with centers outside Ω. In this way, any linear combination of

such functions solves ∆u = 0 in Ω. The only thing we need to do is to find the right coefficients so

that the condition −β∆τu + ∂u
∂n = λu is satisfied on ∂Ω. In order to compute the expression of the

Laplace-Beltrami operator on ∂Ω we use the formula

∆u = ∆τu+H∂u

∂n
+
∂2u

∂n2
,

which is valid on ∂Ω. We have used the notation
∂2u

∂n2
to denote (D2u.n).n. As usual, H denotes the

mean curvature of ∂Ω. For more details we refer to [30, Chapter 5].

In R
2 \{0} a radial solution of the Laplace equation is given by φ(x) = ln |x|. Note that this solution

has a singularity at x = 0. For every y ∈ R
2 the function ψy(x) = φ(x− y) is harmonic in R

2 \ {y} and

radial with center y. Given Ω ⊂ R
2 we choose y1, ..., yN ∈ R

2 \ Ω and x1, ..., xN ∈ ∂Ω. The function

x 7→ α1ψy1(x) + ... + αNψyN (x) is harmonic in Ω for every choice of the coefficients (αi)
N
i=1. We

impose for i = 1...N the boundary condition

(

−β∆τ +
∂

∂n

)

(α1ψy1(xi) + ...+ αNψyN (xi)) = σ(α1ψy1(xi) + ...+ αNψyN (xi)) (2)

This amounts to solve a generalized eigenvalue problem for square matrices.

In this setting, it is straightforward to find the first eigenvalues corresponding to the generalized

eigenvalue problem determined by (2), using, for example the eigs solver in Matlab. One of the main

difficulties is the choice of the points (xi)
N
i=1, (yi)

N
i=1. As noted in [2], an arbitrary choice for (xi), (yi)

may fail to give a valid approximate solution for the desired eigenvalue problem. We notice the same

behaviour and we discuss below our choice of the points (xi), (yi).
We tested two choices for the points (xi). The first one consists in taking a uniform division (θi)

of [0, 2π] into N intervals and then choose xi = ρ(θi)(cos θi, sin θi), where ρ is the radial function

which parametrizes ∂Ω. A second choice is choosing xi at equal arclength distances on the boundary

∂Ω. We did not observe major differences between the two choices of points mentioned above. From

a computational point of view the uniform angle choice is faster. The method based on equal arclength

distances may improve the behaviour of the algorithm if the domain is thin or if the radial function has

large oscillations. Having chosen (xi), we can compute the corresponding outer normals (~ni) and we

define yi = xi + c · ~ni. In our computations we choose c = 0.1
The choice of this factor is important in the computations. Although the value c = 0.1 has been

initially found experimentally, we give an argument which supports this choice. We note that as the

distance to the boundary increases the conditioning number of the matrices involved in the generalized

eigenvalue problem (2) increases. On the contrary, as the source points come close to the boundary, the

problem becomes singular. Values of the distance close to 0.1 give a good balance for the condtioning

number and the numerical errors generated by the method. This optimal distance c depends only on the

choice of the fundamental solutions.

It is not hard to see the limitations of this method. Since linear combinations of fundamental solutions

have singularities at their source points, it is clear that these source points must be located outside the

computation domain. Another aspect is that source points must be distinct so that equations (2) do not

repeat themselves. These two aspects already suggest that domains with cusps or re-entrant parts are not

covered by our algorithm.
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Figure 1: The position of the source points and the evaluation points for the shape given by the radial

parametrization 7 with Fourier coefficients equal to [1, 0.1, 0, 0, 0, 0.1, 0, 0.1, 0, 0,−0.1].

3 Error estimates

In the case of the Dirichlet Laplacian, the result proved by Moler and Payne in [33], states that if a

function u satisfies −∆u = λu in Ω and u is sufficiently small on ∂Ω then λ is close to an eigenvalue

of the Dirichlet-Laplace operator associated to Ω. We provide a similar result below in the case of

the Wentzell eigenvalue problem, which helps validate our numerical computations. In the following

paragraphs we assume that Ω has Lipschitz boundary and that it has finite perimeter. In the following we

denote V (∂Ω) = {u ∈ L2(∂Ω) :
∫

∂Ω u = 0}.

As in [20] we introduce the Hilbert space H(Ω) = {u ∈ H1(Ω) : Tr(u) ∈ H1(∂Ω),
∫

∂Ω u = 0}
where Tr is the trace operator. In the case β = 0 it suffices to take H(Ω) = H1(Ω). Consider for

f ∈ V (∂Ω) the minimization problem

min
u∈H(Ω)

1

2

(
∫

Ω
|∇u|2 + β

∫

∂Ω
|∇τu|2

)

−
∫

∂Ω
uf

which has a unique solution. This solution satisfies the weak formulation

∫

Ω
∇u · ∇ϕ+ β

∫

∂Ω
∇τu∇τϕ =

∫

∂Ω
fϕ, ∀ϕ ∈ C1(Ω), (3)

of the partial differential equation

{

−∆u = 0 in Ω

−β∆τu+ ∂u
∂n = f on ∂Ω,

(4)

where ∆τ is the Laplace-Beltrami operator and ∇τ is the tangential gradient associated to ∂Ω. Thus, we

can define the resolvent operator Rβ : L2(∂Ω) → H(Ω) associated to this equation. The trace operator

T : H(Ω) → V (∂Ω) being continuous it follows that the operator T ◦ Rβ : V (∂Ω) → V (∂Ω) is

compact and injective. We can define its inverse Aβ : D(Aβ) ⊂ V (∂Ω) → V (∂Ω). Since T ◦ Rβ is

a compact operator, the spectrum of the operator Aβ consists of an increasing sequence of non-negative

eigenvalues λk,β(Ω) which diverges. The corresponding eigenfunctions form a Hilbert basis for V (∂Ω).
By considering the constant function 1 associated to the zero eigenvalue of this operator, we can say that

the set of eigenvalues forms a Hilbert basis of L2(∂Ω). The following result proves that the operator

T ◦Rβ is bounded and gives an idea of how to find its norm. To simplify the proofs we denote the trace

of a function w ∈ H1(Ω) by w.

Proposition 3.1. Let Ω be a bounded, open domain with Lipschitz boundary. Suppose f ∈ V (∂Ω) and

w = Rβf ∈ H1(Ω). Then there exists a constant C , depending only on Ω, such that

‖w‖L2(∂Ω) ≤ C‖f‖L2(∂Ω).
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Proof: The trace inequality (Chapter 4.3 [23]) for Ω implies the existence of a constant C1 (depending

only on Ω) such that ‖u‖L2(∂Ω) ≤ C1‖u‖H1(Ω) for every u ∈ H1(Ω). The Poincare-Wirtinger inequality

implies the existence of a constant C2 which depends only on Ω such that ‖w̃‖L2(Ω) ≤ C2‖∇w‖L2(Ω),

where w̃ = w− 1
|Ω|‖w‖L2(Ω). The weak formulation of the equation Rβf = w and the Cauchy-Schwarz

inequality imply that
∫

Ω
|∇w̃|2 + β

∫

∂Ω
|∇τ w̃|2 =

∫

∂Ω
fw̃ ≤ ‖f‖L2(∂Ω)‖w̃‖L2(∂Ω).

