
Maximizing the Steklov eigenvalues with a diameter constraint 

Maximizing the minimal relative perimeter of a partition 

Optimizing supports in additive manufacturing. 

Optimization of the supports in additive manufacturing: various models, numerical computations 

Optimization of various functionals under constant width/diameter and convexity constraints 

Computation of Cheeger sets and Circle/Sphere packings via a $\Gamma$convergence relaxation 

Optimal partitions for eigenvalues in 3D 

Eigenvalue optimization in the class of shapes of constant width 

Automatic detection of carbon nanotubes  image processing (SEMIE 2016, Grenoble) 

Critical waves using a shape optimization approach 

Minmax optimal partitions for Dirichlet eigenvalues 

Maximization of the first Dirichlet Laplace eigenvalue on domains with holes 

Contour smoothing on triangulations  minimization of perimeter  area constraints 

Large spectral partitions 

Optimal spectral partitions on the sphere 

Perimeter minimizing equiareal partitions on surfaces 

Optimizing Dirichlet Laplace eigenvalues  volume constraint in 2D ($k \leq 21$) 
 Optimizing Dirichlet Laplace eigenvalues  perimeter constraint in 2D ($k \leq 50$) 

Optimizing Dirichlet Laplace eigenvalues  perimeter constraint  $\Gamma$convergence method 2D and 3D 

Optimization of functionals depending on the Steklov spectrum 

Numerical method based on fundamental solutions  computation Steklov spectrum 

Minimal spectral partitions on 2D regions 

Numerical computations for the multiphase problem $\min \left( \sum_{i=1}^h
\lambda_k(\Omega_i)+m\Omega_i\right)$ 

Numerical testing for Polya's conjecture  $N \in [5,15]$ 

Numerical optimal partitions for anisotropic
perimeters using $\Gamma$convergence 

Numerical minimal equal area partitions on general regions
using $\Gamma$convergence 
 The basic idea behind numerical methods based
on $\Gamma$convergence. Numerical example: the isoperimetric problem. 