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ABSTRACT. We study the continuity of the Steklov spectrum on variable domains with respect to
the Hausdorff convergence. A key point of the article is understanding the behaviour of the traces
of Sobolev functions on moving boundaries of sets satisfying an uniform geometric condition. As
a consequence, we are able to prove existence results for shape optimization problems regarding
the Steklov spectrum in the family of sets satisfying a ε-cone condition and in the family of convex
sets.
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1. INTRODUCTION

For an open, bounded, simply connected set Ω with Lipschitz boundary, we can consider
Steklov eigenvalue problem. It is known that the Steklov spectrum of Ω consists of a sequence
of the form

0 = σ0(Ω) ≤ σ1(Ω) ≤ σ2(Ω)...→ +∞.
Various optimization problems for functionals depending of the Steklov spectrum, under cer-
tain constraints on the geometric properties of Ω, have been studied.

Weinstock [15] observed that σ1(Ω) is bounded above by 2π/Per(Ω), which means that the
disk maximizes the first Steklov eigenvalue in two dimensions, under a perimeter constraint.
It is straightforward to see that this implies that the disk also maximizes σ1(Ω) under area
constraint (see Remark 2.4). Girouard and Polterovich proved in [9] that the estimate

σk(Ω) Per(Ω) ≤ 2kπ

provided by Hersch, Payne and Schiffer is sharp in the class of simply connected domains, but
is not attained in that class. We refer to [9],[10, Section 7.3] for further details.

In general, the known results concerning the optimization of functionals of the Steklov spec-
trum are proved by identifying an optimizer. Once an optimizer Ω∗ is identified, it is proved
that the value of the functional on Ω∗ is the best possible. In the cases where the optimal shape
is not known explicitly, we would like to be able to provide at least an existence result.

First, let’s note that in the case of the Steklov eigenvalues, it is only relevant to study opti-
mization problems in which the Steklov eigenvalues are maximized. Indeed, Colbois, El Soufi
and Girouard proved in [5] that the Steklov eigenvalues satisfy the bound

σk(Ω) ≤ cdk
2
d
|Ω|

d−2
d

Per(Ω)
. (1.1)

Thus, keeping constant volume and increasing the perimeter, we can make the Steklov eigen-
values as low as we want.

A natural way to study optimization problems is to use the classical methods of the calculus
of variations. In order to study the problem

max
Ω∈A

σk(Ω),

where A is an admissibility class (containing, eventually, some constraints), we need a result
concerning the upper semi-continuity of σk with respect to some type of convergence.

We mainly deal with the convergence related to the Hausdorff distance, but in a stronger
sense which is described in the following. Note that maximizing σk(Ω) under perimeter or
volume constraint, together with the bound (1.1), means that a maximizing sequence (Ωn) will
have a bound on the perimeters (Per(Ωn)). It is well known that a perimeter bound, together
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with a bounding box constraint implies L1 compactness of characteristic functions. These con-
siderations allow us to work directly with maximizing sequences converging in the Hausdorff
distance and in L1.

The main results of the article concern inequalities of the type

lim sup
n→∞

σk(Ωn) ≤ σk(Ω), (1.2)

under certain regularity assumptions on (Ωn) and Ω. We work in the framework of sets which
satisfy a ε-cone condition, which is equivalent to a uniform Lipschitz property. In particular,
this allows us to extend functions in H1(Ω) to H1(D), when Ω ⊂ D. Another advantage is
that we can work with graphs of Lipschitz functions instead of dealing with general sets. We
believe that our results could be extended to a more general class of sets described in [14].

We found that in order to prove inequalities of the type (1.2) it is essential to have a result
on the lower semi-continuity of traces of Sobolev functions on moving boundaries presented
in Proposition 3.2. The main result is stated in Theorem 3.5 and it states that if the sequence
of sets (Ωn) satisfy a ε-cone condition and converge to Ω in the Hausdorff topology then (1.2)
holds. Moreover, if the perimeters of Ωn converge to the perimeter of Ω then we have equality
in (1.2). We give a direct proof that the Steklov spectrum of a convex set is close to zero if the
diameter is large. This result is a direct consequence of the bound (1.1), but it avoids the use
of the technical argument presented in [5]. In the end, we are able to provide existence results
in the class of sets satisfying a uniform ε-cone condition, as well as in the class of convex sets.
In Figure 2 we present some convex sets obtained numerically for which we have observed the
highest, area normalized, k-th Steklov eigenvalue for k ∈ [2, 10]. These shapes were obtained
using shape gradients and performing a projection on the convex hull.

As stated above, the semi-continuity result, and the existence results are proved in the class
of sets which satisfy a uniform ε-cone condition. It is not clear if these results still hold if this
hypothesis is removed and we work in the class of general Lipschitz domains. In the case of
the area constraint, Brock proved in [1] that the disk maximizes the first non-trivial Steklov
eigenvalue, without any assumptions on the topology of the domain. Ongoing research1 sug-
gests that in the case of the volume constraint, an existence result can be obtained for a relaxed
formulation of the Steklov eigenvalues.

2. PRELIMINARIES

We recall below some theoretical tools needed to prove our results.

2.1. Convergence of sets. In the study of optimization problems where the variable is the
shape of a domain it is often necessary to define a topology on a family of shapes. The choice
of such a topology is not obvious, and different situations require different topologies. In our
study, we use the Hausdorff complementary convergence on open sets and the L1 convergence
of a of characteristic functions. We recall that the Hausdorff distance between two compact sets
K1,K2 is given by

dH(K1,K2) = max{ sup
x∈K1

inf
y∈K2

d(x, y), sup
y∈K2

inf
x∈K1

d(x, y)}.

If we consider a bounded open set D and the open sets Ω1,Ω2 ⊂ D then we define the Haus-
dorff complementary distance as

dHc(Ω1,Ω2) = dH(D \ Ω1, D \ Ω2).

These two types of convergence are not equivalent in general. Still, it is possible to prove
that if we have a bounding box, then any sequence of open sets (Ωn) has a subsequence con-
verging in the Hausdorff topology to Ω. Furthermore, if the sequence of perimeters of (Ωn) is
bounded, then (Ωn) has a subsequence which converges in both topologies presented above.
We will consider this combined convergence, which provides, in addition to the properties

1Private communication with D. Bucur, A. Giacomini (work in progress)
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of the Hausdorff convergence, continuity for the volume and lower semi-continuity for the
perimeter.

2.2. Uniform cone condition. We recall the following definition from [11, Chapter 2].

Definition 2.1. Let y be a point in Rd, ξ a unit vector and ε > 0. We define the cone C(y, ξ, ε) of
vertex y, direction ξ and dimension ε by

C(y, ξ, ε) = {x ∈ Rd : 〈z − y, ξ〉 ≥ cos ε|z − y| and 0 < |z − y| < ε}.
We say that an open set Ω has the ε-cone condition if for every x ∈ ∂Ω there exists a unit vector
ξx such that for every y ∈ Ω ∩B(x, ε) we have C(y, ξx, ε) ⊂ Ω.