Using the remarks above, we obtain

‖w̃‖2L2(∂Ω) ≤ C2
1(‖w̃‖2L2(Ω) + ‖∇w̃‖2L2(Ω)) ≤ C2

1 (1 + C2
2 )‖∇w̃‖2L2(Ω).

Thus

‖w̃‖2L2(∂Ω) ≤ C2
1 (1 + C2

2 )‖f‖L2(∂Ω)‖w̃‖L2(∂Ω),

which implies

‖w̃‖L2(∂Ω) ≤ C2
1 (1 + C2

2 )‖f‖L2(∂Ω).

On the other hand, since w has average 0 on ∂Ω, we know that the L2(∂Ω) norm of w + c is minimal

when c = 0 (here c is a constant). Therefore

‖w‖L2(∂Ω) ≤ ‖w̃‖L2(∂Ω) ≤ C2
1 (1 + C2

2 )‖f‖L2(∂Ω).

�

The constants C1, C2 can be found explicitly in terms of the domain Ω. The constant C1 depends

on the Lipschitz constant of Ω and C2 = 1/λ1(Ω), where λ1(Ω) is the first eigenvalue of the Dirichlet

Laplacian operator on Ω. These quantities may be evaluated on particular domains and together with the

result presented below can provide an exact error estimate.

Using ideas similar to the ones used by Moler and Payne in [33], we are able to prove the following

error estimate. For simplicity of notation we omit the reference to β from Rβ .

Theorem 3.2. Consider Ω a bounded, open domain with Lipschitz boundary and finite perimeter. Sup-

pose that uε satisfies the following approximate eigenvalue problem:






−∆uε = 0 in Ω

−β∆τuε +
∂uε
∂n

= λεuε + fε on ∂Ω.
(5)

Denote wε = Rfε. Let δ =
‖wε‖L2(∂Ω)

‖uε‖L2(∂Ω)
and suppose that δ < 1. Then there exists a Wentzell eigenvalue

λk satisfying
|λε − λk|

λk
≤ δ.

Proof: We know that there exists a Hilbert basis of L2(∂Ω) formed of Wentzell eigenfunctions un
corresponding to the Wentzell eigenvalues λn of Ω. We denote the standard scalar product in L2(∂Ω)

by (u, v) =

∫

∂Ω
uv. Let an = (uε, un), bn = (wε, un). We know that R(λεuε + fε) = uε and

Run = un/λn. The resolvent operator R is symmetric, thus

an = (uε, un) = (R(λεuε + fε), un)

= (λεuε, Run) + (Rfε, un)

=
λε
λn

(uε, un) + (wε, un)

=
1

λn
(λεan + λnbn).
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Figure 2: Difference between the computed eigenvalues and the analytic eigenvalues on the unit disk.

The parameter β is taken on a discretization of [0, 100] with step 0.1.

Thus, for every n we have
λn − λε
λn

=
bn
an

. Since λn → ∞ as n→ ∞, there exists an index k such that

|λk − λε|
|λk|

= min
n∈N∗

|λn − λε|
|λn|

.

For this index k we have
|λk − λε|

|λk|
|an| ≤ |bn|,

for all n and
|λk − λε|2

|λk|2
∞
∑

n=1

a2n ≤
∞
∑

n=1

b2n.

This is exactly
|λk − λε|

|λk|
≤ δ,

which finishes the proof. �

The only hypothesis in the above theorem which needs to be verified in order to apply it in our case

is that we can solve the partial differential equation wε = Rβfε in the case where fε is a combination of

the fundamental solutions. As we have seen the necessary and sufficient condition is
∫

∂Ω fε = 0. Note

that this condition can always be satisfied by adding a constant function to the family of fundamental

solutions.

4 Testing the numerical method

There are few shapes for which the Wentzell spectrum is known analytically. One such shape is the unit

disk D1, for which the eigenvalues are

λk,β(D1) =

⌊

k + 1

2

⌋

+ β

⌊

k + 1

2

⌋2

.

As an initial test for our algorithm we compute the Wentzell spectrum of the disk for N = 300 points

on ∂D1 and 300 corresponding fundamental solutions. For β = 0 we have 10 digits of precision for the

first 10 eigenvalues. In Figure 2 we plot the absolute error for the first 10 Wentzell eigenvalues, given by
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max10i=1 |λk,β(D1)− λ̃k,β(D1)|, for β ∈ [0, 100]. We denoted λ̃k,β the numerically computed eigenvalue.

We note that for β = 100 we still have 6 digits of precision.

In order to test our algorithm for shapes for which no analytical expression is known for the Wentzell

eigenvalues, we use FreeFem++ [26], which is a mesh-based method. The tests we performed show

that our results are in good correspondence with the values found with FreeFem++. The downside of

the mesh-based method is the execution time, which is significantly more important when the number

of mesh triangles is high. An example of implementation is presented in Section 6. In Tables 1, 2,

3 we compare the Wentzell eigenvalues computed with our method (MFS) and the ones obtained with

FreeFem++. As a test case we take the shape given in Figure 1, for various values of β. Note that

as the number of triangles increases, the values computed with the FreeFem++ method approach the

values found with our algorithm. We underline the fact that our algorithm runs in approximately 0.1
seconds1, whereas the FreeFem++ algorithm, with over 450000 triangles takes about a minute on the

same machine.

This method of fundamental solutions can be adapted to compute the Laplace-Beltrami spectrum of

a closed simple curve in R
2. We can consider solving the equation

∆τ (α1ψy1(xi) + ...+ αNψyN (xi)) = λ(α1ψy1(xi) + ...+ αNψyN (xi)), i = 1...N (6)

which also leads to a generalized eigenvalue problem. The Laplace-Beltrami spectrum of a one dimen-

sional curve depends only on its length and is given by λk =
⌊

k+1
2

⌋2 (2π
L

)2
. The method of fundamental

solutions computes these values with a relative error of order 10−7 (with the same parameters: 300
boundary points and exterior points at distance 0.1 of the boundary). This good behaviour motivates the

extension of the method to the computation of Laplace-Beltrami eigenvalues for subsets of the the unit

sphere, presented in Section 7.

