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PERTURBED OPTIMIZATION IN BANACH SPACES I: A GENERAL THEORY
BASED ON A WEAK DIRECTIONAL CONSTRAINT QUALIFICATION*

J. FRIDRIC BONNANS AND ROBERTO COMINETTI

Abstract. Using a directional form of constraint qualification weaker than Robinson’s, we derive an implicit
function theorem for inclusions and use it for first- and second-order sensitivity analyses of the value function in
perturbed constrained optimization. We obtain H61der and Lipschitz properties and, under a no-gap condition,
first-order expansions for exact and approximate solutions. As an application, differentiability properties of metric
projections in Hilbert spaces are obtained, using a condition generalizing polyhedricity. We also present in the
appendix a short proof of a generalization of the convex duality theorem in Banach spaces.
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1. Introduction. This paper is the first of a trilogy devoted to sensitivity analysis of
parametrized optimization problems of the form

(Pu) min{f(x, u) G(x, u) K}
x

where f and G are C2 mappings from X x + to ] and Y, respectively, X and Y are Banach
spaces, and K is a closed convex subset of Y.

While the theory is fairly complete in the case of finite-dimensional mathematical pro-
gramming, that is, optimization problems with finitely many equality and inequality con-
straints, the sensitivity of perturbed optimization problems in Banach spaces is still being
developed. Just to mention a couple of recent works related to this topic, see for instance
[3, 8, 9, 11, 19, 21, 26] as well as the monographs [10, 13, 18] and references therein.

Loosely speaking, the assumptions that support a complete sensitivity analysis of the
value function and optimal solutions are uniqueness of the optimal solution for the unper-
turbed problem, constraint qualification, existence of Lagrange multipliers, and second-order
sufficient optimality conditions.

Concerning constraint qualification, the standard assumption is Robinson’s generalization
[23] of the Mangasarian-Fromovitz condition [20]. Following the lines of previous works in
mathematical programming [2, 5, 7, 12, 14], in this paper we show that sensitivity analysis is
still possible under a weak directional form ofconstraint qualification that takes into account the
nature ofperturbations. This condition is used to derive a generalization ofRobinson’s implicit
function theorem for systems of inequalities that, in conjunction with a strong second-order
sufficient condition, allows us to obtain first- and second-order upper and under estimates of
the marginal function. When these two estimates coincide (we give some sufficient conditions
for this) the first-order sensitivity of approximate optimal solutions of (Pu) is obtained.

Our second-order expansion includes a term that takes into account the possible curvature
ofthe boundary of K and does not appear in the classical setting ofmathematical programming
where K is a polyhedral set. This curvature term, studied in [9, 17] in the context of second-
order necessary conditions (see also the previous work [4]), leads to a generalization of the
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notion of polyhedric set and to new results on differentiability of metric projections onto
convex sets in Hilbert spaces.

We observe that in the case of the trivial perturbation f (x, u) f (x, 0) and G(x, u)
G (x, 0) for all u, the directional constraint qualification reduces to Robinson’s condition and
our upper estimates to the necessary optimality conditions obtained in [9]. Similarly, from
our under estimates one can easily derive (new) sufficient conditions for local optimality.

When the strong second-order condition fails, and particularly when the set of Lagrange
multipliers is empty, we know that directional differentiability of solutions and of the marginal
function may fail [5]. It seems that the directional constraint qualification considered in this
paper is too weak to obtain a satisfactory sensitivity analysis in such cases. This motivates a
strenghtened form of directional qualification, which is the subject of part II of this work.

Finally, in part III we study the application of both theories to semi-infinite programming,
that is to say, optimization problems with X finite dimensional and infinitely many inequality
constraints. In that case there is a gap between the upper and lower estimates, so we will fill
this gap by computing sharper lower estimates.

We denote the feasible set, optimal value, and solution set of (Pu) as

F(u) := {x X G(x, u) K},
v(u) := inf{f(x, u) x F(u)},

S(u) := {x F(u): f(x, u) v(u)}.

Similarly, given an optimization problem (P) we denote by F(P), v(P), and S(P) its feasible
set, optimal value, and optimal solution set, respectively.

The set of Lagrange multipliers associated with an optimal solution x S(u) is

Au(x) {) Y* ) NK(G(x, u)), .’x(X, ), u) --0}

with Y* denoting the dual space of Y, NK(y) the normal cone to K at y, and/2 the Lagrangian
function

/(x, ), u) := f(x, u) + (), G(x, u)).

For the rest of this paper we assume v(0) finite and S(0) nonempty. We also consider
a fixed optimal solution x0 6 S(0) and denote by A0 :-- A0(x0) the corresponding set of
multipliers.

Finally, we recall the definition of the first- and second-order tangent sets:

TK(y) := {h 6 Y: there exists o(u) such that y + uh + o(u) K},

T(y, h) "= k Y there exists O(U2) such that y + uh + -u + O(U2) K

Throughout this paper o(u) and o(u2) will be used freely to denote any terms that are
negligible compared to u and u2. Similary, O(u) and O(u) denote terms of orders u and u2.

2. Upper estimates of the value function. We are interested in sensitivity analysis of
(P,), that is to say, the study of differentiability properties of the optimal value function
v and the optimal (set-valued) map S. To this end we consider the linear and quadratic
approximating problems:

(L)

(Q)

(Ld)

min{f’(x0, 0)(d, 1) G’(xo, O)(d, 1) 6 TK(G(xo, 0))},
d

min{v(Ld) d 6 S(L)},

min{fx’(Xo, 0)w + apf(d) G’x(XO, O)w 4- aPG(d) TK2(d)},
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where we have set

f (d) := f"(x0, O) (d, 1) (d, 1),

a(d) :- G"(xo, O)(d, 1)(d, 1),

r (d) := r(G (x0, 0), G’ (x0, O) (d, 1)).

The motivation for these approximating problems is the following.
We say that u -+ Xu is afeasible path if Xu F(u) for u > 0 small enough and xu tends

to x0 when u $ O. Suppose that we have a feasible path of the form Xu xo + ud + o(u).
A first-order expansion gives G(xu, u) G(xo, O) + uG’(xo, O)(d, 1) + o(u) K, so d is
feasible for (L) and also

(1) v(u) < f(Xu, u) v(O) + uf’(xo, O)(d, 1) + o(u),

suggesting that v(u) <_ v(O) + u v(L) + o(u).
2Similarly, if d S(L) and Xu xo + ud+ u w+o(u2) is a feasible path, a second-order

Taylor expansion of G(xu, u) shows that w 6 F(Ld), and

lu2(2) v(u) <_ f(xu, u) v(O) 4- u v(L) + - [ff (xo, O)w + (I)/(d)] 4- o(u2),

u2 v(Q) 4- o(u2).so we may expect v(u) <_ v(O) + u v(L) + -To prove these upper estimates it suffices to show that each d F(L) admits an o(u)
correction such that xo + ud + o(u) F(u) and similarly that each w F(L,) admits an
o(u2) correction such that xo + ud + u2w + o(u2) 6 F(u). The existence of such corrections
may be established by using Robinson’s regularity theorem [23, Thm. 1], which is based on
the constraint qualification condition

(CQ) 0 6 int [G(x0, 0) + G’ (xo, O)X K].