In the proof of our results we use the fact that sets which have the ε-cone condition can be
represented locally as the graph of a Lipschitz function. Theorem 2.4.7 from [11] assures us that
the ε-cone condition is equivalent to the following uniform Lipschitz condition.

Definition 2.2. We say that a subset Ω of Rd has a uniform Lipschitz boundary if there are
some uniform constants L, a, r such that for any point x0 ∈ ∂Ω there exists an orthonormal
system of coordinates S with origin at x0, a cylinder K = Bd−1(x0, r)× (−a, a), and a function
ϕ : Bd−1(x0, r)→ [−a, a] which is Lipschitz, with constant L and ϕ(0) = 0 such that

∂Ω ∩K = {(y, ϕ(y)) : y ∈ K},

Ω ∩K = {(y, xN ) ∈ K : xN > ϕ(y)}.

One advantage of working with sets satisfying an ε-cone condition is the fact that the two
types of sets convergence defined before are connected. The Hausdorff complementary con-
vergence of a sequence of sets implies the convergence of characteristic functions in L1(D) to
the same limit. We refer to [11, Theorem 2.4.10] for a proof. Furthermore, if Ω satisfies a ε-cone
condition, then the constants L, a, r in the above theorem depend only on ε.

The following proposition mentions an interesting property of the sets which satisfy an ε-
cone condition. Using the fact that the boundary of such a set has a local representation as the
graph of a Lipschitz function, we can find a bound on the perimeter.

Proposition 2.3. Suppose D is a bounded, open set in Rd and suppose that Ω ⊂ D satisfies a
ε-cone condition. Then Per(Ω) is uniformly bounded by a constant which depends only on ε
and D.

Proof: The above remarks, allow us to say that for every x0 ∈ ∂Ω there exist a cylinder K of
the formBd−1(x0, r)×(−a, a) centred at x0 such that ∂Ω∩K is the graph of a Lipschitz function
with Lipschitz constant L. Furthermore, L, a, r depend only on ε. Note that the perimeter of Ω
restricted to K, denoted PerK(Ω), can be expressed as

PerK(Ω) =

∫
Bd−1(x0,r)

√
1 + |∇ϕ(x)|2dx ≤ |Bd−1(x0, r)|

√
1 + L2.

Therefore, in every such cylinderK, the relative perimeter of Ω is bounded by a constant which
depends only on ε.

We claim that the boundary of Ω can be covered withM such cylindersK, whereM depends
on D. To see this, we propose the following construction. Choose x1 ∈ ∂Ω and let K1 be the
associated cylinder, like in Definition 2.2. At step n, choose xn /∈ K1 ∪ ... ∪ Kn−1 and denote
Kn its corresponding cylinder. This operation must end at some point, since pairwise distances
between xi and xj , with i 6= j are bounded below by a constant c = min{a, r} depending on ε.

To see that there exist a maximal number of points inside D satisfying this property, it is
enough to cover D with cubes with a diameter c′ < c. Obviously, since D is bounded, it is
possible to cover D with a finite number M of such cubes. Each cube can contain at most one
of the points xi, since it’s diameter is smaller than c. Therefore, the above construction ends in
at n ≤M steps.
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As a consequence

Per(Ω) ≤
n∑

i=1

PerKi(Ω) ≤M |Bd−1(x0, r)|
√

1 + L2.

Thus, the perimeter of Ω is uniformly bounded by a constant depending on ε and D. �

2.3. Steklov Spectrum. Let Ω be a simply-connected bounded planar domain with Lipschitz
boundary. The Steklov eigenvalue problem is{

−∆u = 0 in Ω,
∂u
∂n = σu on ∂Ω,

where ∂
∂n is the outward normal derivative. The spectrum of the Steklov problem is discrete

and its eigenvalues
0 = σ0 < σ1(Ω) ≤ σ2(Ω) ≤ σ3(Ω) ≤ ...→ +∞

satisfy the following variational characterization

σn(Ω) = min
Sn

max
u∈Sn\{0}

∫
Ω |∇u|

2dx∫
∂Ω u

2dσ
, n = 1, 2, ...

The infimum is taken over all n-dimensional subspaces Sn of H1(Ω) that are orthogonal to
constants on ∂Ω, i.e.

∫
∂Ω udσ = 0.

The Steklov eigenvalues behave well under domain dilatation. Indeed, if we denote tΩ an
image of Ω by a homothety of ratio t > 0 then we have

σk(tΩ) =
1

t
σk(Ω). (2.1)

Remark 2.4. In view of property (2.1), the quantities σk(Ω) Per(Ω) and σk(Ω)|Ω|1/2 are scale
invariant. Thus maximizing σk(Ω) under perimeter constraint is equivalent to the problem

maxσk(Ω)(Per(Ω))
1

d−1 ,

and maximizing σk(Ω) under volume constraint is equivalent to the problem

maxσk(Ω)|Ω|1/d.
Combining the above formulations with the classical isoperimetric inequality, we can con-

clude that if the ball maximizes σk, or another well behaving function of the Steklov spectrum,
under a perimeter constraint, then the ball also maximizes the same function under volume
constraint.

3. STABILITY OF STEKLOV SPECTRUM UNDER HAUSDORFF CONVERGENCE

We recall the following result, which can be found in a similar form in in [6, Theorem 2.3.1].
The weak L2 convergence coupled with the convergence of a certain integral sequence implies
strong L2 convergence.

Lemma 3.1. Let Ω be a measurable subset of Rn and suppose F : Rn → R is a strongly convex
function of class C1, i.e. it exists µ > 0 such that

F (y) ≥ F (x) +∇F (x) · (y − x) + µ|y − x|2,
for every x, y ∈ Rn. Furthermore, we assume that F has the property that if u ∈ L2(Ω;Rn) then
∇F (u) is also in L2(Ω;Rn). Let (uk) be a sequence in L2(Ω,Rn) such that uk ⇀ u in L2(Ω,Rn).
Suppose the following inequality holds:

lim sup
k→∞

∫
Ω
F (uk)dx ≤

∫
Ω
F (u)dx

Then
uk → u in L2(Ω;Rn).
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Proof: For every x we have

F (uk(x)) ≥ F (u(x)) +∇F (u(x)) · (uk(x)− u(x)) + µ|uk(x)− u(x)|2.
Integrating on Ω we have∫

Ω
F (uk(x))dx ≥

∫
Ω
F (u(x))dx+

∫
Ω
∇F (u(x)) · (uk(x)− u(x))dx+ µ|uk − u|2L2(Ω;Rn). (3.1)

Note that since∇F (u) is in L2(Ω;Rn) and uk ⇀ u weakly in L2(Ω;Rn) we have

lim
n→∞

∫
Ω
∇F (u(x)) · (uk(x)− u(x))dx = 0,

Taking n→∞ in (3.1) and using the hypothesis we obtain

0 ≥ µ lim sup
n→∞

‖uk − u‖L2(Ω;Rn),

which implies that uk → u strongly in L2(Ω;Rn). �
We apply this Lemma in the case where F =

√
1 + ‖x‖2. This function is not strongly convex

on all Rn, but it is strongly convex on every bounded open set. Furthermore, ∇F = x√
1+|x|2

so

F satisfies all the hypotheses of Lemma 3.1.
The following general proposition is a central result of the article, that will allow us to prove

a result of shape continuity for the Steklov spectrum. It allows us pass to the limit when con-
sidering traces of a weakly H1 convergent sequence on moving boundaries that converge in
the Hausdorff distance. A similar result has been proved in [4] for the more restrictive class of
convex domains.