We may use Theorem 3.2 in order to have a quantitative evaluation of the error on a general do-

main. The result cited above states that the relative error made in the numerical computations is of order

‖fε‖L2(∂Ω), where fε is the error term in (5). We may estimate numerically fε as follows: given a shape

Ω, we compute its Steklov/Wentzell eigenvalues with the algorithm presented in previous sections. We

know that the eigenvalue equation is satisfied to machine precision on the discretization points chosen

on ∂Ω. In order to have a more precise evaluation of what happens between these points we make a

refinement by placing 100 supplementary points between every two discretization points. We evaluate fε
in each of these points. The maximal value found for fε gives us an estimate of the general error. Below

you can see plots of fε for the first 10 eigenvalues in three different cases. By looking at the maximal

errors, we can observe that ‖fε‖L2(∂(Ω)) is of order 10−6 or smaller. As expected, different domains give

different behaviours and the precision can be much higher in some particular cases.

5 Numerical optimization of functionals depending on the Wentzel spec-

trum

Using the computational method presented in the previous sections we can study numerically some shape

optimization problems regarding the Wentzell spectrum in the particular case of star-shaped domains. We

consider domains parametrized by their radial functions ρ : [0, 2π) → R+. We approximate ρ by the

truncation of its Fourier series to 2n+ 1 coefficients:

ρ(θ) ≈ a0 +
n
∑

i=1

ai cos(iθ) +
n
∑

i=1

bi sin(iθ). (7)

In this way we have an approximation of σk(Ω) using a finite number of parameters. Using the shape

derivative formula provided in [20, Section E] (see also [1]) we can deduce that

∂λk,β
∂ai

=

∫ 2π

0

(

|∇τuk|2 − |∂nuk|2 − λk,βH|uk|2 + β(HI − 2D2b)∇τuk.∇τuk
)

ρ(θ) cos(iθ)dθ

1Machine configuration: 2.2 Ghz quad-core i7 processor, 6 Gb RAM memory
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our algorithm FreeFem++ (refined meshes)

k MFS 19146 N 53236 N 211290N 474634N

1 0.712751 0.712989 0.712837 0.712773 0.712761

2 0.940247 0.940538 0.940352 0.940274 0.940259

3 1.381278 1.38211 1.38158 1.38135 1.38131

4 1.443204 1.44411 1.44353 1.44329 1.44324

5 3.146037 3.14712 3.14643 3.14614 3.14608

6 3.443637 3.44496 3.44411 3.44376 3.44369

7 3.757833 3.761 3.75897 3.75812 3.75796

8 3.922821 3.9263 3.92407 3.92313 3.92296

9 4.274362 4.28034 4.27651 4.2749 4.2746

10 4.693206 4.70035 4.69578 4.69385 4.6935

Table 1: Comparison with FreeFem++, β = 0 (Steklov) for the shape given in Figure 1

our algorithm FreeFem++ (refined meshes)

k MFS 19146 N 53236 N 211290N 474634N

1 2.375744 2.37628 2.37594 2.37579 2.37577

2 2.644741 2.6453 2.64494 2.64479 2.64476

3 8.042223 8.04527 8.04332 8.0425 8.04234

4 8.257585 8.26043 8.25861 8.25784 8.2577

5 16.909967 16.9197 16.9135 16.9108 16.9104

6 17.383930 17.3932 17.3873 17.3848 17.3843

7 28.883924 28.9094 28.8931 28.8862 28.8849

8 29.113307 29.1374 29.122 29.1155 29.1143

9 43.718607 43.77 43.7371 43.7232 43.7207

10 44.142742 44.1996 44.1632 44.1479 44.145

Table 2: Comparison with FreeFem++, β = 2 for the shape given in Figure 1

our algorithm FreeFem++ (refined meshes)

k MFS 19146 N 53236 N 211290N 474634N

1 4.750048 4.75121 4.75047 4.75015 4.75009

2 5.02106 5.02224 5.02148 5.02117 5.02111

3 17.557103 17.5638 17.5595 17.5577 17.5574

4 17.774667 17.781 17.777 17.7752 17.7749

5 38.179237 38.2016 38.1873 38.1812 38.1801

6 38.65575 38.6771 38.6634 38.6577 38.6566

7 66.764114 66.8228 66.7852 66.7694 66.7665

8 66.995238 67.0507 67.0152 67.0002 66.9975

9 102.91875 103.038 102.962 102.929 102.924

10 103.34252 103.474 103.39 103.354 103.348

Table 3: Comparison with FreeFem++, β = 5 for the shape given in Figure 1
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Figure 3: Graph of the error term in the computation of the Steklov and Wentzell eigenvalues of indexes

k = 2, 4, 5 (various values of β).

and

∂λk,β
∂bi

=

∫ 2π

0

(

|∇τuk|2 − |∂nuk|2 − λk,βH|uk|2 + β(HI − 2D2b)∇τuk.∇τuk
)

ρ(θ) sin(iθ)dθ

We use the notation H for the mean curvature of ∂Ω. We denote byD2b the hessian of the signed distance

function b. We have denoted uk the eigenfunction corresponding to λk,β(Ω) normalized in L2(∂Ω).
Since we can approximate λk,β(Ω) by a function λk,β(a0, a1, ..., an, b1, ..., bn) for which we know

the gradient with respect to every component, we can use a gradient descent algorithm for solving differ-

ent optimization problems related to the Wentzell eigenvalues. This kind of approach is well known and

was used in [35] and [6] for optimizing functionals of the eigenvalues of the Dirichlet Laplacian and also

in [1] in the case of the Steklov eigenvalues. The Steklov eigenvalue behaves well under homotheties,

so in order to optimize under area or perimeter constraint we can just optimize the normalized quantities

σk(Ω)|Ω|1/2, σk(Ω)Per(Ω). In the Wentzell case, β > 0, we do not have this property. In order to

preserve the constraint we simply rescale the shape after each iteration in the gradient descent algorithm

in order to have the desired area or perimeter.

The only part which poses some difficulty in the implementation is finding a way to efficiently com-

pute the normal and tangential components of uk. We present below the main lines of the computational

algorithm. An example of such computation algorithm can be consulted on the author’s webpage. 2

• Choose the number of discretization points (in our case N = 300) and find the derivatives of the

radial function, namely ρ, ρ′, ρ′′, evaluated at each corresponding point. Note that this can be done

analytically and all we need to do in the end is to write some matrix vector products.

• With the aid of the derivatives of ρ we can construct the exterior normals

~n(θ) = (ρ(θ) cos θ + ρ′(θ) sin θ, ρ(θ) sin θ − ρ′(θ) cos θ)/
√

ρ(θ)2 + ρ′(θ)2,

the curvature H and the hessian of the signed distance function D2b (as the differential of the

normal defined as above).

2
http://www.lama.univ-savoie.fr/˜bogosel/software/wentzell_test.m
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• With the aid of the normals we construct the exterior points and we write the generalized eigen-

value problem 2.

• We solve the respective generalized eigenvalue problem with the algorithm eigs in Matlab and

we recover the corresponding eigenvector. This eigenvector contains the coefficients in the linear

combination of fundamental solutions

uk =

N
∑

i=1

αiψi

• We compute analytically the gradient of uk and then we compute the tangential and normal com-

ponents needed in the computation of the derivative. In order to do this we need to find the gradient

and the hessian of each fundamental solution analytically. This is straightforward, given the for-

mulas ψi = ln |x− yi|.