However, this condition does not take into account the specific form of perturbations, so,
loosely speaking, it will work uniformly no matter what type of perturbations are being con-
sidered. We shall rather use the following refinement ofRobinson’s regularity theorem proved
in Appendix B, which allows us to discriminate those perturbations for which sensitivity anal-
ysis can be carried out.

THEOREM B.5. Let us assume the directional constraint qualification

(DCQ) 0 int [G(xo, 0) + G’(xo, O)X x (0, o) K].

Then for each trajectory Xu xo + 0 (u) there exist constants c > O, uo > 0 and a second
trajectory yu such that G(yu, u) K and

Ily, Xu <_ c d(G(xu, u), K)

for all u [0, uo].
It may not be apparent that (CQ) implies (DCQ). To see this we remark (see Appendix

B) that the latter is equivalent to

(DCQ)’ 0 int [G(xo, 0) + G’(xo, 0)X x [0, c) K].

PROPOSITION 2.1. Suppose (DCQ) holds. Then limsupu,o[V(u v(O)]/u <_ v(L) and
when v(L) > -oc we have the first-order upper estimate

(3) v(u) < v(O) 4- u v(L) 4- o(u).
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Also, lim SUPu+0 2[v(u) v(O) u v(L)]/u2 <_ v(Q) and when v(Q) >-cx the following
second-order upper estimate holds:

(4) 2v(u) < v(O) + u v(L) + -u v(Q) + o(u2).

Proof. Let d be feasible for (L). Applying Theorem B.5 with Xu xo + ud we find
a feasible trajectory Yu such that IlYu Xull <_ c d(G(xu, u), K) o(u). Then Yu
xo + ud 4- o(u) and the first-order estimate follows from (1).

To prove the second-order estimate, let d 6 S(L) and w 6 F(Ld). Applying Theorem B.5
withxu xo+ud+uZw we get a feasible trajectory yu with [lYu -Xu < c d(G(xu, u), K)

2//3 2)O(U2). Then Yu xo + ud + iu + o(u and the conclusion follows from (2).
The above upper estimates are only meaningful if v(L) < +cxz and v(Q) < +x. Let us

then prove the following result.
PROPOSITION 2.2. Assuming (DCQ) we have v(L) < +cx. Moreover, in this case

v(Q) < +cxz ifand only if there exists d S(L) such that TZ(d) 5
Proof. Using (DCQ) we may find > 0 and d 6 X with G’(xo, O)(d, t) K G(xo, 0).

Then d/t is feasible for (L) and consequently v(L) < +cxz.
Clearly v(Q) < +cxz requires T(d) qb for some d S(L).
To prove the converse we fix k 6 T(d) so that, according to [9, Prop. 3.1],

(5) k 4- I+[Tic(G(xo, 0)) G’(xo, O)(d, 1)] C T(d).

Using (DCQ) we find/z > 0 with/z[k a(d)] 6 G(xo, 0) + G’(xo, 0)X x (0, cxz) K, and
then for some z 6 X and > 0 we get

dPG(d k 4- --[K G(xo, O) G’(xo, O)(z, t)]

z-td 1
k G’x(XO,0) 4- --[Tlc(G(xo, 0)) tG’(xo, O)(d, 1)].

Letting w := (z td)/lz and using (5) we deduce that

G’x(XO, O)w 4- o(d) k 4- --[Tl((G(xo, 0)) G’(xo, O)(d, 1)] C TZ(d),

proving that (Ld) is feasible and then v(Q) < V(Ld) < 4-0. [3

3. Differentiability of the value function and suboptimal trajectories. To find lower
estimates of the cost and sufficient conditions for the existence of the right derivative v’(0),
we use convex duality theory to get the following characterization for v(L).

PROPOSITION 3.1. Assume (DCQ). Then v(L) v(D) and S(D) c]), where

(D) max{E’ (xo, X, 0) X 6 Ao}.

Moreover, v(L) > -o if and only if Ao q, in which case S(D) is a nonempty weak*
compact subset of Ao.

Proof. This is a consequence of the convex duality theorem of Appendix A, Theorem
A.2, applied to problem (L) with the perturbation function

f’ (xo, 0) (d, 1)
o(d, y)"=

4-cx

if G’(xo, 0)(d, 1) 4- y Ti(G(xo, 0)),
otherwise.
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Indeed, from (DCQ) we get

Y T:(G(xo, 0)) G’(xo, O)X x (0, )

+ U[TK(G(xo, 0)) G’(xo, 0)(d, 1)],
deX

so + Ud dom o(d, .) Y and Theorem A.2 can be used to deduce

(6) v(L) mintp*(0, ,).

A straightforward computation shows that

o* (x*, z) [ +-z:’u (x0, z, 0) if . NK(G(xo, 0)), "x (xo, , O) x*,
otherwise,

which combined with (6) yields the desired conclusions. [3

We state our next results using suboptimal paths. We say that Xu is an o(u)-optimal
trajectory if it is a feasible path and v(u) f(Xu, u) + o(u).

Existence of o(u)- and o(u2)-optimal paths requires finiteness of v(u). Conversely, when
the latter holds, one may always find o(u) or o(u2) approximate solutions of (Pu). The fact
that these paths do converge to x0 as u tends to 0 can be proved in a number of particular
situations (see for instance [6, 12]).

In addition, we shall either assume H61der and Lipschitz stability of these suboptimal
paths (these assumptions will be discussed in 6) or we shall suppose that problem (P0) is
convex in the sense that for all y K and ) NK(y) the mapping 2(., ., 0) is convex. The
next result, under the convexity assumption, extends that given by Gol’stein 15].

PROPOSITION 3.2. Suppose that (DCQ) holds, there exists an o(u)-optirnal trajectory
Xu, and either (Po) is convex or Xu xo + o(v/-ff). Then v is right differentiable at 0 with
v’(O) v(L). Moreover, when A0 q we have

v(u) v(0) + u v(L) + o(u).

Proof. If A0 b we have v(L) -cx and the result follows immediately from
Proposition 2.1. Otherwise, by Proposition 3.1 we may take , S(D) C Ao so that

v(u) v(O) f(Xu, u) f (xo, O) + o(u)
>_ (x., ., u) (xo, , O) + o(u).