Proposition 3.2. (Convergence of traces) Let D be an open, bounded subset of Rd. Suppose

(Ωn),Ω ⊂ D are open, connected sets which satisfy a uniform ε-cone property and Ωn
Hc

−→ Ω.
(A) For every (un) ⊂ H1(D) which converges weakly to u in H1(D) we have

lim inf
n→∞

∫
∂Ωn

|un|p ≥
∫
∂Ω
|u|p

(B) Consider p ∈ [1, 2]. Then Per(Ωn)→ Per(Ω) if and only if for every (un) ⊂ H1(D) which
converges weakly to u in H1(D) we have∫

∂Ωn

|un|p →
∫
∂Ω
|u|p.

Proof: We start with part (B). Note that if the integral convergence holds for any (un), u such
that un ⇀ u, then taking un, u ≡ 1 we obtain exactly Per(Ωn)→ Per(Ω).

To prove the converse implication, suppose Per(Ωn)→ Per(Ω). First, let’s note that is enough
to prove convergence result for a subsequence of (un). Indeed, from the trace theorem, we
know there exists a constant C which depends uniformly on L (see, for example, [7]), such that

‖un‖L2(∂Ωn) ≤ C‖un‖H1(Ω).

The fact that un converges weakly in H1(D) implies that (un) is bounded in H1(D) and, by the
above inequality, (un) is bounded in L2(∂Ω). Furthermore, if p < 2, the fact that Ωn have finite
perimeter, (Per(Ωn)) is bounded and 2/p > 1 allows us to conclude, via the Hölder inequality,
that (

∫
∂Ωn
|un|p) is also bounded. If we prove the convergence for a subsequence, then any

other convergent subsequence will have the same limit, so the whole sequence will converge.
This means that in the course of the proof we may pass to a subsequence of (un,Ωn) whenever
it is necessary.

Consider the open sets Ux0 = B(x0, r) × (−a, a) given for each x0 by Definition 2.2. These
open sets cover ∂Ω which is compact. Thus we can extract a finite cover {U1, ..., UN}. We can
assume, that for n great enough, each ∂Ωn is representable as the graph of a Lipschitz function
in the same coordinate system as ∂Ω. We refer to [11, Chapter 2] for more details.
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Consider a partition of unity φ1, ..., φN subordinated to the cover {U1, ..., UN}. It remains to
prove that ∫

∂Ωn∩Ui

|un|pφidσ →
∫
∂Ω∩Ui

|u|pφidσ.

Since un ⇀ u in H1(D) implies unφ ⇀ uφ in H1(D), we can drop the φi in the above limit and
look only at integrals of un and u.

Denote by gn, g : B = B(x0, r)→ R the functions whose graphs represent the boundaries of
∂Ωn, ∂Ω, respectively, in an orthogonal coordinate system in a neighbourhood if x0. Note that
B has dimension d − 1 so when we speak of almost every x ∈ B we will mean up to a set of

Hd−1 measure zero. The fact that Ωn
Hc

−→ Ω implies ‖gn − g‖∞ → 0. Since g, gn are Lipschitz
continuous functions, they are differentiable almost everywhere and |∇g|, |∇gn| ≤ L, where L
is their common Lipschitz constant. Denote by v the function u after the change of variables in
the new orthogonal coordinate system. It remains to prove that∫

B
|vn(x, gn(x))|p

√
1 + |∇gn(x)|2dx→

∫
B
|v(x, g(x))|p

√
1 + |∇g(x)|2dx.

The condition Per(Ωn) → Per(Ω), the fact that Hd−1(Ωn ∩ Ui) = 0 and the lower semi-
continuity of the perimeter under L1 convergence imply that

lim
n→∞

Per(Ωn ∩ Ui) ≥ Per(Ω ∩ Ui),

and

lim
n→∞

Per(Ωn \ Ui) ≥ Per(Ω \ Ui).

This, in turn implies that we have equality, namely

lim
n→∞

Per(Ωn ∩ Ui) = Per(Ω ∩ Ui).

Translated into the considered coordinate system this becomes

lim
n→∞

∫
B

√
1 + |∇gn(x)|2dx =

∫
B

√
1 + |∇g(x)|2dx.

Furthermore, considering measurable sets of the form V = B′×[−a, a] and the fact that Per(Ωn∩
V )→ Per(Ω ∩ V ), we deduce that

lim
n→∞

∫
B′

√
1 + |∇gn(x)|2dx =

∫
B′

√
1 + |∇g(x)|2dx, (3.2)

for every measurable set B′ ⊂ B.
Since vn is a H1(D) function, for almost every x ∈ B we have

vn(x, gn(x)) = vn(x, g(x)) +

∫ gn(x)

g(x)

∂vn
∂y

(x, y)dy.

To simplify the computations, we denote Jn(x) =
√

1 + |∇gn(x)|2, J(x) =
√

1 + |∇g|2. We
obviously have Jn(x), J(x) ∈ [1,

√
1 + L2]. We use the inequality

||a+ h|p − |a|p| ≤ p(|h||a|p−1 + |h|p|),

which is trivial for p = 1 and is a direct consequence of the mean value theorem applied to the
function t 7→ |t|p when p > 1.
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Thus we have ∣∣∣∣∫
B
|vn(x, gn(x))|pJn(x)dx−

∫
B
|vn(x, g(x)|pJn(x)dx

∣∣∣∣
≤
∫
B
||vn(x, gn(x))|p − |vn(x, g(x))|p|Jn(x)dx

≤p
∫
B

∣∣∣∣∣
∫ gn(x)

g(x)

∂vn
∂y

(x, y)dy

∣∣∣∣∣
p

Jn(x)dx (An)

+p

∫
B
|vn(x, g(x))|p−1

∣∣∣∣∣
∫ gn(x)

g(x)

∂vn
∂y

(x, y)dy

∣∣∣∣∣ Jn(x)dx (Bn)

Study of (An). Since we only know bounds on the L2 norm of the gradient of vn, we apply
Cauchy-Schwarz inequality and then Hölder’s inequality to get

An ≤p
∫
B
|gn(x)− g(x)|

p
2

∣∣∣∣∣∣
[∫ gn(x)

g(x)

∂v2
n

∂y
(x, y)dy

] 1
2

∣∣∣∣∣∣
p

Jn(x)dx

≤p‖gn − g‖
p
2∞
√

1 + L2

∫
B

[∫ gn(x)

g(x)

∂v2
n

∂y
(x, y)dy

] p
2

dx

≤p‖gn − g‖
p
2∞
√

1 + L2

(∫
B

∫ gn(x)

g(x)

∂v2
n

∂y
(x, y)dy

) p
2

|B|1/q

≤C ′‖gn − g‖
p
2∞‖∇un‖pH1(D)

,

where C ′ is a constant which depends on B, p, L and q is chosen such that p
2 + 1

q = 1. As a
consequence of the fact that ‖gn − g‖∞ → 0 we have (An)→ 0.