• We use a basic quadrature rule for the normalization of the eigenvalues and for the computation of

the integrals needed to express the gradient.

As a test for our algorithm we perform some numerical optimization procedures for some problems

with known optimizers. There are many such results for the case of the Steklov eigenvalue problem given

by β = 0. We use the notation σk for the Steklov eigenvalues, corresponding to λk,0. We start from a

random shape in order to avoid local minima. We mention that all computations are made in the class of

simply connected sets. We were able to test our algorithm in the following cases:

• maxσ1(Ω) is achieved when Ω is a disk, in the case of perimeter and area constraints ([41],[15]);

• maxσ1(Ω)σ2(Ω) is achieved when Ω is a disk, in the case of perimeter and area constraints ([31]);

• min

n
∑

k=1

1

σk(Ω)
is achieved when Ω is a disk, in the case of perimeter and area constraints [31]);

• maxσk(Ω) for domains which are invariant under a rotation of angle 2π/q (q > 1) is achieved by

a disk in the case of the perimeter constraint ([7]).

In the article of Dambrine, Lamboley and Kateb [20], the authors prove that the ball is a local max-

imizer for the first non-zero Wentzel eigenvalue if β ≥ 0, under volume constraint in the class of sets

homeomorphic to the ball. In the same article it is proved that λ1,β(BR) = (d− 1)β/R2 +1/R which is

decreasing with respect to R. Here we denote BR the ball of radius R in R
d. In the following we denote

by A a class of sets in R
d which contains all balls. We can deduce the following property.

Proposition 5.1. If λ1,β(Ω) is maximized by the ball in A under perimeter constraint, then λ1,β is also

maximized by the ball in the same class, under volume constraint.

Proof. Let Ω ∈ A and denote Bp, Bv the balls with the same perimeter and the same volume as

Ω, respectively. Suppose λ1,β(Ω) ≤ λ1,β(Bp). The isoperimetric inequality implies that Per(Bp) =
Per(Ω) ≥ Per(Bv) and thus Bv has smaller radius than Bp. The monotonicity of the first Wentzell

eigenvalue with respect to the radius of the ball implies that

λ1,β(Ω) ≤ λ1,β(Bp) ≤ λ1,β(Bv).

This chain of inequalities shows that if λ1,β is maximized by the ball under perimeter constraint in the

class A then the ball is also a maximizer in the same class, but under a volume constraint. �
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λ1 λ2 λ3 λ4 λ5

β = 0
(Steklov)

λ1 = 1 λ2 = 1.64 λ3 = 2.33 λ4 = 2.97 λ5 = 3.66

β = 0.1
λ1 = 1.1 λ2 = 1.80 λ3 = 2.65 λ4 = 3.42 λ5 = 4.3

β = 0.5
λ1 = 1.5 λ2 = 2.39 λ3 = 4 λ4 = 4.53 λ5 = 7.5

β = 100
(large)

λ1 = 101 λ2 = 101 λ3 = 402 λ4 = 402 λ5 = 903

Table 4: Numerical maximizers for the first five Wentzell eigenvalues for different values of β. The areas

of the domains are equal to π

It is a well known fact, due to Weinstock [41] and Brock [15], that when β = 0 the ball is the

optimizer for both volume and perimeter constraints with the difference that Weinstock’s result requires

that the domain is simply connected, while Brock’s result is independent of the topology. Using our

algorithm, we search for the shape which optimizes λ1,β(Ω) in two dimensions. For both perimeter and

area constraints we obtained that the disk is the numerical maximizer of λ1,β among two dimensional

simply connected shapes. We performed tests for β ∈ [0, 100], but we believe it to be true for every

β > 0 since for large values of β, λ1,β(Ω)/β converges to the first Laplace-Beltrami eigenvalue of ∂Ω,

which is also maximized by the disk in the same class of domains. We also perform tests in the case of

the area constraint for k = 2, 3, 4, 5 and we present the results in Table 4. For large β we observe that the

optimal shapes are close to a disk, which is the expected behaviour, as we know that the disk maximizes

the Laplace-Beltrami eigenvalues of ∂Ω when Ω has fixed area.

We also perform some numerical optimizations for problems inspired from known results for the

Steklov spectrum. These computations suggest that the conjectures stated below are valid. These results

are obtained in the class of domains which are simply connected and star-shaped.

• maxλ1,β(Ω) is acheived by the disk;

• min
n
∑

k=1

1

λk,β(Ω)
is achieved by the disk;

• We say that A ⊂ {0, 1, 2, 3, ...} has the property (P ) if 1 ∈ A and 2k ∈ A ⇒ 2k − 1 ∈ A. If A

has the property (P ) then
∑

k∈A

1

λk,β(Ω)
is minimized by the disk in the case of a area and perimeter

constraint. For example
1

λ1,β(Ω)
+

1

λ3,β(Ω)
+

1

λ4,β(Ω)
is minimized by the disk in the case of the

area constraint and the perimeter constraint. This was verified for various sets A with property (P )
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Figure 4: The first Steklov eigenvalues of an annulus with perimeter 2π and inner radius r is plotted as a

function of r.

with A ⊂ {0, 1, ..., 15}. We note that this conjecture is not proved even in the case of the Steklov

eigenvalues.

We note that of Ω is a two dimensional domain then all these numerical observations are seen to be valid

as β → ∞. Indeed, in this case ∂Ω is a one-dimensional contour, and its corresponding Laplace-Beltrami

eigenvalues are proportional to 1/L2 where L is the perimeter of Ω. Thus all the above optimization

problems, in the Laplace-Beltrami case, have the disk as a solution, under area constraint, as a simple

consequence of the classical isoperimetric inequality.

As underlined before, when considering a perimeter constraint, the simple connectedness is essential

for the optimality of the disk for the first Steklov eigenvalue. The initial proof in [41] uses the fact that ∂Ω
is a simple closed curve. Techniques from [31], using conformal mappings, can also be used to prove the

same result, but again the constraint on the topology is essential. If we remove this constraint, the result

is no longer valid. In [25, Section 4.2] the authors show that there are annuli with same perimeter but

with the first Steklov eigenvalue greater than the corresponding eigenvalue on the disk. This behaviour

can be seen in Figure 4 in some computations made with FreeFem++. We consider the annuli with

fixed perimeter 2π bounded by two circles of radii r and R = 1 − r and we plot the corresponding first

Steklov eigenvalue as a function of r. As proved by Brock [15], if we consider instead an area constraint

then the simple connectedness condition is not necessary. Indeed, Brock uses a classical variational

characterization of the sum of the inverses of the first d eigenvalues. In this variational characterization

he takes as test functions the first d Steklov eigenvalues on the disk, which are made admissible by

making a suitable translation of the domain. As a final ingredient, a weighted isoperimetric inequality

shows that
d

∑

i=1

1

σi(Ω)
≥

d
∑

i=1

1

σi(B)
, |B| = |Ω|.