Since/3) (xo,), O) O, when (Po) is convex we get (xo, ., O) < (xu, ,k, O) and when
Xu xo + o(/ff) a second-order expansion gives/2(xo, ), O) .(Xu, ,k, O) + o(u). In both
cases we obtain

v(u) v(O) >_ (Xu, Z., u) F_.(Xu, , O) + o(u)

and, since Xu tends to x0, deduce that

lim inf
uS0

v(u) v(o)
> t (xo, , O) v(D) v(L),

which combined with Proposition 2.1 yields the desired conclusions. [3

As a further consequence we establish a relation between the solution set S(L) and the
right derivatives of suboptimal trajectories.
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PROPOSITION 3.3. With the assumptions ofProposition 3.2 we have:
(a) S(L) is the set ofall weak accumulation points of (Xu xo)/u, where Xu ranges over

all possible o(u)-optimal trajectories.
(b) If S(L) c, then there exists an o(u)-optimal trajectory such that Xu xo -t- O(u).

The converse holds ifX is reflexive.
(c) Ifxu is chosen as in (b), then Au(xu) is uniformly boundedfor u small. Moreover, if

.u Au(xu), then every weak* accumulation point ofJu belongs to S(D).
Proof. (a) Letxu be an o(u)-optimal trajectory and uk 4- 0 be such that (Xu -xo)/uk d.

Then we have [G(xu, u) G(xo, 0)]/u G’(xo, O)(d, 1) and, since Tl(G(xo, 0)) is
weakly closed, deduce that G’(xo, O)(d, 1) 6 Tl(G(xo, 0)), proving that d 6 F(L). Similarly,
[f(Xu, u) f(xo, 0)]/u -- f’(xo, O)(d, 1) and then

v(uk) f(Xu, u) + o(u) v(O) + uf’(xo, O)(d, 1) + o(ut),

so Proposition 2.1 implies f’(xo, O)(d, 1) < v(L), which shows d S(L).
Conversely, let d S(L) and apply Theorem B.5 to the trajectory Xu xo + ud to find

yu xo -t- ud + o(u) F(u). Proposition 3.2 then implies

f(Yu, u) f(xo, O) + uf’(xo, O)(d, 1) + o(u) v(O) + u v(L) + o(u) v(u) + o(u),

proving that Yu is an o(u)-optimal trajectory with (Yu xo)/u d (notice that the limit can
be taken in the strong sense as well).

(b) The argument developed in (a) shows that S(L) # 49 implies the existence of o(u)-
optimal trajectories with Xu xo -t- O(u). Conversely, if such a trajectory exists, then by
reflexivity we may find a sequence uk $ 0 such that (Xu xo)/u converges weakly. From
(a) the limit belongs to S(L), which is then nonempty.

(c) Let .u Au(xu) and select ru Br with II), 11/2 _< (ru, -)u). From relation (17) in
Lemma B.4, for all u small enough there exist du Bx and ku K such that

ueru G(xu, u) + umG’ (xo, O)du ku

where e > 0 and m > 0 are given constants. Taking the product with -u we get

11)11 -< m()u, G’x(XO, O)du)

<_ mllG’x(XO, O) G’x(Xu, u)ll II)u + m()u, G’x(Xu, u)du)

< -II)u mfj (Xu u)du
4

< -II)ull + m(llf(xo, 0)11 / 1)
-4

for u small, and the desired uniform bound on Au(xu) follows.
Now let ) :-- lim )u be a weak* accumulation point of u where u $ 0. Then

Vy K (., y G(xo, 0)) lim(.u, y G(xu, Uk)) < O,

Yd 6 X /2’x (x0,), 0)d lim "x (xu, .u, ug)d O,
k

proving that . 6 A0 F(D). To show is also optimal for (D) we observe that

v(u) < f(Xu, u)
< f(Xu, u) ()u, G(xo, O) G(xu, u))

v(0) + (Xu, Zu, u) (xo, Zu, O)

v(O) + U’u (xo, Zu, O) / o(u + Ilxu x011).
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Dividing by u and passing to the limit in the subsequence uk we get ’u (x0, ., 0) > v’(0)
v(D), so ) S(D). [J

Remark. In part (a) above we also showed that S(L) is the set of all strong limits of
differential quotients of the type (Xu xo)/uk with u $ 0 and even the set of continuous
strong limits

d lim
uS0

Xu Xo

where now xu ranges over all o(u)-optimal trajectories for which this limit exists.

4. Second-order expansion ofthe value function. In this section we supplement Propo-
sition 2.1 by deriving second-order lower estimates for the value function. The next simple
result shows that (4) is a sharp bound.

PROPOSITION 4.1. Suppose (DCQ) holds and assume there exists an o(u2)-optimal path
2)Xu that admits an expansion of theform xu xo + udo + u2wo + o(u Then do S(Q),

wo S(Ldo), and we have

u2v(u) v(o) + u v(L) + - v(Q) + o(u).

Proof. Propositions 3.2 and 3.3(a) imply v’(0) v(L) and do S(L). On the other
hand, a second-order expansion of G(xu, u) shows that wo F(Ldo) and also

v(u) f (Xu, u) + o(u2)
2f(xo, O) + uf’(xo, 0)(d0, 1) + u [fx(X0, 0)w0 + Of(d0)] + o(u2)

v(O) -+- U I)(L) + -u2[ftx (x0, 0)to0 -+- (I)f(d0)] -- o(u2),

which combined with Proposition 2.1 gives the desired conclusions. [3

Unfortunately this result is ofmore theoretical than practical interest since we must ensure
a priori the existence of a second-order expansion of Xu. While it is possible to find conditions
giving a first-order expansion (see 6), we dispose of no analogue for the second-order case.
To overcome this difficulty we tackle the second-order lower estimates using duality theory
as was done in the previous section for the first order. Let us then dualize problem (Ld).

PROPOSITION 4.2. Suppose (DCQ) holds. Then v(Ld) v(Dd) where

(Od) max{E"(x0, ), 0)(d, 1)(d, 1) -a(), T2(d)) ) S(D)},

and a(), T2(d)) sup{(), k) k 6 T(d)} is the supportfunction of T(d). Moreover the
solution set S(Dd) is nonempty.

Proof. The case Tx2 (d) 4 being trivial, we shall assume Tx2 (d) 4 (notice that in this
case d F(L)). Let us consider problem (Ld) with the perturbation function

fx’(X0, 0)w + f(d) if G’x(XO, O)w + G(d) + y TZK(d),0(w, y) +cx otherwise.

To apply Theorem A.2 we must check that + t3o dom qg(w, .) Y. To this end we fix
k 6 TK2 (d) and use property (5) to get

U dom p(w, .) T2K(d) G’x(XO, O)X G(d)

D k + TK(G(xo, 0)) G’(xo, O)X (0, x) di)G(d)
y,

the last equality since (DCQ) implies Tx(G(xo, 0)) G’(x0, 0)X (0, x) Y.
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We may then use the convex duality theorem to deduce

v(Ld) min tp*(O, X)

and a straightforward computation to obtain

99*(0, .) I aO, T(d)) "(xo, ), O)(d, 1)(d, 1) if/2(x0, ., 0) 0,

/ + otherwise.