Study of (Bn). We apply Hölder’s inequality for p and its conjugate p
p−1

Bn ≤p
∫
B
|vn(x, g(x))|p−1

∣∣∣∣∣
∫ gn(x)

g(x)

∂vn
∂y

(x, y)dy

∣∣∣∣∣ Jn(x)dx

≤p
√

1 + L2

(∫
B
|vn(x, g(x))|pdx

) p−1
p

(∫
B

∣∣∣∣∣
∫ gn(x)

g(x)

∂vn
dy

(x, y)dy

∣∣∣∣∣
p) 1

p

dx

Using arguments similar as in the study of (An) we can see that the last integral is bounded by

a term of the form C‖gn − g‖
1
2∞. To conclude that (Bn) → 0 it remains to justify that the first

integral is bounded. For this, we apply again Hölder’s inequality for 2
p ≥ 1 and its conjugate q

to get ∫
B
|vn(x, g(x))|pdx ≤

(∫
B
v2
n(x, g(x))dx

) p
2

|B|
1
q .

Using the trace theorem on ∂Ω we have∫
B
v2
n(x, g(x))dx ≤

∫
B

(v2
n(x, g(x))J(x)dx ≤

∫
∂Ω
u2
n ≤ C‖un‖2H1(D).

This finishes the proof of the fact that (Bn)→ 0.
To conclude the proof of (B), it is enough to prove that

lim
n→∞

∫
B
|vn(x, g(x))|pJn(x)dx =

∫
B
|v(x, g(x))|pJ(x)dx

First, let’s note that the fact that un → u in L2(∂Ω) implies vn(x, g(x)) → v(x, g(x)) for almost
every x ∈ B.
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Since gn, g have Lipschitz constants bounded by L, and B is a bounded set, we deduce that
|∇gn(x)| is bounded in L2(B). Moreover since ‖gn − g‖∞ → 0 we have that gn → g in L2(B).
This means that (gn) is bounded in H1(B), so it has a subsequence∇gnk

that converges weakly
in H1(B) to a function h. This means that gn → h in L2(B) and ∇gn ⇀ ∇h in L2(B). Since
gn → h and gn → g in L2(B), we must have h = g.

Thus, up to a subsequence, we have∇gn ⇀ ∇g in L2(B;Rn) and (3.2) gives

lim
n→∞

∫
Ω
F (∇gn) =

∫
Ω
F (∇g),

where F (x) =
√

1 + |x|2 is a strictly convex function, if we consider it defined on {x ∈ Rn :
‖x‖ ≤ L}. Thus we can apply Lemma 3.1 and find that ∇gn → ∇g strongly in L2(B;Rn).
Passing to a subsequence and relabelling, we can assume that ∇gn → ∇g almost everywhere
in B.

We define the measures µn = Jn(x)dx, µ = J(x)dx. We note that property (3.2) implies that
µn converges set-wise to µ. We use the terminology defined in [13, Chapter 11, Section 4]. This
allows us to use versions of the integral convergence theorems provided in the above reference.
We recall these results in Remark 3.3.

Using the bounds on Jn, J we have

|vn(x, g(x))|p ≤
√

1 + L2|vn(x, g(x))|p J(x)

Jn(x)
.

Since un → u in L2(∂Ω) and Per(Ω) is finite, we have

|vn(x, g(x))|pJ(x)→ |v(x, g(x))|pJ(x)

in L1(B), for every p ∈ [1, 2]. This means that

lim
n→∞

∫
B
|vn(x, g(x))|p J(x)

Jn(x)
dµn →

∫
B
|v(x, g(x))|pdµ.

Furthermore, since Jn → J almost everywhere, it follows that, up to a subsequence, |vn(x, g(x))|p J(x)
Jn(x) →

|v(x, g(x))|p almost everywhere.
Applying a generalized integral convergence theorem, stated in Remark 3.3 (ii), we deduce

that
lim
n→∞

∫
B
|vn(x, g(x))|pdµn =

∫
B
|v(x, g(x))|pdµ.

This finishes the proof of part (B).
For part (A) the proof is the same, except the last part where instead of applying the integral

convergence theorem we apply the variant of Fatou’s Lemma presented in Remark 3.3 (i). Note
that general, the measures µn do not necessarily converge set-wise to µ. We have the weaker
hypothesis lim inf

n→∞
µn(B′) ≥ µ(B′), which combined with the estimate µn(B′) ≤

√
1 + L2µ(B′)

is enough to reach the same conclusions. �

Remark 3.3. Let Ω be a measurable set. Suppose fn(x)→ f(x) for almost every x ∈ Ω. Consider
the measures µn, µ defined on Ω which satisfy for every measurable set A ⊂ Ω the equality

lim
n→∞

µn(A) = µ(A).

Following the terminology found in [13, Chapter 11, Section 4] we say that µn converges set-
wise to µ.

(i) If (fn), f are non negative functions we have∫
Ω
fdµ ≤ lim inf

n→∞

∫
Ω
fndµn

(ii) If there exist functions gn such that gn are integrable with respect to µn, |fn| ≤ gn, gn → g
almost everywhere, and

lim
n→∞

∫
Ω
gndµn =

∫
Ω
gdµ <∞
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then

lim
n→∞

∫
Ω
fndµn =

∫
Ω
fdµ.

For the part (i), the hypothesis µn(A)→ µ(A) for every measurable set A can be relaxed to

lim inf
n→∞

µn(A) ≥ µ(A), µn(A) ≤ Cµ(A),

where C > 0 is a constant.

Remark 3.4. It will be necessary to apply Proposition 3.2 part (B) in the case p = 1 without the
absolute values. Under the same hypothesis we want to prove that

lim
n→∞

∫
∂Ωn

un =

∫
∂Ω
u.