The fact that the first d eigenvalues on the ball B are equal implies that σ1(Ω) ≤ σ1(B). We may ask if

in the case for the Wentzell eigenvalues we can remove the topology constraint as well. The answer is

negative, as can be seen in Figure 5 for β ∈ {0.1, 0.2, 0.3}. We consider annuli of fixed area π bounded

by circles of radius r and R =
√
1 + r2. We present the graphs of the first Wentzell eigenvalue as

function of r and we note that for β > 0 there are annuli with the same area as the unit disk, but with

higher first Wentzell eigenvalues.
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Figure 5: The first Wentzell eigenvalue of the annulus of area π and inner radius r is plotted as a function

of r in the cases β = 0, 0.1, 0.2, 0.3.

6 The FreeFem++ code for solving the Wentzell eigenvalue problem

int i;

real t,beta = 2;

// Domain definition using a radial function

border C(t=0,2* pi){x=cos(t)*(1+0.1*cos(t)+0.1*cos(5*t)+

0.1*sin(2*t)-0.1*sin(5*t));

y=sin(t)*(1+0.1*cos(t)+0.1*cos(5*t)+

0.1*sin(2*t)-0.1*sin(5*t));}

mesh Th = buildmesh (C(500));

fespace Vh(Th,P1); // Build P1 finite element space

Vh uh,vh;

// Define the problem via weak formulation

varf va(uh, vh) = int2d(Th)( dx(uh)*dx(vh)+dy(uh)*dy(vh))+

int1d(Th,1)(beta*(dx(uh)*dx(vh)-

dx(uh)*N.x*(N.x*dx(vh)+N.y*dy(vh))-

dx(vh)*N.x*(N.x*dx(uh)+N.y*dy(uh))+

N.x*(dx(vh)*N.x+dy(vh)*N.y)*N.x*(dx(uh)*N.x+dy(uh)*N.y)+

dy(uh)*dy(vh)-

dy(uh)*N.y*(dx(vh)*N.x+dy(vh)*N.y)-

dy(vh)*N.y*(dx(uh)*N.x+dy(uh)*N.y)+

(N.y)ˆ2*(dx(vh)*N.x+dy(vh)*N.y)*(dx(uh)*N.x+dy(uh)*N.y)));

varf vb(uh, vh) = int1d(Th,1)(uh * vh);

// Solve the generalized eigenvalue problem

matrix A = va(Vh, Vh ,solver = sparsesolver);

matrix B = vb(Vh, Vh);

real cpu=clock(); // get the clock

int eigCount = 10; // Get first Eigenvalues
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real[int] ev(eigCount); // Holds Eigenfunctions

Vh[int] eV(eigCount); // Holds Eigenfunctions

// Solve Ax=l*Bx

int numEigs = EigenValue(A,B,sym=true,sigma=0,

value=ev,vector=eV);

for(int i=0;i<eigCount;i++) // Plot the spectrum

plot(eV[i],fill=true,value=true,cmm= ev[i]);

cout << " CPU time = " << clock()-cpu << endl;

for(i = 0;i<eigCount;i++)

cout << ev[i] << endl;

7 Laplace-Beltrami eigenvalues of subsets of the sphere

In order to study partitioning problems related to the Laplace-Beltrami eigenvalues, we need to be able to

compute efficiently numerical approximations of these eigenvalues on subsets of a surface. We consider

here the particular case the sphere. Motivated by the fact that the Laplace-Beltrami eigenvalues for a

closed curve in R
2 can be found using fundamental solutions, as seen in previous sections, we extend the

method to the case of the unit sphere in R
3. In order to do this we consider the extended problem

{

−∆τu = λu on S
2

−∆u = 0 in a neighborhood of S2.
(8)

The motivation behind this consideration is the following decomposition of the Laplacian

∆u = ∆τu+H∂u

∂n
+
∂2u

∂n2
, (9)

which reduces the study of the Laplace-Beltrami operator to the study of the normal derivatives of order

1 and 2. For a proof of (9) and more details we refer to [30]. As usual, H denotes the mean curvature of

the surface. We denote
∂2u

∂n2
= (D2n.u).u.

As before, we seek u as a linear combination of radial harmonic functions in R
3 which do not have

singularities on S
2. We consider the fundamental solution of the Laplace equation in three dimensions

given by φ(x) = 1/|x|. We choose a family of N evaluation points (xi) on S
2 which are uniformly

distributed. We can do an explicit construction starting from a dodecahedron in the case of the sphere,

or we can use DistMesh [34] in general situations. The source points (yi) are chosen on the normals at

S
2 at xi at a fixed distance r to the center of the sphere. We may choose the source points inside the

sphere (r < 1) or outside the sphere (r > 1). As we will see below, the behaviour of the error depends

on r and N . These parameters should be chosen such that the matrices involved in the computations are

well conditioned. In the case of the sphere, when considering 600 points, for example, we may choose

r ∈ [0.5, 0.7] ∪ [1.7, 2] and we note that the errors tend to get smaller as the source points are far from

the surface. This obviously favours the choice of the source points at the exterior of the sphere, which is

a choice we make from here on. For each source point yi we consider the fundamental solution centered

in yi defined by ψi(x) = φ(|x− yi|). We seek u in the form

u = α1ψy1 + ...+ αNψyN .

We impose the eigenvalue condition in each of the points (xi) and we obtain the equations

−∆τ (α1ψy1(xi) + ...+ αNψyN (xi)) = λLB(S2)(α1ψy1(xi) + ...+ αNψyN (xi)), i = 1...N. (10)

Solving this generalized eigenvalue problem we expect to find the values of the Laplace Beltrami eigen-

values on the unit sphere. The explicit eigenvalues are of the form ℓ(ℓ+1) with multiplicity 2ℓ+1, with

ℓ ≥ 0. We recall that r is the distance from the exterior points (yi) to the center of the sphere. The choice

of the sample points (xi) is not random. As noted in [4], the sample points should be distributed evenly

across the surface in order to obtain meaningful results. We tried multiple choices for the points (xi):
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Figure 6: Absolute errors - approximation of the first 10 Laplace-Beltrami eigenvalues of S2.

• uniform sphere mesh found with Distmesh [34],

• the layer method described in [4],

• a uniformly refined mesh of the sphere starting from an icosahedron.

For all these choices of points we observe that the values obtained with our algorithm are very close to

the analytical ones. An analysis of the dependence of the absolute error of the parameter r and on the

number of sample points is given in Figure 6. These estimates are valid for the first 10 eigenvalues. We

can see that the error decreases drastically with r. We also observe that when we have a large number of

points and large r there are stability issues in the computation, due to the conditioning of the matrices.