To complete the proofwe note that if. satisfies/Yx (x0,), 0) 0, we may have a 0, T(d)) <
+cx only if ) 6 S(D) (and d S(L)). Indeed, if a(., T(d)) < +x, property (5) shows
that

(., h G’(xo, O)(d, 1)) < 0 for all h TK(G(xo, 0)).

This implies . 6 NK(G(xo, 0)); hence ) 6 A0, and also (), G’(x0, 0)(d, 1)) > 0 so that

f’ (x0, 0)(d, 1) < ’(x0, ,k, 0)(d, 1) Z3’ (xo,), 0).

Since ,k 6 F(D)and d 6 F(L), this inequality proves that ,k 6 S(D)and d S(L).
With this result we have the following min-max characterization of v(Q):

v(Q) min max E"(xo, ), O)(d, 1)(d, 1) -a0, T(d)).
deS(L) .ES(D)

The term a (), T (d)) above will be referred to as the "a-term" for short and is related,
loosely speaking, to the curvature of the set K (see also [9, 17]). Neglecting this a-term we
obtain second-order lower estimates that, however, may not be sharp. To be precise, let us
consider the function

F (d) := max Z3" (x0, k, 0) (d, 1) (d, 1)
)S(D)

and the optimization problems

min{F(d) d S(L)},

min{F(d) d 6 S(L)},

where St (L) is the set of approximate solutions of (L)

St(L) := {d

To obtain meaningful second-order lower bounds we must assume that v(L) >
By Proposition 3.3 this amounts to A0 b, in which case S(D) is a weak* compact subset
of A0.

PROPOSITION 4.3. Suppose (DCQ) holds, Ao , and assume there exists an o(u2)
optimal path Xu such that xu xo + 0 (u). Then, for each e > 0 we have

1
(7) v(u) >_ v(O) + u v(L) + -u2 v(O_.e) + o(/,t2).

Moreover, ifany of thefollowing conditions hold:
(a) the path may be expanded as Xu xo + udo + o(u),
(b) X is reflexive and F is weakly l.s.c, at each do S(L),
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then the previous lower bound may be strengthened to

u2 v(0) + o(u2)(8) v(u) >_ v(O) + u v(L) + -Proof. For each ,k S(D)we have

(9) v(u) f(Xu, u) + o(u2)
> f(Xu, u) + (), G(xu, u) G(xo, 0)) + o(u2)

v(O) + F-,(Xu, Z,, u) (xo, , O) + o(u)

v(O) + u v(L) + - (xo, , O)(xu xo, u)(Xu xo, u) + o(u2)

and the small term o(u2) may be chosen uniform in . since S(D) is bounded.
Applying Theorem B.4 to the mapping ((x, u) "= G(xo, O) + G’(xo, O)(x xo, u) we

find a path yu with (Yu, u) K and

(10) IlYu xull <_ c d((Xu, u), K) < c II(Xu, u) G(xu, u)ll o(u).

Replacing in (9) we find

v(u) > v(O) + u v(L) + - (xo, ), O)(yu xo, u)(yu xo, u) + o(u2)

with o(u2) still independent of ). Thus, letting du (yu xo)/u and taking the supremum
in ) over the bounded set S(D), we get

1
(11) v(u) >_ v(O) + u v(L) + -u2I(du) -!- o(u2).

But (Yu, u) K implies du F(L), andtheequality v(u) f(Xu, u)+o(u2) f(Yu, u)+
o(u) implies that for each e > 0 the vector du belongs to S(L) for u small, so (7) follows
immediately from (11).

Let us next choose Uk $ O, realizing the lower limit lim infu 2[v(u) v(0) uv(L)]/u2.
When (a) holds we have du --+ do, while in case (b) we may assume (by eventually passing to
a subsequence) that du converges weakly to some do. In both cases Proposition 3.3 implies
do S(L) and using (11) (and the 1.s.c. of F) we get

(12) V(Uk) >_ v(O) + u v(L) + ur’(d0) + o(u,),

from which (8) follows.

5. Asymptotic expansions of suboptimal solutions. In this section we prove the ana-
logue of Proposition 3.3 for the second-order problem (Q). Roughly speaking, the solution
set S(Q) is the set of right derivatives of o(u2)-optimal paths.

This result is obtained under a strong assumption, namely, that there exists no gap between
the upper and lower estimates (4) and (8). This no-gap condition is not true in general--we
will see in part III that semi-infinite programming does not satisfy this property--but is still
valid for a large class of applications, one of which will be considered in 7.

The next result gives sufficient conditions for having no gap.
PROPOSITION 5.1. (a) For ) S(D) and d S(L) one has cr(), T(d)) < O.
(b) Ifd S(L) and O T(d), then crO, T2(d)) Ofor all ; S(D).
(c) IfO T2K(d) for all d in a (strongly) dense subset of S(L), then v(Q) v(O).
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Proof. For all ) 6 S(D) and d S(L) we have 0, G’(x0, 0)(d, 1)) 0. Moreover,
since ) 6 Ni(G(xo, 0)), for each k T2(d) we get

2)(), G(xo, O) + uG’(xo, O)(d, 1) %- -u2k %- o(u G(xo, 0)) < O,

from which (), k) < 0 and (a) follows.
Property (b) is obvious from (a). To prove (c) we notice that (a) implies v(Q) > v(Q),

so we must only show the converse inequality. To this end it suffices to assume S(L) , in
which case S(D) is weak* compact and then F is strongly continuous. The required inequality
follows using (b). [3

Note that 0 6 T (y, h) when K is polyhedral in the sense that TK (y) +(K y). This
is the case for optimization problems with equality constraints and finitely many inequality
constraints, where K {0} x/IP__. Thus, the condition "0 6 T(d) for all d in a dense subset
of S(L)" may be interpreted as a generalization of polyhedrality which, in a certain sense,
rules out any curvature of K. We shall refer to this condition as extended polyhedricity (see
also the discussion at the end of 7).

COROLLARY 5.2. Let the hypothesis ofProposition 4.3(b) be satisfied, and suppose that
the extended polyhedricity condition holds. Then v(Q) v(Q) and we have

v(u) v(O) + u v(L) + v(Q) %- O(U2).

The previous results raise the question whether a second-order expansion compatible with
curvature may hold. In this sense, we mention that the sharp lower estimate

(13) lU2 2)v(u) > v(O) %- u v(L) %- - v(Q) %- o(u

holds under assumption (a) of Proposition 4.3 and the additional hypothesis:
(H) For all sequences un $ 0 and Yn Y %- unh %- O(Un) K, there

2 2exists kn T(y, h) with Yn Y + unh + unk %- O(Un).
The proof is similar to that of Proposition 4.3 and is left to the reader. In the case of assumption
(b) in Proposition 4.3, (H) must be suitably modified in terms of weakly convergent sequences.