To achieve this it is enough to note that if un ⇀ u in H1(D) then u+
n ⇀ u+ and u−n ⇀ u− in

H1(D). We have denoted by u+, u− the positive, respective the negative part of u. We refer
to [11, Corollary 3,1,12] for a proof of this result. We apply Proposition 3.2 for u+

n ⇀ u+ and
u−n ⇀ u− to find that

lim
n→∞

∫
∂Ωn

u+
n =

∫
∂Ω
u+

and

lim
n→∞

∫
∂Ωn

u−n =

∫
∂Ω
u−.

Subtracting these two equalities we get the desired result.

The above proposition helps us to prove the following shape continuity result for the Steklov
spectrum. A general approach has been described in [2] in the case where the operators are
defined on a common space. Another similar result is presented in [4] for the first biharmonic
Steklov eigenvalue in the particular case of convex open sets.

Theorem 3.5. (Shape Stability for the Steklov spectrum) Let D be a bounded open subset of

Rd. Suppose (Ωn),Ω ⊂ D are open sets which satisfy a uniform ε-cone condition and Ωn
Hc

−→ Ω.
(A) The following inequality holds:

lim sup
n→∞

σk(Ωn) ≤ σk(Ω).

(B) If Per(Ωn)→ Per(Ω) then for every k ≥ 1 we have

lim
n→∞

σk(Ωn) = σk(Ω).

Proof: We start with part (B). We divide the proof in two parts:

lim sup
n→∞

σk(Ωn) ≤ σk(Ω) (3.3)

and
lim inf
n→∞

σk(Ωn) ≥ σk(Ω) (3.4)

For an open set Ω we denote by V (Ω) the space of functions on H1(Ω) which are orthogonal
to constants in L2(∂Ω). Note that if Ω has finite perimeter then V (Ω) is closed under weak
convergence in H1(Ω) (Straightforward application of Proposition 3.2 together with Remark
3.4).

1. Proof of (3.3). Let ε > 0 and consider a k-dimensional subspace Sk of V such that

σk(Ω) + ε ≥ max
u∈Sk\{0}

∫
Ω |∇u|

2∫
∂Ω u

2
.

Let {u1, .., uk} an orthonormal basis for Sk. Since Sk ⊂ H1(Ω) and Ω has Lipschitz boundary,
each ui can be extended to ũi ∈ H1(D).
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For n ≥ 1 we modify each ũi in order to make them admissible as test functions on Ωn. To do
this, we modify them with a constant term in order to have zero averages on ∂Ωn. This is possi-
ble since Ωn has finite perimeter and we can simply define uni = ũi − cni , where cni is a constant
defined by 0 =

∫
∂Ωn

(ũi − cni )dσ =
∫
∂Ωn

ũidσ − cni Per(Ωn). Therefore cni = 1
Per(Ωn)

∫
∂Ωn

ũidσ.
Since Per(Ωn) → Per(Ω) > 0 and

∫
∂Ωn

ũidσ →
∫
∂Ω uidσ = 0, we find that lim

n→∞
cni = 0 for

i = 1, ..., k. This implies that uni → ũi in H1(D).
For n great enough, the functions uni span a k-dimensional subspace Sn

k ⊂ H1(D) which is
admissible as a test subspace for σk(Ωn). This implies that

σk(Ωn) ≤ max
u∈Sn

k \{0}

∫
Ωn
|∇u|2∫

∂Ωn
u2

=

∫
Ωn
|∇vn|2∫

∂Ωn
v2
n

,

where we have denoted vn a choice of the maximizers of the Rayleigh quotient on Sn
k . The

maximizer vn exists since Sn
k is finite dimensional.

Consider now u0 ∈ Sk arbitrary. Then there exist coefficients a1, ..., ak such that

u0 = a1u1 + ...+ akuk.

Consider also the functions un0 ∈ Sn
k defined by

un0 = a1u
n
1 + ...+ aku

n
k .

It easily follows that un0 → ũ0 in H1(D), since they differ only by a constant term which con-
verges to 0 as n→∞. The maximality property of (vn) implies∫

Ωn
|∇un0 |2∫

∂Ωn
(un0 )2

≤
∫

Ωn
|∇vn|2∫

∂Ωn
v2
n

. (3.5)

We want to prove that lim sup
n→∞

σk(Ωn) ≤ σk(Ω). Without loss of generality, we can assume

that lim
n→∞

σk(Ωn) exists. If not, we take a subsequence which realizes the lim sup. We can find
a decomposition vn = bn1u

n
1 + ... + bnku

n
k . Since the Rayleigh quotient is scale invariant, we

can choose the coefficients such that |bni | ≤ 1. Using a diagonal argument we can choose a
subsequence of vn such that bni → bi for i = 1, ...,m. Up to relabelling the sequence, we can
assume that vn → v in H1(D) where v is given by

v = b1ũ1 + ...+ bkũk.

Taking n→ +∞ in inequality (3.5) and using Proposition 3.2 we obtain that∫
Ω |∇u0|2∫
∂Ω u

2
0

≤
∫

Ω |∇v|
2∫

∂Ω v
2
.

Since u0 was chosen arbitrary, we have that

max
u0∈Sk\{0}

∫
Ω |∇u0|2∫
∂Ω u

2
0

≤
∫

Ω |∇v|
2∫

∂Ω v
2
.

The restriction of v to Ω is also in Sk, so the above inequality is, in fact, an equality.
We have just proved that

lim sup
n→∞

σk(Ωn) ≤ lim
n→∞

∫
Ωn
|∇un|2∫

∂Ωn
u2
n

=

∫
Ω |∇v|

2∫
∂Ω v

2
= max

u∈Sk\{0}

∫
Ω |∇u|

2∫
∂Ω u

2
≤ σk(Ω) + ε.

Taking ε→ 0 we obtain the lim sup inequality.
2. Proof of (3.4). Consider ε > 0 and subspaces Sn

k of H1(D) such that

σk(Ωn) + ε ≥ max
u∈Sn

k \{0}

∫
Ωn
|∇u|2∫

∂Ωn
u2

. (3.6)

We want to prove that lim infn→∞ σk(Ωn) ≥ σk(Ω). We can assume that the limit exists by
taking a subsequence which realizes it. Consider for each Sn

k an orthonormal basis {un1 , ..., unk}.
Up to choosing a diagonal subsequence, we can assume that each (uni ) converges weakly in
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H1(D) to some ui, i = 1, ..., k. Using Proposition 3.2 and Remark 3.4 it follows that
∫
∂Ω ui = 0,

so Sk = Span{u1, ..., uk} is admissible as a test space for σk(Ω).
Take u = a1u1 + ...+ akuk ∈ Sk \ {0}. Then vn = a1u

n
1 + ...+ aku

n
k ∈ Sn

m \ {0} satisfies vn ⇀ u
in H1(D). The inequality (3.6) implies that

σk(Ωn) + ε ≥
∫

Ωn
|∇vn|2∫

∂Ωn
v2
n

.