We can adapt the method of fundamental solutions in order to compute the Laplace-Beltrami eigen-

values with Dirichlet boundary conditions of a subset ω of S
2. In order to do this we consider only

sample points xi ∈ ω and approximate λLB(ω) using a variation of equation (10). Indeed, let (xi)
N−M
i=1

be points in the interior of ω (relative to S) and (zi)
M
i=1 be points on ∂ω (relative to S). Using the same

method of fundamental solutions, the eigenvalue condition is exactly (10). The boundary conditions can

be written as

α1ψy1(zj) + ...+ αNψyN (zj) = 0, j = 1...M. (11)

It is possible to couple the systems (10) and (11) into one single generalized eigenvalue problem in the

form
(

A
B

)

v = λ

(

X
O

)

v (12)

where

• A = (−∆τψyj (xi)), i = 1...N −M, j = 1...N

• B = (ψyj (zk)), k = 1...M, j = 1...N

• X = (ψyj (xi)), i = 1...N −M, j = 1...N

• O is the zero matrix of size (N −M)×N .

• v = (α1, ..., αN )T .

The points (xi), (zj) are chosen by performing a triangulation of the set ω ⊂ S, which in our computa-

tions will always be a geodesic polygon. In order to compute such a triangulation, we divide the polygon

into triangles and then refine this triangulation multiple times by considering the classical midpoint re-

finement.

In order to test our computational method, we consider some particular subsets of the sphere for

which some of the eigenvalues are known explicitly. In the following we call lens of angle θ, a portion
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Figure 7: Behavior of the L(2π/3) eigenvalue approximation with respect to the parameter r, for 217
and 817 sample points

Figure 8: Behavior of the approximation of R(π/3) (left) and R(π/2) (right) with respect to r

of the sphere contained between two half-meridians which make angle θ. We denote the first eigenvalue

of a lens of angle θ by L(θ). We call a double-right triangle of angle θ a half (divided by the ecuatorial

circle) of a lens of angle θ. We denote the first eigenvalue of a double-right-triangle of angle θ by R(θ).
The following analytical values are known for R(θ), L(θ):

• L(θ) =
π

θ

(π

θ
+ 1

)

(see [40]) - numerical example in Figure 7.

• R(π/3) = 20, R(π/2) = 12, R(π) = 6 (see [40]) - numerical examples in Figure 8)

Another interesting spherical triangle is the one which realizes the partition of the sphere into 4 con-

gruent equilateral triangles. We denote one such triangle by T . The computation of the first eigenvalue of

this triangle came up in [39] in the study of the expected capture time of some brownian motion predators

on the line. The numerical value computed in the above reference is λLB1 (T ) = 5.1589 (represented by

the green line in Figure 9). We compute numerically this first eigenvalue and compare it to the values

presented in the cited article (see Figure 9). We observe that for r ∈ [1.8, 1.9] the numerically obtained

eigenvalues are close to the value mentioned above. We see again the instability in the computation as

r increases. In order to further test this numerical value, we used a finite element discretization of the

triangle T , and we compute the first eigenvalue in terms of on a mesh having 98000 points. We obtain

λLB1 (Tfem) = 5.1593, which is close to both the result of [39] and our values. We note, though, that in

order to reach this precision, more than 50 times more points are needed in the discretization.

Until now we only considered exact subsets of S2. We can extend our method based on fundamental

solutions to compute the spectrum associated to an approximation ϕ of χω. In order to do this, we use

the relaxed formulation inspired from [19], [14] given by

−∆τu+ µu = λu,
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Figure 9: Behavior of the approximate first eigenvalue of T with respect to r (left), corresponding first

eigenfunction (right)

where µ is a capacitary measure which penalizes points outside ω. This relaxed formulation includes

the classical case. We can compute the eigenvalues of ω ⊂ S
2 with Dirichlet boundary condition by

imposing µ = +∞ in S
2 \ω and µ = 0 in ω. The advantage is that we work on the whole sphere and the

measure µ takes into account the change of shape. This method allows the computation of eigenvalues of

different domains by using the same discretization space. In this way it is possible to study partitioning

problems which are related to Laplace-Beltrami eigenvalues. The Euclidean case of this problem was

considered by Bourdin, Bucur and Oudet in [14], while the spherical case was recently treated by Elliott

and Ranner in [22] using a relaxed formulation inspired from [17].

In the computations we choose µ = C(1− ϕ)dσ and the penalized formulation becomes

−∆τu+ C(1− ϕ)u = λu. (13)

This can be written in matrix form as

(A+ Cdiag(1− ϕ)B)v = λBv,

where

• A = (−∆τψj(xi)), i, j = 1...N

• B = (ψj(xi)), i, j = 1...N

• v = (α1, ..., αN )T

• diag(1− ϕ) is the diagonal matrix with diagonal entries 1− ϕ.

For the generalized eigenvalues computations we use the Matlab eigs function. In order to be able to

perform an optimization, we need to compute the gradient of the eigenvalue with respect to ϕ. For this

we have two options:

• Compute the gradient in the analytic setting and obtain ∇λ(ϕ) = −Cv2 where v is the associated

eigenfunction. This was proved in [14].

• Compute the gradient in the discrete setting, by differentiating the generalized eigenvalue problem.

In order to do this, we need the corresponding right eigenvector v and the left eigenvector w. We

obtain that

∇λ(ϕ) = −Cw ⊗Bv/(wTBv),

where ⊗ is the pointwise product.
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Both of the above methods work well, but the second needs to perform two times the amount of compu-

tations as the first, since we need both the left and right corresponding eigenvectors. In our computations

we prefer the first approach, as it is faster. The optimization is made using a standard gradient descent

algorithm. We need to impose the partition condition at each iteration, and we do this by applying the

following projection operator inspired from [14]

Π(ϕl) =
|ϕl|

∑n
i=1 |ϕi| , l = 1, ..., n.

8 Numerical optimal partitions on the sphere

The main motivation for performing numerical computations regarding spectral spherical partitions is

the fact that problems that are simple to state regarding these optimal partitions are still open. Bishop

proved that the partition of S2 into two parts ω1, ω2 which minimizes λLB1 (ω1) + λLB1 (ω2) consists of

two half-spheres. The similar problem of finding the minimizer of

λLB1 (ω1) + λLB1 (ω2) + λLB1 (ω3), (ω1, ω2, ω3) partition of S2,

is open. In the same article [9] it is conjectured that the optimal partition in the case n = 3 consists of

three 2π/3-lens, the so-called Y partition. A similar problem, which less strong than Bishop’s conjecture,

was treated by Helffer et al. in [29]. They proved that the partition of the sphere into three 2π/3-lens

minimizes the quantity

max
i=1,2,3

λLB1 (ωi), (ω1, ω2, ω3) partition of S2.