While (H) is not always satisfied, we observe that it holds whenever 0 6 T (y, h). To
see that (H) is in fact more general than the latter one may consider the set K {(x, y) 6

2. y >_ X2 that satisfies (H) but 0 g T(y, h). Unfortunately, we do not know an easy way
to check (H) in the general case. Nevertheless, in part III of this work we obtain sufficient
conditions for obtaining the sharp lower estimate (13) in semi-infinite programming problems.

The next result links S(Q) with the asymptotic behavior of suboptimal paths. Part (b) is
a converse of Proposition 4.1.

2PROPOSITION 5.3. Suppose (DCQ) holds, A0 : q, there exists an o(u )-optimal path Xu
such that Xu xo %- O(u), and suppose in addition that v(Q) v(O) and is weakly l.s.c.
at every d S(L). Then:

(a) S(Q) c S(O) andfor every o(u2)-optimal path Zu, the weak accumulation points of
(Zu xo)/u belong to S(Q).

(b) If X is reflexive, do S(Q), and wo S(Lao), then there exists an o(u2)-optimal
path of theform Zu xo %- udo %- 7u2wo %- o(u2).

Proof. (a) Since v(Q) v(Q) and the cost of (Q) dominates the cost of (Q), we
deduce S(Q) c S(O). If do is the weak limit of (Zuk xo)/u, reasoning as in the proof
of (9) and using (4) we obtain v(Q) > F(d0). But Proposition 3.3 implies do S(L), so
F(d0) > v(0)- v(Q)and then do 6 S(0).
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1/,12(b) Using Theorem B.4 we may find a feasible path zu xo + udo + wo + o(u2).
Expanding f(zu, u) we get

1
f(Zu, u) f (xo, O) + uf’(xo, 0)(do, 1) + u2[f’x(XO, O)wo + /(do)] + 0(/42

lU2v(O) + uv(L) + - v(Q) -I" O(U2)

lu2v(O) + uv(L) + - v(Q) + O(U2)

< O(U) + O(U2),

where the last inequality follows from Proposition 4.3. This shows that Zu is o(u2)-optimal
and the proof is complete. ]

Remark. In the next section we check that, under some reasonable hypothesis, every
o(u2)-optimal path satisfies Xu xo + O(u). When X is reflexive this implies the existence
of weak accumulation points of (Xu xo)/u, so that S(Q) is nonempty. We also observe
that when 0 6 T(d) for all d S(L), the cost function in (Q) and () coincide so that

s(a) S(O).
6. Hiilder and Lipschitz properties of suboptimal paths. We discuss next the H61der

and Lipschitz stability properties of suboptimal paths assumed in the previous sections. The
results we present are simple variants of known results (e.g., [8, 12, 14, 26]). The essential
difference lies in the use ofthe weaker directional regularity condition (DCQ) and the extension
to the infinite-dimensional setting.

Typically, the stability properties follow from different second-order sufficient optimality
conditions. More precisely, for each set fa C A0 we consider the second-order condition

soc() There exist or, r/> 0 s.t. max/:j (xo,)v, O)dd > ot d Co,

where

Co {d X Ildll 1, f’x(XO, O)d < rI, G’x(XO, O)d TK(G(xo, 0)) + rlBy}.

When the space X is finite dimensional, or more generally when Co is strongly compact for
some 0 > 0, this condition is equivalent to the positive definiteness requirement:

soc’() For each d 6 Co we have max/:’x’ (xo,)v, O)dd > 0,

where only the critical cone Co needs to be considered. Also, when (CQ) holds, one can
replace Co by a smaller set (see [8]).

PROPOSITION 6.1. Assume (DCQ), A0 b, andsuppose SOC(f2) holdsfor some bounded
f2 C A0. Thenfor each O(u)-optimal path Xu we have Xu xo -+- O(/-ff).

Proof. By contradiction suppose there exists u $ 0 such that lim r/u +cx, where
:- Ilxu x011.
Then limg Uk/r 0 and letting d := (Xu x0)/r we have G(Xu, u) G(xo, O) +

rG(x0, 0)dg + o(r) so that Gx(XO, O)dk TK(G(xo, 0)) + rIBr for k large. On the other
hand, since Xu is an O(u)-optimal path and using Proposition 2.1, we may find a constant M
such that for u small

(14) f (xu, u) < v(O) + Mu,

and since f(xu, u) f(xo, O) + rkf(xo, 0)dk + O(rk), we deduce f(xo, 0)d < for all
k large enough. The previous argument shows that dk Co for large k.
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Now, using (14), for each . f2 we have

.(Xu, ), u) .(xo, ), O) < f(Xu, u) f(xo, O) < Mu,

and since ’x (x0,), O) O, a second-order expansion of f and G leads to

), O)(xu xo, u)(Xu xo, u) < [M Ju(XO, ), 0)]u + (1 + IIll)o(llx +x0112 u2

with the small term o(llxu xoll 2 / u2) not depending on ). Since f2 is bounded, we deduce
that

max"(x0, ) 0)(dk uk/r)(dk u/r) < M’u + M"(r + u)

for some constants M’ and M", from which we get

lim sup max (xo,), O)ddk < O,

contradicting SOC(f2). [3

COROLLARY 6.2. Assume Ao dp and any of the twofollowing conditions:
(a) (CQ) and SOC(Ao),
(b) (DCQ), Co is strongly compactfor some rl > O, and SOC’(Ao).
Thenfor each O(u)-optimal path Xu we have Xu xo + O(v/-ff).
Proof. In case (a) the set f2 := A0 is bounded and the result follows at once from the

previous proposition.
In case (b) the set Co is Compact and then, letting A "= A0 f B(0, k), we get

lim min[max Z2 (x0, ., 0)dd] min[max/J(x0,), 0)dd] > 0.
kcx dCo kA dCo .Ao

Hence, for k large SOC’(f2) holds with S2 A, and we may conclude again using the
previous proposition. ]

The preceding results are not as strong as to ensure the property Xu xo + o(/-ff) needed
in Proposition 3.2. Let us then prove a Lipschitz stability result, valid for general Banach
spaces, that can be used to check the hypothesis of both Proposition 4.3 and Proposition 3.2.

PROPOSITION 6.3. Suppose (DCQ), A0 tp, and assume SOC(f2) holdsfor f2 := S(D).
Suppose also that v(Q) < +xz. Then, for each O(u2)-optimal path Xu we have Xu
xo + O(u).

Proof. The proof is similar to that of Proposition 6.1. We proceed by contradiction
assuming lim r/u +c for a given sequence u $ 0 and r := Ilxu x011, so that

d "= (Xuk xo)/rk belongs to Co for k large.
Since Xu is an O (u2)-optimal path, using Proposition 2.1 we may find a constant M such

that for u small

f(Xu, u) < v(O) + u v(L) + Mu2,
and then for each . 6 S(D) we have

(Xu, ), u) .(xo, ), O) <_ f(Xu, u) f(xo, O) <_ u .’u(XO, , O) + Mu2.