The weak convergence of (vn) to u and Proposition 3.2 imply that

lim inf
n→∞

∫
Ωn

|∇vn|2 ≥
∫

Ω
|∇u|2 and lim

n→∞

∫
∂Ωn

v2
n =

∫
∂Ω
u2.

As a consequence, we have

lim inf
n→∞

σk(Ωn) + ε ≥
∫

Ωn
|∇u|2∫

∂Ωn
u2

.

Since u was chosen arbitrary, we can take the maximum for u ∈ Sk \ {0} in the right hand side
of the above inequality and we get

lim inf
n→∞

σk(Ωn) + ε ≥ max
u∈Sk\{0}

∫
Ωn
|∇u|2∫

∂Ωn
u2
≥ σk(Ω).

Taking ε→ 0 we obtain
lim inf
n→∞

σk(Ωn) ≥ σk(Ω).

Combining the two parts of the proof we conclude that under the hypotheses we considered
we have

lim
n→∞

σk(Ωn) = σk(Ω).

in order to prove part (A) we argue by contradiction. Suppose that lim sup
n→∞

σk(Ωn) > σk(Ω).

The variational formulation implies the existence of some ε > 0 and a k dimensional subspace
Sk of V (Ω) such that up to a subsequence we have

lim
n→∞

σk(Ωn) > σk(Ω) + ε > max
u∈Sk

∫
Ω |∇u|

2∫
∂Ω u

2
.

Therefore, for n great enough we have

σk(Ωn) > σk(Ω) + ε > max
u∈Sk

∫
Ω |∇u|

2∫
∂Ω u

2
.

Consider a basis {u1, ..., uk} of Sk. Like in the proof of part (B), we construct the functions uni
which are perturbations by constants of H1 extensions of ui to the whole D such that

∫
∂Ωn

uni =

0. In this way we construct the k-dimensional subspaces Sn
k = {un1 , ...unk}which are admissible

as test spaces for σk(Ωn). Thus we have

max
u∈Sn

k

∫
Ωn
|∇u|2∫

∂Ωn
u2
≥ σk(Ωn) > σk(Ω) + ε > max

u∈Sk

∫
Ω |∇u|

2∫
∂Ω u

2
.

Denote vn a choice of maximizers of the Rayleigh quotient on Sn
k . We have the representation

vn = bn1u
n
1 + ... + bnku

n
k = bn1 ũ1 + ... + bnk ũk − (bn1c

n
1 + ... + bnkc

n
k). Like in the first part we have

cni = 1
Per(Ωn)

∫
∂Ωn

ũidσ, and we can choose the coefficients (bni ) such that |bni | ≤ 1. Note that in
this setting we do not necessarily have cni → 0 as n→∞, but there is a uniform bound for (cni ).
We can choose a subsequence and relabel it such that vn → b1ũ1 + ... + bkũk − C = u0 − C in
H1(D).

Using Proposition 3.2 part (B), we have

lim inf
n→∞

∫
∂Ωn

v2
n ≥

∫
∂Ω

(u0 − C)2 =

∫
∂Ω
u2

0 − 2C

∫
∂Ω
u0 + C2 Per(Ω) ≥

∫
∂Ω
u2

0,



12 BENIAMIN BOGOSEL

since
∫
∂Ω u0 = 0. Furthermore, the fact that vn → u0 − C in H1(D) and χΩn → χΩ in L1(D)

imply that

lim
n→∞

∫
Ωn

|∇vn|2 =

∫
Ω
|∇u0|2.

Taking n→∞ in the following inequality∫
Ωn
|∇vn|2∫

∂Ωn
v2
n

≥ σk(Ωn) > σk(Ω) + ε

we obtain

max
u∈Sk

∫
Ω |∇u|

2∫
∂Ω u

2
< σk(Ω) + ε ≤ lim sup

n→∞

∫
Ωn
|∇vn|2∫

∂Ωn
v2
n

≤
∫

Ω |∇u0|2∫
∂Ω u

2
0

.

This is a contradiction, since u0 ∈ Sk. �
The hypothesis that Per(Ωn)→ Per(Ω) was crucial in the proof of part (B) of the above theo-

rem, and cannot be discarded. To justify this fact, we propose the following counterexample.

Example 3.6. Denote by S the unit square and by Sn the unit square where we have added a
saw-tooth shape with 2n sides on the upper side of S. For example, we can take S1 to be S with
a right isosceles triangle glued to S. S2 can be obtained by cutting a square of length

√
2/4 from

the top of the ”tooth” of S1. S3 can be obtained from S2 by cutting squares of side
√

2/8 from
the top of each tooth of S2. This procedure constructs inductively the sets Sn. Note that the sets
Sn satisfy a uniform cone condition.

Furthermore, all the shapes Sn have the same perimeter, equal to 3 +
√

2, thus Per(Sn) →
2 +
√

2 > 4 = Per(S). We will show that the Steklov spectrum of Sn does not converge to the
Steklov spectrum of S.

Proof: In the proof we will denote by T the edge of the square S to which the saw-tooth is
glued, and B the other three edges of the square S. We denote by gn the function whose graph
represents the sawtooth in an orthogonal system of coordinates where the horizontal axis is
directed by T . Note that in this case |g′n(x)| = 1 for almost every x ∈ T . Denote by Tn the graph
of gn on T .

Let u ∈ H1(S) be an eigenfunction of S, corresponding to σ1(S). Since S is a Lipschitz
domain, u can be extended to H1(R2), and then take the restrictions of u to Sn as test functions
in the definition of σ1(Sn).

To do this, we need to make these restrictions admissible by modifying them with a constant
in order to have the orthogonality to a constant function on Sn. We define un = u−cn such that

0 =

∫
∂Sn

un =

∫
∂Sn

u− cn Per(Sn).

This implies cn = 1
Per(Sn)

∫
∂Sn

u.
With the above notations we have∫

Tn

u =

∫
T
u(x, gn(x))

√
1 + |g′n(x)|2dx

=
√

2

∫
T
u(x, 0)dx+

√
2

∫
T

∫ gn(x)

0

∂u

∂y
(x, y)dydx.

Using techniques similar to the ones involved in the proof of Proposition 3.2, we find that∫
Tn

u→
√

2

∫
T
u as n→∞.

In the same way, we can prove that∫
Tn

u2 →
√

2

∫
T
u2 as n→∞.
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We evaluate ∫
∂Sn

(u− cn)2 =

∫
∂Sn

u2 − c2
n Per(Sn)

=

∫
B
u2 +

∫
Tn

u2 −
(
∫
B u+

∫
Tn
u)2

3 +
√

2

and we see that for n→∞we have

lim
n→∞

∫
∂Sn

u2
n =

∫
B
u2 +

√
2

∫
T
u2 − (

√
2− 1)2

3 +
√

2

(∫
T
u

)2

.

