
A Geometric Proof of the Siebeck–Marden
Theorem

Beniamin Bogosel

Abstract. The Siebeck–Marden theorem relates the roots of a third degree polynomial and
the roots of its derivative in a geometrical way. A few geometric arguments imply that every
inellipse for a triangle is uniquely related to a certain logarithmic potential via its focal points.
This fact provides a new direct proof of a general form of the result of Siebeck and Marden.

Given three noncollinear points a, b, c ∈ C, we can consider the cubic polynomial
P(z) = (z − a)(z − b)(z − c), whose derivative P ′(z) has two roots f1, f2. The
Gauss–Lucas theorem is a well-known result which states that given a polynomial Q
with roots z1, . . . , zn , the roots of its derivative Q ′ are in the convex hull of z1, . . . , zn .
In the simple case where we have only three roots, there is a more precise result. The
roots f1, f2 of the derivative polynomial are situated in the interior of the triangle
�abc and they have an interesting geometric property: f1 and f2 are the focal points
of the unique ellipse that is tangent to the sides of the triangle �abc at its midpoints.
This ellipse is called the Steiner inellipse associated to the triangle �abc. In the rest
of this note, we use the term inellipse to denote an ellipse situated in a triangle that is
tangent to all three of its sides. This geometric connection between the roots of P and
the roots of P ′ was first observed by Siebeck (1864) [12] and was reproved by Marden
(1945) [8]. There has been substantial interest in this result in the past decade: see
[3],[5, pp. 137–140] [7],[9],[10],[11]. Kalman [7] called this result Marden’s theorem,
but in order to give credit to Siebeck, who gave the initial proof, we call this result the
Siebeck–Marden theorem in the rest of this note. Apart from its purely mathematical
interest, the Siebeck–Marden theorem has a few applications in engineering. In [2]
this result is used to locate the stagnation points of a system of three vortices and in
[6] this result is used to find the location of a noxious facility location in the three-city
case.

The proofs of the Siebeck–Marden theorem found in the references presented above
are either algebraic or geometric in nature. The initial motivation for writing this note
was to find a more direct proof, based on geometric arguments. The solution was found
by answering the following natural question: Can we find two different inellipses with
the same center? Indeed, let’s note that (a + b + c)/3 = ( f1 + f2)/2, which means
that the centers of ellipses having focal points f1, f2 coincide with the centroid of
the triangle �abc. The geometric aspects of the problem can be summarized in the
following questions.

1. Is an inellipse uniquely determined by its center?
2. Which points in the interior of the triangle �abc can be centers of an inellipse?
3. What are the necessary and sufficient conditions required such that two points

f1 and f2 are the focal points of an inellipse?
4. Is there an explicit connection between the center of the inellipse and its

tangency points?
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Figure 1. Left: Basic property of the tangents to an ellipse. Right: Construction of an inellipse starting from
two isogonal conjugate points.

We give precise answers to all these questions in the next section, dedicated to the
geometric properties of inellipses. Once these properties are established, we are able
to prove a more general version of the Siebeck–Marden theorem. The proof of the
original Siebeck–Marden result will follow immediately from the two main geometric
properties of the critical points f1, f2.

• The midpoint of f1 f2 is the centroid of �abc.
• The points f1, f2 are isogonal conjugates relative to triangle �abc.

We recall that two points f1, f2 are isogonal conjugates relative to triangle �abc if
the pairs of lines (a f1, a f2), (b f1, b f2), (c f1, c f2) are symmetric with respect to the
bisectors of the angles a, b, c, respectively.

1. GEOMETRIC PROPERTIES OF INELLIPSES. We start by answering the
third question raised above: Which pairs of points can be the foci of an inellipse?
In order to have an idea of what the expected answer is, we can look at the following
general configuration. Suppose we have an ellipse E with foci f1, f2 and an exterior
point a. Consider the two tangents at1, at2 to E that go through a. Then the angles
∠t1a f1 and ∠t2a f2 are equal.