Expanding f and G we get

12"(xo, ), O)(&, u/r)(d, u/r) < 2M
u ++

with the small term o(r + Uk2) not depending on . (here we use the boundedness of S(D)).
The conclusion follows as in Proposition 6.1.
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7. Directional differentiability of metric projections. In this section we use the pre-
ceding results to compute the directional derivatives of projections onto convex sets in Hilbert
spaces. More precisely, the problem is to study the right differentiability of the unique optimal
solution of

/min IIx yu112 x K

where K is a closed convex subset of a Hilbert space H and u -- Yu is a smooth mapping
from N+ to H. Let us consider the slightly more general format

/min llx- Yull2 G(x, u) K

assuming that G(., 0) is a linear mapping G(x, O) Ax and that (DCQ) and A0 :/: P hold.
Notice that these properties are satisfied when we have (CQ), which is obviously the case if
A is surjective and particularly if G(x, O) x as in (Pu).

Since G(x, 0) is linear, we have ."x(XO, ), O) I, so SOC(2) is automatically satisfied
for f2 S(D) and problem ()) is strongly convex. In particular, S()) is reduced to a
singleton.

PROPOSITION 7.1. Suppose (DCQ), A0 7(: P, and the extended polyhedricity condition.
Then the unique solution Xu of P’u) may be expanded as

Xu xo + udo + o(u)

where do is the unique solution of ).
Proof. Propositions 6.3 and 5.3(a) imply that du "= (Xu xo)/u converges weakly

to do, the unique solution of (Q). Now, using the second-order bound (4), the equality
v(Q) v(Q) F(d0), and inequality (9), we deduce that

limsup 1-’(du) < 1-’(do).
u$O

Since I" is strongly convex, we conclude that du converges strongly to do, completing the
proof. [3

In the special case G(x, u) x and yu yo + uho; that is, when we study directional
differentiability of the projection onto K at Y0 in the direction h0, the set S(L) is just the
critical cone

S(L) Co {d TK(xo) d _1_ (Yo x0)},

so the problem ()) reduces to

min{lld h0 2 d 6 Co}.

Hence we get as an immediate consequence the following result.
COROLLARY 7.2. Assuming the extended polyhedricity condition, the projection Xu of

Yo at- uho onto K can be expanded as

Xu xo + udo + o(u),

where do is the projection ofho onto Co.
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Among the papers studying differentiability properties of metric projections we mention
11, 16, 19, 22, 26, 27]. A common hypothesis in these studies is that K has to be polyhedric

in this sense that for each x 6 K and every ,k 6 NK(x) one has

Tc(x) (q )+/- IR+(K.- x) )+/-.

Since S(L) Ti((xo)f-(yo-xo) +/- and0 6 T(xo, d)whenever d 6 R+(K-x0), the extended
polyhedricity condition is in fact a generalization of polyhedricity. Notice that this hypothesis
always holds when Y0 6 K since then Co T/((G (x0, 0)), which was the case studied in [27].
Another extension of polyhedricity is considered in [3].

8. Conclusion and further problems. We have shown that a satisfactory sensitivity
analysis for perturbed problems of the form

(Pu) min{f(x, u) G(x, u) K}

may be obtained under directional constraint qualification conditions that are weaker than the
standard Robinson’s condition.

Since the results are scattered throughout the paper, we provide a summarized (though
necessarily incomplete) version of the main results obtained in the paper. The precise meaning
of the stated assumptions and notation is made clear in the preceding sections of the paper, to
which the reader is referred.

THEOREM 8.1. Let the functions f, G defining (Pu) be of class C2, and suppose X is
a reflexive Banach space. Let xo be an optimal solution for (Po) at which the following
assumptions are satisfied."

(i) directional constraint qualification (DCQ),
(ii) existence ofmultipliers A0 - 0,
(iii) second-order sufficient condition SOC(S2) for f2 S(D),
(iv) existence ofan o(uZ)-optimal trajectory,
(v) extended polyhedricity,
(vi) d -- E(xo, ), O)dd is weakly lower semicontinuousfor all ) S(D).

Then."
(a) The optimal valuefunction may be expanded as

1
u(u) u(O) %- ulJ(L) -Jr- uZu(0) %- o(u2),

where (L) and (Q) are the linear and quadratic approximating optimizing problems.
(b) The optimal solutions of (L) are the same as the weak accumulation points of the

differential quotients (Xu xo)/u where x, ranges over the set of all possible o(u)-
optimal trajectories.

(c) Every o(uZ)-optimal path z, satisfies z, zo + O(u), and the weak accumulation
points of (z, zo)/u are optimal solutionsfor (0).

We remark that a key ingredient for attaining these results is the generalization of Robin-
son’s implicit function theorem presented in Appendix B, which is based on the weak direc-
tional constraint qualification condition (DCQ).

The main results of this paper are limited to problems for which there is existence of
multipliers and satisfying the strong second-order sufficient condition stated as (iii) above,
which ensure the existence of suboptimal paths of the form x, x0 %- O (u).

In the setting of finite-dimensional mathematical programming we know [5] that this
type of expansion may fail. For instance, when A0 b but only the weak second-order
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condition holds, suboptimal paths may only satisfy Xu x0 + 0 (/-ff) and it may happen that
v’(O) < v(L). On the other hand, when A0 P we may even have v(u) v(O) + O(/-ff).

It seems that (DCQ) is too weak to extend these results to the general framework discussed
in the present paper. Theorem B.4 may not be used since it requires the a priori bound
Xu xo + O(u), and its refinement Theorem B.1 may only handle those paths such that
[[Xu x0[I < Y for a sufficiently small ,.

These remarks lead us to consider a strenghtened form of directional constraint qualifi-
cation, well suited to the analysis of problems of the form

min{f(x, u) Gl(x, u) KI, G2(x, u) K2}

where K1 and K2 are closed convex subsets of some Banach spaces with int(K2) 7 b. This
study will be the subject of part II of this work.

Appendix A. The convex duality theorem in Banach spaces. This short appendix
presents a short proof of the convex duality theorem of Robinson [24]. This result is a
generalization of [25, Thin. 18(c)] (see also [1, Thm. 1.1]). We include it since the version
we present is more directly applicable to the dualization of problems (L) and (Ld) in the
previous sections and also since the method of proof is very simple. The basic argument is
the following lemma due to Robinson [24] (also used in Appendix B) for which we provide a
simplified proof too.

Given a subset C C X Y we denote by Cx and Cy the projections of C onto X and Y,
respectively.

LEMMA A.1. Let X, Y be two normed spaces with X complete. Let C C X Y be a
closed convex set with Cx bounded. Then

int (Cr) int (Cr).