=

∫
∂S
u2 + (

√
2− 1)

∫
T
u2 − (

√
2− 1)2

3 +
√

2

(∫
T
u

)2

>

∫
∂S
u2,

by the Cauchy-Schwarz inequality. The equality could take place only if u is constant zero on
T , but if this happens for every side of the square, then u is zero on the whole S, which is a
contradiction.

Thus

σ1(S) =

∫
S |∇u|

2∫
∂S u

2
> lim

n→∞

∫
Sn
|∇un|2∫

∂Sn
u2
n

≥ lim inf
n→∞

σ1(Sn).

Therefore the sequence of first Steklov eigenvalues of Sn does not converge to the first Steklov
eigenvalue of S. �

There exist examples in the literature which illustrate the fact that the ε-cone condition is also
essential. Girouard and Polterovich consider in [8] one such examples. It consists of taking Ωε

being two disks of radius 1 connected by a thin tube of length ε and width ε3. In the limit, these
connected disks converge to Ω which is formed of two tangent disks. Obviously, such sets do
not satisfy a uniform cone condition. We have Per(Ωε) → Per(Ω), but the Steklov eigenvalues
of Ωε converge to zero.

4. EXISTENCE RESULTS FOR THE OPTIMIZATION OF FUNCTIONALS OF THE STEKLOV
SPECTRUM

In this sections we will present some consequences of the facts proved in the previous sec-
tions. We will be able to establish some existence results for the problem of maximizing the
Steklov eigenvalue of Ω under different constraints.

Theorem 4.1. Suppose D is a bounded, open set in Rd. Denote by Oε the class of open subsets
of D which satisfy an ε-cone property and have unit volume. Then the problem

max
Ω∈Oε

σk(Ω)

has a solution.

Proof: Take (Ωn) a maximizing sequence. The Hausdorff convergence is compact,Oε is closed
under this convergence and therefore there exists an open set Ω ∈ Oε such that up to taking a

subsequence and relabelling, we have Ωn
Hc

−→ Ω. Proposition 2.3 or the estimate (1.1) implies
that there exists an upper bound for Per(Ωn). The compactness properties of the perimeter
(see for example [12, Theorem 12.26]) imply that there exists a subsequence denoted again
(Ωn) such that (Ωn) converges to Ω in the sense of characteristic functions and furthermore,
lim
n→∞

Per(Ωn) ≥ Per(Ω) and applying Theorem 3.5 (A) we deduce that

lim sup
n→∞

σk(Ωn) ≤ σk(Ω).

The fact that (Ωn) is a maximizing sequence coupled with the above inequality proves that Ω is
the set which maximizes σk(Ω) in the class Oε. �
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Note that convex sets Ω satisfy a ε-cone condition, with ε depending on the radius of a ball
contained in Ω, as well as of the box D containing Ω. We would like to give a general existence
result for the maximization of σk(Ω) in the family of the convex sets. In order to apply the
results of the previous section, we would need a bounding box for Ω. The result given below
proves that a maximizing sequence for σk(Ω) is always confined in a bounded open set D.

Proposition 4.2. Suppose that (Ωn) is a sequence of open, convex sets with unit volume, which
satisfy the property that diam(Ωn)→∞. Then σk(Ωn)→ 0.

Proof: This result is a consequence of the bound (4.1) proved in [5], which states that if we
denote by I(Ω) = Per(Ω)/|Ω|

d−1
d then

σk(Ω) ≤ cdk
2
d
|Ω|

d−2
d

Per(Ω)
. (4.1)

Indeed, we could consider a diameter of length M and make a Steiner symmetrization in the
direction of the diameter. There exists a section ω orthogonal to the diameter which maximizes
Hn−1(ω). The fact that Ω has unit volume implies Hn−1(ω) ≥ 1/M . Consider the cone C
generated by ω and the considered diameter. This cone is contained in Ω, and by convexity,
the perimeter of Ω is bounded from below by the perimeter of the cone C. Using techniques
similar to those in our proof presented below, we can see that the Per(C) ≥ cM

1
d−1 , where c is

a dimensional constant. This, together with (4.1) implies that σk(Ω)→ 0 as M →∞.
In the case of convex sets it is possible to give a direct proof, which we present below. This

proof avoids the technical measure theory result used in [5], in order to prove (4.1).
Let Ω be an open, convex set of Rd, having unit volume. Denote by M its diameter, and

denote X0Xk one of its diameters. In order to make the proof easier to read, we divide it into
several parts.

Part 1. Bound from below of the volume of a region. We call a cap of Ω the part of Ω
contained in a half-space determined by a hyperplane α orthogonal to the diameter X0Xk. We
call region of Ω a subset of Ω contained between two hyperplanes α, β which are orthogonal to
X0Xk.

Let’s start by giving a lower bound for the volume of a cap. Denote Y = α ∩X0Xk and the
length X0Y by L. Denote Ω− and Ω+ the caps of Ω determined by α, which contain X0 and Xk,
respectively. Denote C− the cone with vertex X0 and base Ω∩α. Denote also with C+ the cone
which is the dilated of C− with center X0 and a factor M/L. The convexity of Ω implies

C− ⊂ Ω− and C+ \ C− ⊃ Ω+.

Therefore we have
|Ω−|
|Ω+|

≥ |C−|
|C+| − |C−|

=
Ld

Md − Ld
,

which, in turn, implies |Ω−| ≥ Ld/Md|Ω|.
If instead of a cap, we consider a region, we can apply two times the above bound and find

a similar lower bound. Denote Ω− the part of Ω contained in the half-space determined by γ
which containsX0, Ω+ the part of Ω contained in the half-space determined by β which contains
Xk and Ω0 the region determined by α and β. Denote also A = α ∩X0Xk, B = β ∩X0Xk.

Using the bound on a cap, we have

|Ω0| ≥
ABd

AXd
k

|Ω0 ∪ Ω+|,

and

|Ω+ ∪ Ω0| ≥
AXd

k

X0Xd
k

|Ω|.

Combining the two bounds, we arrive at

|Ω0| ≥
Ld

Md
|Ω|,
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where we have denoted the length of AB by L.
Part 2. Bound from below of the perimeter of a region. Suppose we have a region Ω0 of

width L, like in the previous section. In the following, we will denote by cd a constant which
depends only on the dimension of the space. We perform a Steiner-symmetrization of this
region with respect to the direction AB, which we denote Ω∗0. For an introduction to Steiner
symmetrization see [11, Chapter 6] or [3, Chapter 6]. It is known that performing a Steiner
symmetrization preserves the volume, preserves the convexity and decreases the perimeter.
Thus, as a first consequence, Per(Ω∗0) ≤ Per(Ω0). Another property of the Steiner symmetrized
set Ω∗0 is that all slices with a hyperplane orthogonal to AB are d−1-dimensional balls. Among
these balls, there is one, denoted ω, having radius r0, which has the maximal Hd−1 measure.
Denote a = d(A,ω), b = d(B,ω). Obviously, we have a+ b = L. Since

|Ω∗0| ≥
Ld

Md
,

we deduce thatHd−1(ω) ≥ Ld−1

Md , which gives us a lower bound r ≥ cd L

M
d

d−1

.