We recall that numerical evidence of the validity of Bishop’s conjecture was presented in [38]. A more

detailed numerical study of the optimal spectral partitions on S
2 was performed by Elliott and Ranner in

[22]. The authors confirm numerically Bishop’s conjecture and they present computations for partitions

having n = 3, 4, 5, 6, 7, 8, 16, 32 components. Their method is based on a penalized energy formulation

of the partitioning problem introduced in [16]. Instead of minimizing the sum of eigenvalues they choose

to minimize the energy

Eε(u) =
n
∑

i=1

1

2

∫

S2

|∇ui|2 +
1

ε2

n
∑

i=1

n
∑

j=1,j 6=i

∫

S2

u2iu
2
j .

where ‖ui‖L2(S2) = 1. The optimal energies presented in [22] are computed using this relaxed formula-

tion. It is natural to see that as soon as ε is positive the optimal energy min Eε(u) is lower than the actual

sum of eigenvalues. Indeed, we see that for ε positive the supports of the approximated eigenfunctions ui
may overlap, and thus the corresponding eigenvalues are lower. On the other hand the values computed

with our method tend to be greater or equal to the actual eigenvalues, and therefore the optimal costs

obtained with our computational method are always greater than the costs presented in [22].

In the following, we propose the use of a different approach, inspired by the two dimensional case

studied by Bourdin, Bucur and Oudet [14]. We represent each phase ωi of the partition by a density

function ϕi : S
2 → [0, 1] . The partition condition then translates to

∑n
i=1 ϕi = 1. Given ϕ, a density

function approximating ω, we consider the problem

−∆τu+ C(1− ϕ)u = λLB1 (C,ϕ)u on S
2 (14)

with C ≫ 1. As in [14], it can be proved that the mapping ϕ 7→ λLB1 (C,ϕ) is concave and we have

λLB1 (C,χω) → λLB1 (ω) as C → ∞.

We were able to compute numerically the optimal partitions for

n
∑

i=1

λLB1 (ωi), (ω1, ..., ωn) partition of S2,
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Figure 10: The optimal configuration for n = 8 (left) and n = 5(right). The black lines are geodesic arcs

connecting the vertices of a face.

for n ∈ [3, 24] ∪ {32}, using about 5000 sample points. It is interesting to note that for n ∈ {3, 4, 6, 12}
we obtain the regular tiling of the sphere. For n ∈ {5, 7, 8, 32} we obtain the same results as Elliott

and Ranner. For n = 16 we obtain something slightly different: we obtain 4 equal hexagons centred at

the vertices of a regular tetrahedron and 12 equal pentagons linking them. Elliott and Ranner obtained

a configuration of 4 equal hexagons, 4 equal pentagons and another 8 equal pentagons. We have also

obtained a similar configuration as a local minimum. The cost associated to the Elliott Ranner configu-

ration, computed with our method, is 374.68 compared to our optimal configuration which has a lower

cost of 371.76. You can see two views of the corresponding partitions in Figure 11.

In [22] it is conjectured that the common boundary of two adjacent cells is a geodesic arc. In Figure

10 we plotted some geodesic arcs on top of the results obtained using density functions. We can observe

that indeed, for n = 8 the boundaries of the cells are close to geodesic arcs. On the other hand, for n = 5
we see an obvious non-overlapping of the geodesics and the boundaries. In order to test the validity of

this conjecture we propose the following optimization procedure.

• We perform the optimization using the penalized method inspired from [14] starting from random

densities on the sphere. This first step gives us the approximations of the characteristic functions

of the optimal configuration.

• In a second step we detect the polygonal structure of the partition and we assume that every edge

connecting two vertices of these polygons is a geodesic arc. We take the vertices of the polygons

as variables and we find the optimal partition in the class of geodesic polygons. At this stage we

compute the eigenvalue of each cell using the method of fundamental solutions described in the

previous section.

• Once we obtain the optimal configuration among geodesic polygons, we enrich the class of do-

mains by adding midpoints of the arcs as new variables. We perform the optimization in this new

class and we see if the value of the optimal cost decreases.

In order to perform the second step, the optimization in the class of geodesic polygons, we extract

the topological structure from the optimal densities (points, edges and faces connectivities). For each

polygon in the partition we compute the corresponding first eigenvalue using the method presented in

(12). We search the position of the triple points, which are the only variables here, for which we have the

least sum of first eigenvalues. It is possible to perform this optimization with the following algorithm:

• For each point P consider a family of q tangential directions (vi)
q
i=1 chosen as follows: the first

direction is chosen randomly and the rest are chosen so that the angles between consecutive direc-

tions are 2π/q.

• Evaluate the cost function for the new partition obtained by perturbing the point P in each of the

directions vi according to a parameter ε.
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Figure 11: Our candidate for n = 16 (left): four regular hexagons centered in the vertices of a regular

tetrahedron, linked by 12 equal pentagons. The corresponding cost is 371, 76. The candidate obtained

by Elliott and Ranner (right): two pairs of hexagons connected by three types of pentagons. The corre-

sponding cost is 374.68

n Geodesics Enriched class Cost decrease

5 34.46 34.42 0.04

7 68.99 68.97 0.02

8 90.97 90.92 0.05

9 115.12 115.08 0.04

10 143.25 143.20 0.05

Table 5: Illustration of cost decrease after adding midpoints as variables

• Choose the direction which has the largest decrease, and this is the updated partition.

• If there is no decrease for each of the points of the partition, then decrease ε.

This algorithm converges and its accuracy has been tested by choosing different starting configurations,

and observing that it always converges to the same partition. The optimal densities and the optimal

partitions consisting of geodesic polygons are presented in figures that can be found at the end of this

section. The optimal costs are computed using the method of fundamental solutions. We present the

results obtained in the cases corresponding to n ∈ {3, 4, ..., 16, 20, 32}. Computations were made for

n ∈ {17, 18, 19, 21, 22, 23, 24}, but the presentation of the corresponding figures does not present any

particular interest.

To illustrate the third stage of the optimization, we give more details concerning the case n = 5.

The optimal partition into geodesic polygons consists of two triangles and four rectangles. Adding the

midpoints as variables gives us a new configuration of two hexagons and three octagons. What we

observed in the case n = 5 is that adding midpoints as additional degrees of freedom brings us to a new

partition with smaller optimal cost. For n = 5 we obtain a decrease of 0.04 in the optimal cost value.

The same procedure applied for n = 7 allows us to decrease the optimal value with 0.02. These two

cases are presented in Figure 12. This simple numeric observation suggests that the boundaries of the

cells in a minimal configuration are not necessarily geodesic arcs. We performed the same algorithm in

the cases n ∈ {8, 9, 10}. We summarize the results in Table 5.