Proof. It clearly suffices to show int (Cr) C Cr; that is, given y 6 int (Cr) we must find
2. 6 X such that (2, y) 6 C. To this end let us take e > 0 with B(y, e) C Cr and choose
an arbitrary point (x0, Y0) 6 C from which we generate a sequence (Xk, Yk) C using the
following "algorithm."

while (Yk -) do
Let ck e/llyk yl] SO that w "= y + ot( y) B(, e) C Cr.
Take (u, v) 6 C with [Iv w[[ _< E[IY Y[[ and define

k 1
(Xk+l, yk+) := (x, y) + (u, v) C.

+Ck +0tk

endwhile.
If the algorithm stops, then we have y y and we may take 2. x. Otherwise, the generated
sequence satisfies

Ilxk u diam(Cx)
(i) IIx/ xll Ily YlI,

+ck e

Ilv- wll < -[[Yk Nil.(ii) [[Yk+l Yll + k 2

From (ii) it follows that IIY YI[ < [lY0 YI]/2. This implies that y --+ y and also,
in combination with (i), that (xk) is a Cauchy sequence. The completeness of X gives the
existence of a limit 2. for (x), and the closedness of C implies (2., y) C as required. [3

We may now proceed by proving the convex duality theorem.
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THEOREM A.2. Let O(y) := inf{q)(x, y) x X}, where q) X x Y --+ ]R U {+x} is a
closed proper convexfunction with X, Y Banach spaces and IR+ t_lx dom q)(x, .) Y. Then
0 is continuous in a neighborhood of0 and 0 (0) < +cxz.

In particular 0 (0) 0"* (0), which can be written as

(15) inf 0(x, 0) min q)*(0, y*),
xX y*aY*

and the solution set of the minimum on the right is 00(0), which is nonempty and weak*-
compact when 0 (0) is finite, and the whole space Y* when 0 (0) -cx.

Proof. Since 0 is convex, the continuity near 0 is equivalent to 0 being bounded above in
a certain neighborhood of 0. To show this, let ot IR and x0 6 X be such that 99(x0, 0) < c
and consider the closed convex set

C {(x, y) g)(x, y) < c; Ilxll IIx011 + 1}

that is nonempty and has Cx bounded.
Since O(y) < for all y Cr, it suffices to show that Cr is a neighborhood of 0. From

Lemma A. 1 this amounts to 0 6 int(Cr), which, by Baire’s lemma, is a consequence of the
fact that Cr is absorbing as we show next. For any y 6 Y there exist > 0 and x 6 X with
q)(x, ty) < +, so for e > 0 small enough we have

I1(1 e)x0 + exll Ilx011 + 1,

qg((1 e)(xo, O) + e(x, ty)) < (1 e)o(xo, O) -t- eqg(x, ty) < ,
showing that ety Cr for all e > 0 small.

We observe that O*(y*) p*(0, y*) so that (15) is just a rewriting of 0(0) 0"*(0).
From this we also get that 00(0) is the solution set of min 99*(0, y*), and the last claim is a
well-known fact in convex analysis (see [25]).

Appendix B. Regularity theorems under directional constraint qualification con-
ditions. Throughout this section we suppose that G X x IR+ Y is a C2 mapping and
the spaces X, Y are Banach. Also K C Y is a closed convex set and x0 6 X is such that
G(xo, O) K and satisfies the constraint qualification

(DCQ) 0 int [G(x0, 0) + G’(xo, O)X x (0, cxz) K]
We begin by stating the equivalence.

PROPOSITION B.1. Condition (DCQ) is equivalent to

(DCQ)’ 0 6 int [G(x0, 0) + G’(xo, O)X [0, cx) K].

Proof. Clearly (DCQ) implies (DCQ)’. Conversely, suppose (DCQ)’ holds and choose
0 with

sBr C [G(xo, O) + G’(xo, O)X [0, (:x) K].

Let 3 > 0 be such that 3[Br G’u(XO, 0)] C eBr. Then

3By C [G(xo, O) + G’(xo, O)X [3, xz) K],

from which (DCQ) follows.
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THEOREM B.2. Let Xu be a trajectory such that [IXu xoll < ?’Vcff, and suppose
d(G(xu, u), K) < mu for some constants y, m and all u > 0 close to O. If ?’ is small
enough, we canfind constants c > O, uo > 0 and a trajectory Yu with

G(yu, u) K,
C

Ilyu xull <_ -(u / IlXu xoll)d(G(xu, u), g),
U

for all u 6 (0, u0].
Our proof will be based on the following couple of lemmas.
LEMMA B.3. Under assumption (DCQ), there exist e > O, ot > 1, and-ff > 0 such that

for all u [0, fi]

2ueBr C G(xo, O) + uG’u(XO, O) + uaGx(XO, O)Bx K.

Proof. Letting A := G(xo, O) + kG’(xo, O)Bx x [0, 1] K f) kBr, condition (DCQ)
gives

0 6 intU{A k 6 N};

thus the completeness of Y implies 0 6 int(A) for some k 6 11. But the set A can be
expressed as the projection over the fourth component of the closed convex set

C {(x,y,t, G(xo, O)+G’(xo, O)(x,t)-y)’llxll < k, Ilyll _< k,y K,t [0, k]},
and since the projection of C onto its first three components is bounded, Lemma A.1 gives
int(Ak) int(Ak). Therefore we may find e > 0 such that

2ekBr C G(xo, O) + kG’u(XO, O) k[0, 1]G’u(XO, O) + kG’x(XO, O)Bx K,

which multiplied by u/k and rearranged becomes

(16) 2ueBy C G(xo, O) + uG1u(XO, O) + uG’x(XO, O)Bx S,

where

( u) u
S := 1 G(xo, O) + [0, 1]uG’u(XO, O) 4- K.

Now, (DCQ) implies Gu (xo, O) [y G(xo, O) G’ (xo, 0)d]/6 for some y 6 K, d 6 X,
and > 0, so

[( u ] uUk G(xo, O) + y + -K --Gx(xo, O)d.

Since K is convex, we deduce that S C K [0, 1]G(x0, 0)d for all u < K := 8k/(6 + k),
which combined with (16) yields the desired conclusion for c "= + Ildll/8. t

In the next lemma we denote

M sup{llG"(x, u)ll IIx xoll 1, 0 u }.

/ue/Mfor all u sufficiently small.LEMMA B.4. Let o I+ --+ + be such that 99(u) < -Then there exists uo > 0 such that, for each trajectory Xu with

Ilxu xoll qg(u) Vu [0, u0],
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one hasfor all u [0, uo]

(17) u/3By C G(xu, u) -t- (otu + Ilxu xoll)a’x(XO, O)Bx K.

Moreover, we can associate to Xu another trajectory Yu such thatfor all u (0, uo]

(i) d(G(yu, u), K) < -d(G(xu, u), K),

2
(ii) IlYu xull <_ (u + Ilxu xoll)d(G(xu, u), K).