We denote ω1 = α ∩ Ω, ω2 = β ∩ Ω. The fact that Ω0 is convex, and its d − 1-dimensional
slices orthogonal to AB are disks, means that the truncated cones determined by T1 = (ω, ω1)
and T2 = (ω, ω2) are contained in Ω.

We know from [3, Lema 2.2.2] that since T1 ∪ T1 ⊂ Ω∗0 and T1 ∪ T2,Ω
∗
0 are convex, we have

Per(T1 ∪ T1) ≤ Per(Ω∗0). If we denote by R the region of Rd situated between the hyperplanes
α, β, then Per(T1∪T2, R) ≤ Per(Ω∗0, R). This inequality is true because the part of the perimeters
of Ω∗0 and T1 ∪ T2 which is contained in ∂R is the same for both sets.

All we need in order to conclude, is to bound from below the lateral area of a truncated cone.
If we denote by r1, r the two radii of ω1, ω, then we have two cases. If r1 = r then T1 is a
cylinder and the lateral area of T1 is equal to aHd−2(ω) = cdar

d−2. If r1 < r then the lateral area
is given by ∫

ω\projωω1

√
1 +

a2

(r − r1)2
≥ cda

rd−1 − rd−1
1

r − r1
≥ cdard−2.

Thus the lateral area of T1 ∪ T2 is bounded below by

Per(T1 ∪ T2, R) ≥ cdLrd−2.

Combining all the above estimates, we arrive at

Per(Ω0) ≥ cd
Ld−1

M
d(d−2)
d−1

.

Thus for a region Ω0 of Ω with width L = αM we have

Per(Ω0) ≥ cdαd−1M
1

d−1 .

Part 3. Upper bound on the Steklov spectrum
For k ≥ 1 divide the diameter X0Xk into k equal parts using points Xi, and use orthogonal

hyperplanes αi through Xi to divide Ω into k subsets of width M/k (in the direction of X0Xk).
We define k functions (ui) ⊂ H1(Ω) such that ui is supported in region i. We choose them to
depend only on the distance from the bounding hyperplanes. One choice is the following:

• ui starts from 0 on αi−1 and increases with gradient 1 until it reaches 1.
• ui is constant for a while.
• ui descends with gradient 1 until it reaches −1.
• ui is constant for a while.
• ui increases with gradient 1 until it reaches 0.

A schematic picture can be found in Figure 1. Furthermore, we can translate the part where
ui grows from −1 to 1 so that

∫
∂Ω ui = 0. With this construction we have the following bound
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FIGURE 1. Form of the function ui in the direction of the diameter

on the Rayleigh quotient corresponding to ui:∫
Ω |∇ui|

2∫
∂Ω u

2
i

≤ 1

Hd−1(∂Ω ∩ {ui = ±1})
Using the bounds obtained in the previous section, we have

Hd−1(∂Ω ∩ {ui = 1}) ≥ cdαd−1
1 (M/k)

1
d−1

Hd−1(∂Ω ∩ {ui = −1}) ≥ cdαd−1
2 (M/k)

1
d−1

where α1 + α2 ≥ 1− 4k
M . Thus

Hd−1(∂Ω ∩ {ui = 1}) +Hd−1(∂Ω ∩ {ui = −1}) ≥ cd(α1 + α2)d−1(M/k)
1

d−1 .

These bounds allow us to conclude that as M →∞we have∫
Ω |∇ui|

2∫
∂Ω u

2
i

≤ cd
k

1
d−1

(1− 4k/M)d−1M
1

d−1

M→∞−→ 0.

As a consequence, we have the bound

σk(Ω) ≤ max

∫
Ω |∇

∑
aiui|2∫

∂Ω(
∑
aiui)2

≤ max

∫
Ω |∇ui|

2∫
∂Ω u

2
i

,

where we have used the fact that the functions ui have disjoint support in Ω. This means that

σk(Ω)→ 0 as M →∞.
�

Using the previous result, we can deduce the existence of a maximizer for the k-th Steklov
eigenvalue in the class of convex sets.

Corollary 4.3. The problem
max
|Ω|=1

σk(Ω)

has a solution in the class of convex sets.

Proof: Take (Ωn) a sequence of sets with measure 1 such that σk(Ωn)→ sup|Ω|=1 σk(Ω). If (Ωn)

contains a subsequence such that diam(Ωn) → ∞, then by Theorem 4.2, σk(Ωn) would have a
subsequence converging to zero. This is impossible, since (Ωn) is a maximizing sequence. Thus
the diameters of (Ωn) are bounded from above, and therefore we can assume that all the sets
Ωn are contained in a bounded open set D.

The by the compactness of Hausdorff convergence, there exists a subsequence denoted (Ωn)

such that Ωn
Hc

−→ Ω. The properties of the Hausdorff convergence imply that Ω is also convex
and contains a compact ball B (see [11, Chapter 2]). Proposition 2.2.15 in [11] proves that for
n large enough, we must have B ⊂ Ωn. Proposition 2.4.4 in [11] allows us to say that for n
large enough, the sets Ωn and the set Ω satisfy a uniform cone condition. Thus, we can apply
Theorem 3.5 to conclude that

lim sup
n→∞

σk(Ωn) ≤ σk(Ω).
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σ1 = 1 σ2 = 2.87 σ3 = 3.86 σ4 = 4.56 σ5 = 5.61

σ6 = 6.24 σ7 = 7.43 σ8 = 7.99 σ9 = 9.15 σ10 = 9.75

FIGURE 2. Convex shapes with unit area which give highest k-th Steklov eigen-
value in our numerical observations

The Hausdorff convergence implies the convergence of characteristic functions inL1(D), which,
in turn implies that |Ω| = lim

n→∞
|Ωn| = 1. Thus Ω maximizes σk(Ω) among convex sets of the

same measure. �

Remark 4.4. The treatment of the perimeter constraint, in the case of convex sets, is also straight-
forward, since we can apply Theorem 3.2 directly, for a maximizing sequence.

Corollary 4.5. In the following, we consider A to be the class of ε-cone sets contained in a
bounded open set D, or the class of convex sets, having unit volume.

(A) If F : Rk → R is upper semi-continuous and increasing in every variable, then the
problem

max
Ω∈A

F (σ1(Ω), ..., σk(Ω)).

has a solution.
(A) If G : Rk → R is lower semi-continuous and increasing in every variable, then the

problem
min
Ω∈A

G(1/σ1(Ω), ..., 1/σk(Ω)).

has a solution.
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