We can present another argument which shows that, given the numerical results in cases n = 11 and

n ≥ 13, there are cells whose boundaries are not geodesics. We recall that for a subset M of a smooth

surface with piecewise smooth boundary, the Gauss-Bonnet formula says that
∫

M
KdA+

∫

∂M
kg +

∑

θi = 2πχ(M), (15)

where K is the curvature of the surface, kg is the geodesic curvature of ∂M , θi are the turning angles

in the vertices and χ(M) is the Euler characteristic of M , which is equal to 1 in the case of a geodesic
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Figure 12: The study of the cases n ∈ {5, 7}; the regions correspond to the non-geodesic optimal

partition and the red arcs are geodesics. Adding midpoints as variables reduces the value from 34.46 to

34.42 for n = 5 and from 68.99 to 68.97 for n = 7.

polygon. We refer to [21] for further details regarding this theorem. Let’s suppose that the boundaries

of the optimal partition are geodesics and that the partition contains a hexagonal domain. The optimality

conditions proved in [18] imply that at all polygonal regions in the optimal configuration have angles

with measure 2π/3. A simple application of the Gauss-Bonnet’s formula implies that geodesic hexagons

on the sphere which have all angles equal to 2π/3 have area zero. Thus no hexagonal domain in the

optimal configuration can have boundary formed only of geodesics. As a conclusion of this fact and of

our computations, for n = 11 and n ≥ 13 the boundaries of the cells are not all geodesics.

Discussion of the results.

• We observe that for n ∈ {4, 6, 12} the optimal partition cells are regular geodesic polygons corre-

sponding to the tetrahedron, the cube and the dodecahedron. For n = 3 we obtain the expected Y

partition which confirms numerically Bishop’s conjecture.

• We remark the fact that for n ≥ 14 optimal partitions seem to consist of 12 pentagons and n− 12
hexagons. We notice that except in cases n ∈ {11, 13} there seem to be only two types of polygons

in the optimal partition.

• The third stage in the optimization procedure suggested above and the argument based on Gauss-

Bonnet formula allows us to deduce that, in general, except the cases n = 3, 4, 6, 12, the bound-

aries of the optimal cells are probably not geodesic arcs.

An equally interesting problem is finding the partition which minimizes the quantity maxi λ
LB
1 (ωi).

Theoretical aspects of the problem as well as a complete analysis of the case n = 3 were given in [29].

It is known that if the solution of the problem corresponding to the sum consists of cells with the same

eigenvalue, then this is also a solution of the maximum problem. In our computations, only the regular

partitions corresponding to n ∈ {3, 4, 6, 12} have this property and thus they are good candidates as

optimizers for the maximum problem as well. In all remaining cases we obtained at least two cells

with different eigenvalues, which means that our partitions cannot be optimal for the min-max problem.

Optimizing the maximum is not straightforward since we are dealing with a non-differentiable functional.

Following the approach in [13], we may expect that minimizing a p-norm for high p will get us close

to the optimal partition for the maximum. Some experiments done in this direction indicate that the

topology of the optimal partition for the maximum is the same as the one for the sum, but the boundaries

are just slightly moved in order to have the same eigenvalue for every one of the cells.

22



n = 3 : three 120◦ lens. Confirmation

of the conjecture proposed by Bishop

[9].

optimal cost = 45/4
lens eigenvalue = 15/4.

n = 4 : the optimal partition con-

sists of the tiling generated by a regu-

lar tetrahedron inscribed in the sphere.

optimal cost = 20.635
triangle eigenvalue = 5.1588

n = 5 : two equal equilateral triangles

and three equal rectangles.

optimal cost = 34.46.

triangle eigenvalue = 7.35
rectangle eigenvalue = 6.58.

n = 6 : regular tiling generated by the

cube

optimal cost = 48.6.

square eigenvalue = 8.10

n = 7 : two regular pentagons and 5
equal rectangles.

optimal cost = 68.99.

pentagon eigenvalue = 8.61
rectangle eigenvalue = 10.35.
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n = 8 : four equal quadrilaterals and

four equal pentagons.

optimal cost = 90.97.

pentagon eigenvalue = 10.80
quadrilateral eigenvalue = 11.94.

n = 9 : 3 equal squares and 6 equal

pentagons.

optimal cost = 115.12.

square eigenvalue = 13.65
pentagon eigenvalue = 12.36.

n = 10 : two equal squares and 8
equal pentagons

optimal cost = 143.25.

square eigenvalue = 15.85
pentagon eigenvalue = 13.94.

n = 11 : one hexagon, two

equal quadrilaterals, eight pentagons

of three types

optimal cost = 175.34.

n = 12 : regular tiling generated by

the dodecahedron

optimal cost = 203.71.

pentagon eigenvalue = 16.98

n = 13 : one rectangle, two equal

hexagons, 10 pentagons of three types

optimal cost = 245.37.
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n = 14 : two equal hexagons and 12
equal pentagons

optimal cost = 283.59.

hexagon eigenvalue = 17.34
pentagon eigenvalue = 20.74.

n = 15 : 3 equal hexagons and 12
pentagons of two types

optimal cost = 327.21.

n = 16 : 4 equal hexagons and 12
equal pentagons

optimal cost = 371.76.

n = 20 : 8 hexagons and 12 pen-

tagons optimal cost = 585.75.

n = 32 : 20 equal hexagons and 12
equal pentagons

optimal cost = 1504.16.

9 Conclusions

The method of fundamental solutions seems to be well adapted to the study of the boundary eigenvalue

problems corresponding to the Steklov, Wentzell and Laplace-Beltrami operators. The numerical meth-

ods presented in this article have good properties regarding their accuracy and speed. This behaviour

encourages their use in the study of shape optimization problems. The computation of the Steklov or
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Wentzell spectrum is very fast and precise in the case where the boundary of the domain is regular

enough. It is true that the applicability is restricted to simply connected domains which do not have

cusps. We were able to confirm numerically the conjecture regarding the optimality of the disk for the

first Wentzell eigenvalue proposed in [20].

The method based on fundamental solutions is proved useful in the study of the spectral partitions

on manifolds. We are able to obtain results similar to [22] and we also can confirm Bishop’s conjec-

ture regarding the optimality of the Y partition of the sphere (we recall that evidence of the validity

of this conjecture can also be found in [38] and [22]). The numerical computations suggest that for

n ∈ {4, 6, 12} the optimal partition is the one associated to the corresponding regular polyhedron. The

numerical study made for n ∈ {5, 7, 8, 9, 10} and suggests that boundaries are not all geodesics in this

case. A simple argument based on the Gauss-Bonnet formula proves that as soon as there is a hexagonal

domain in the optimal configurations, its boundary is not formed of geodesic arcs. In conclusion, a part

from the cases n ∈ {3, 4, 6, 12} the optimal configuration is not made of geodesic polygons.
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géométrique. [A geometric analysis].

[31] J. Hersch, L. E. Payne, and M. M. Schiffer. Some inequalities for Stekloff eigenvalues. Arch.

Rational Mech. Anal., 57:99–114, 1975.

27



[32] V. D. Kupradze and M. A. Aleksidze. The method of functional equations for the approximate

solution of certain boundary-value problems. Ž. Vyčisl. Mat. i Mat. Fiz., 4:683–715, 1964.
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