A simple proof of this fact goes as follows. Construct g1, g2, the reflections of f1, f2

with respect to lines at1, at2, respectively (see Figure 1). Then the triplets of points
( f1, t2, g2), ( f2, t1, g1) are collinear. To see this, recall the result, often called Heron’s
problem, which says that the minimal path from a point a to a point b that touches a line
� not separating a and b must satisfy the reflection angle condition. Now, it is enough
to note that f1g2 = f1t2 + f2t2 = f1t1 + f2t1 = g1 f2. Thus, triangles �a f1g2, �ag1 f2

are congruent, which implies that the angles ∠t1a f1 and ∠t2a f2 are equal.
As a direct consequence, the foci of an inellipse for �abc are isogonal conjugates

relative to �abc. The converse is also true and this results dates back to the work of
Steiner [13] (see [1]).

Theorem 1. (Steiner). Suppose that �abc is a triangle.

1. If E is an inellipse for �abc with foci f1 and f2, then f1 and f2 are isogonal
conjugates relative to �abc.

2. If f1 and f2 are isogonal conjugates relative to �abc, then there is a unique
inellipse for �abc with foci f1 and f2.
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Proof. The proof of 1. was discussed above, so it only remains to prove 2. Consider
the points x1, x2, the reflections of f1, f2 with respect to the lines ab and bc (see Figure
1 right). The construction implies that b f1 = bx1, b f2 = bx2 and ∠x1b f2 = ∠ f1bx2,
which, in turn, implies that x1 f2 = f1x2. We denote their common value with m. We
denote a1 = f1x2 ∩ bc and c1 = x1 f2 ∩ ab. The construction of x1, x2 implies that
f1a1 + f2a1 = f1x2 = f2x1 = f1c1 + f2c1 = m. Heron’s problem cited above implies
that a1 is the point that minimizes x �→ f1x + f2x with x ∈ bc and c1 is the point that
minimizes x �→ f1x + f2x with x ∈ ab.

Thus, the ellipse characterized by f1x + f2x = m is tangent to bc and ab in a1 and,
respectively, c1. A similar argument proves that this ellipse is, in fact, also tangent to
ac. The unicity of this ellipse comes from the fact that m is defined as the minimum
of f1x + f2x where x is on one of the sides of �abc, and this minimum is unique and
independent of the chosen side.

We are left to answer questions 1, 2, and 4. The first two questions were answered
by Chakerian in [4] using an argument based on orthogonal projection. We provide
a slightly different argument, which, in addition, gives us information about the rela-
tion between the barycentric coordinates of the center of the inellipse and its tangency
points. In the proof of the following results we use the properties of real affine trans-
formations of the plane.

Theorem 2. 1. An inellipse for �abc is uniquely determined by its center.
2. The locus of the set of centers of inellipses for �abc is the interior of the medial1

triangle for �abc.
3. If the center of the inellipse E is αa + βb + γ c, where α, β, γ > 0 and α + β +

γ = 1, then the points of tangency of the inellipse divide the sides of �abc in
the ratios (1 − 2β)/(1 − 2γ ), (1 − 2γ )/(1 − 2α), (1 − 2α)/(1 − 2β).

Proof. 1. We begin with the particular case where the inellipse E is the incircle with
center o. Suppose E ′ is another inellipse, with center o, and denote by f1, f2 its focal
points. We know that f1, f2 are isogonal conjugates relative to �abc and the midpoint
of f1 f2 is o, the center of the inellipse. Thus, if f1 �= f2, then ao is at the same time a
median and a bisector in triangle a f1 f2. This implies that ao ⊥ f1 f2. A similar argu-
ment proves that bo ⊥ f1 f2 and co ⊥ f1 f2. Thus a, b, c all lie on a line perpendicular
to f1 f2 in o, which contradicts the fact that �abc is nondegenerate. The assumption
f1 �= f2 leads to a contradiction, and therefore we must have f1 = f2, which means
that E ′ is a circle and E ′ = E .

Consider now the general case. Suppose that the inellipses E, E ′ for �abc have
the same center. Consider an affine mapping h that maps E to a circle. Since h maps
ellipses to ellipses and preserves midpoints, the image of our configuration by h is
a triangle where h(E) is the incircle and h(E ′) is an inscribed ellipse with the same
center. This case was treated in the previous paragraph and we must have h(E) =
h(E ′). Thus E = E ′.

2. To find the locus of the centers of inellipses for �abc, it is enough to see
which barycentric coordinates are admissible for the incircle of a general triangle.
We recall that the barycentric coordinates of a point p are proportional to the areas of
the triangles �pbc, �pca, �pab, and their sum is chosen to be 1. Thus, barycentric
coordinates are preserved under affine transformations. The barycentric coordinates
of the center of an inellipse with respect to a, b, c are the same as the barycentric

1The medial triangle is the triangle formed by the midpoints of the edges of a triangle.