Proof. The hypothesis on q)(u) ensures the existence of uo 6 (0, g] such that

(18) 8M[au + o(u)]2 <u/3<_M Y u 6 [O, uo].

To show (17) we observe from (18) that Ilxu xoll _< o(u) _< 1, and then letting b :=
G(xu, u) G(xo, O) G’(xo, O)(xu xo, u) we have

(19) Ilbll < M(u + Ilxu -xoll)2 < M[otu + q)(u)]2 _</l/3.

Thus, Lemma B.3 gives

u/3Br b C 2u/3Br C G(xo, O) + uG’u(XO, O) + uotGx(XO, O)Bx K,

and then

u/3Br C G(xu, u) + Gx(XO, O)[-(Xu xo) + uotBx] K,

from which (17) follows at once.
Let us construct next the trajectory yu for u 6 (0, uo].
If G(xu, u) K we just take yu Xu so that (i) and (ii) hold trivially.
Otherwise we choose r such that G(xu, u) + r K and

(20) Ilrll 2d(G(xu, u), K),

and we use (17) to select d with Ildll u + Ilxu xoll such that
r

(21) ue G(x, u) + G’x(XO, O)d K.
Ilrll

With these choices we define yu Xu + d, where/3 := Ilrll/(u/3 + Ilrll) < 1.
Property (ii) follows immediately from (20) and the inequality

IlYu -xull =/lldll _< Ilrl--l (cu / Ilxu -xoll).
ue

To check property (i) we observe that Ildll _< cu / o(u) and then, using (18),

[lyu -xoll cu + 2qg(u) _< 1.

Then we can apply the mean value theorem to find 6]Xu, Yu with

(22) IIG(yu, u) G(xu, u) G’x(XO, 0)dll IIG’x(, u) G’x(XO, 0)ll IId[I

< M(u + II -xoll)lldll

2M
<_ [oeu / o(u)]211rll

< -d(G(xu, u) K)
2

where we have used the bound u + II xoll _< 2[otu -t- q)(u)], (18), and (20).
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Now, from (21) we get

G(xu, u) + G’x (xo, O)d (1 )G(xu, u) + ue [-l + K,

since 1 -/3 13ue/llrll, we deduce

[G(xu, u) + G’x(XO, O)d (1 )(G(xu, u) + r) +K C K,

which combined with (22) yields (i).
Proof of Theorem B.2. Let q)(u) := e4m/e(otu nt- IIx xoll) and suppose that 9/ <

-4m/ee so that Lemma B.4 can be used to find uo.
Starting with y,O := Xu we shall construct recursively a sequence y such that for all

u 6 (0, uo] one has

(i) d(G(yu, u), K) < -d(G(yu- u) K)

2
(ii) Ilyu yu-11] < (au + Ilyu- xoll)d(G(yu-, u), K).

ue

To prove the existence of such a sequence it suffices to check inductively that

(iii) ]lyu-x01]_<0(u) Yu6(0, u0],

so that Lemma B.4 can be used to find the next term yuk+l. Since (iii) obviously holds for
k 0, we only need to prove the inductive step. Suppose Y0, y y are such that (i) and
(ii) hold; then for every u 6 (0, u0] we have

2 d(G(xu, u), K)
(23) Ilyu Yu

k-1 _< --(ou + Ilyu-l xoll)
ue 2t-1
2m

< (cu -I-Ily.-le2t_ xoll),

so that letting at "= otu + IlYu xoll we get

It follows that

at < at-, + Ilyu Y-’ (1 +

lnat _< lnak_l q-In d-
e2k_

_< lnak-1 -t e2k_

and then recursively

2m (1 2__1) 4m
In at <lnao+ + +-..+ <lnao+,

from which we obtain the desired conclusion (iii) as

IlYu xol[ _< ak < aoe4m/e qg(u).

The existence of the sequence (yt) being established, we may use the previous bound
ak < q)(u) and (23) to obtain

2q)(u)d(G(x, u), K)
(24) ilYu y-I <

u2k-1

which shows that t(Y,)tr is a Cauchy sequence for each u 6 (0, u0].
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Let yu := limk, yu. From (i) we deduce that G(yu, u) K, while (24) implies

4o(u)
Ily, x, <_ d(G(xu, u), K),

u8

4 e4m/e [3proving the theorem with c :=
A careful analysis of the previous proof shows that the result is still valid if G is supposed

of class C (or merely strictly differentiable at (x0, 0)) provided we restrict to the case of
trajectories Xu xo + 0 (u). More precisely we have the following theorem.

THEOREM B.5. Let G X Y be strictly differentiable at (xo, O) and K C Y be
a closed convex set. Suppose that G(xo, O) K and (DCQ) holds. Thenfor each trajectory
Xu xo + O(u) there exist constants c > O, uo > 0 and a second trajectory Yu such that

G(yu, u) K,

IlYu xull < c d(G(xu, u), K),

for all u [0, u0].
Proof. It is clear that the result will follow from Theorem B.2, which is applicable since

Xu xo + O(u) implies Xu x0 + o(rff) and d(G(xu, u), K) O(u).
However, we must check that Theorem B.2 remains valid under the weaker C assumption

on G and the stronger Xu xo + O(u) condition. To this end all we need is to modify Lemma
B.4. More specifically, it suffices to adjust the arguments leading to the bounds (19) and (22),
which is easily accomplished by fixing g 6 and u0 6 (0, K] such that o(u) < gu for all
u 6 [0, u0] and then reducing .u0 so that

IIG(y, v) G(x, u) G’(xo, O)(y x, v u)ll < (IlY xll4(c +
for each u, v 6 [0, u0] and every x, y B(xo, (or + 2)u0).

As a corollary of the preceding result we obtain the following directional version of
Robinson-Ursescu’s regularity theorem for convex multifunctions.

THEOREM B.6. Let M X 2" be a multifunction with closed convex graph. Let
Yo M(xo) and let Yu be a C trajectory with y(O) yo and

(RU) 0 int[M(X) y(0) (0, cxz)y’(0)].

Thenfor each trajectory Xu xo + O(u) one has

d(xu, M-1 (Yu)) < c d(yu, M(x,))

for a given constant c and all u > 0 sufficiently small.

Proof. The result follows as a direct application ofTheorem B.5 to the function G(x, u)
(x, Yu) and the closed convex set K graph(M).

APPLICATION. As a particular case of the previous result let us consider Yo M(xo) and
suppose that d 6 Y is such that

[0 6 int[M(X) Y0 (0, cxz)d].

Then, for each trajectory Xu xo + O(u) there exists 2u such that

Yo + ud M(2u),

lieu xull <_ c d(yu, M(xu)).

In particular, letting x, x0 we obtain the existence of a trajectory u x0 + O (u) with
yo + ud M(u).
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