May 2017] NOTES 461



coordinates of the incenter of the triangle h(a), h(b), h(c). As before, h is the affine
transformation which transforms the ellipse into a circle. Conversely, if the barycentric
coordinates of the incenter o with respect to �a′b′c′ are x, y, z, then we consider the
affine transformation that maps the triangle �a′b′c′ onto the triangle �abc. The circle
is transformed into an inellipse, with center having barycentric coordinates x, y, z.

The barycentric coordinates of the incenter have the form

x = u

u + v + w
, y = v

u + v + w
, z = w

u + v + w
,

where u, v, w are the lengths of the sides of �a′b′c′. Thus, we can see that x + y + z
= 1 and x < y + z, y < z + x, z < x + y. One simple consequence of these relations
is the fact that x, y, z < 1/2. Furthermore, since

x = Area(ob′c′)
Area(a′b′c′)

, y = Area(oc′a′)
Area(a′b′c′)

, z = Area(oa′b′)
Area(a′b′c′)

,

we can see that the previous relations for x, y, z are satisfied if and only if o is in the
interior of the medial triangle for �a′b′c′. Thus, the locus of the center of an inscribed
ellipse is the interior of the medial triangle.

3. If the center of the inellipse E is αa + βb + γ c with α + β + γ = 1, then con-
sider an affine map h that transforms E into a circle. Let �a′b′c′ be the image of �abc
by h. It is known that α, β, γ are proportional with the sidelengths of the triangle
�a′b′c′. Thus, the tangency points of h(E) with respect to �a′b′c′ divide its sides into
ratios

α + γ − β

α + β − γ
,

α + β − γ

β + γ − α
,

β + γ − α

α + γ − β
.

The affine map h does not modify the ratios of collinear segments, thus, E divides the
sides of �abc into the same ratios.

2. INELLIPSES AND CRITICAL POINTS OF LOGARITHMIC POTEN-
TIALS. The properties of inellipses described above allow us to state and prove
a result which is a bit more general than Siebeck–Marden theorem. In fact, every
inellipse relates to the critical points of a logarithmic potential of the form

L(z) = α log(z − a) + β log(z − b) + γ log(z − c).

The following result gives a precise description of this connection.

Theorem 3. Given �abc and α, β, γ > 0 with α + β + γ = 1, the function L(z) =
α log(z − a) + β log(z − b) + γ log(z − c) has two critical points f1 and f2. These
critical points are the foci of an inellipse that divides the sides of �abc into ratios
β/γ, γ /α, α/β.

Conversely, given an inellipse E for �abc, there exists a function of the form L(z)
as above whose critical points f1, f2 are the foci of E .

Proof. Denote by f1, f2 the roots of

L ′(z) = α

z − a
+ β

z − b
+ γ

z − c
,
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which means that f1, f2 are roots of

z2 − (α(b + c) + β(a + c) + γ (a + b))z + αbc + βca + γ ab = 0.

Without loss of generality, we can suppose that a = 0 and that the imaginary axis is the
bisector of the angle ∠bac (equivalently bc < 0). In this case we have f1 f2 = αbc <

0, and thus the imaginary axis is the bisector of the angle ∠ f1a f2. Repeating the same
argument for b and c, we deduce that f1, f2 are isogonal conjugates relative to �abc.
Steiner’s result (Theorem 1) implies that f1, f2 are the foci of an inellipse E for �abc.
The center of this inellipse has barycentric coordinates

o = β + γ

2
a + α + γ

2
b + α + β

2
c,

which, according to Theorem 2, implies that E is the unique inellipse for �abc, which
divides the sides of �abc in ratios β/γ, γ /α, α/β.

Conversely, given an inellipse E for �abc, its tangency points must be of the form
β/γ, γ /α, α/β for some α, β, γ > 0, α + β + γ = 1. We choose L(z) = α log(z −
a) + β log(z − b) + γ log(z − c) and, according to the first part of the proof, the criti-
cal points f1, f2 of L ′(z) are the foci of an ellipse E ′ that divides the sides of �abc into
ratios β/γ, γ /α, α/β. This means that E = E ′ and L(z) is the associated logarithmic
potential.
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