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PERTURBED OPTIMIZATION IN BANACH SPACES II: A THEORY BASED ON A
STRONG DIRECTIONAL CONSTRAINT QUALIFICATION*

J. FRIDIRIC BONNANS AND ROBERTO COMINETTI

Abstract. We study the sensitivity of the optimal value and optimal solutions ofperturbed optimization problems
in two cases. The first one is when multipliers exist but only the weak (and not the strong) second-order sufficient
optimality condition is satisfied. The second case is when no Lagrange multipliers exist. To deal with these patho-
logical cases, we are led to introduce a directional constraint qualification stronger than in part of this paper, which
reduces to the latter in the important case of equality-inequality constrained problems. We give sharp upper estimates
of the cost based on paths varying as the square root of the perturbation parameter and, under a no-gap condition,
obtain the first term of the expansion for the cost. When multipliers exist we study the expansion of approximate
solutions as well. We show in the appendix that the strong directional constraint qualification is satisfied for a large
class of problems, including regular problems in the sense of Robinson.
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1. Introduction. This paper is the second in a trilogy (see [4, 5]) devoted to the analysis
of parametric optimization problems of the form

(Pu) min{f(x, u) G(x, u) K}

with X and Y Banach spaces,K a closed convex subset of Y, and f(x, u), G(x, u) mappings
of class C2 from X x R into and Y, respectively. We denote the feasible set, value function,
and set of solutions of (Pu) as

F(u) := {x 6 X G(x,u) 6 K},
v(u) := inf{f(x, u) x F(u)},
S(u) :-- {x F(u) f(x, u): v(u)},

respectively. Similarly v(P), F(P), S(P) will respectively denote the optimal value, feasible
set, and solution set of an optimization problem (P).

Our aim is to study the expansion of v(u) and possibly S(u) in the vicinity of a local
solution x0 of (P0). Such sensitivity analysis usually relies (among other assumptions) upon
stability properties of the feasible set F(u) that follow from so-called constraint qualification
conditions. In part I of this work (see [4]) our study was based on the following generalization
of Gollan’s constraint qualification (see [1, 10]):

(OCQ) 0 int [G(x0, 0) + G’(xo, O)X x (0, ec) K]
which is a directional version of Robinson’s condition 14]

(CQ) 0 6 int [G(x0, 0) + G’ (xo, O)X K].
Under (DCQ) we obtained the following upper estimate of the optimal value:

(1.1) v+(0) _< v(L),
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where v_ (0) and v’_ (0) denote the upper and lower Dini derivatives of the value function:

v(u) v(O)
(0) := lim sup

uS0 U

v(u) v(O)v’ (0) "= lim inf
uS0 u

and (L) is the problem with linearized data:

(L) min{f’(x0, 0)(d, 1) G’(xo, O)(d, 1) Ti(G(xo, 0))}.
d

Using duality theory we proved that v(D) v(L) < cx, where (D) is the problem

(D) max{E’ (xo,), 0) ) 6 Ao},

with Z the Lagrangian and A0 the set of multipliers associated with x0, that is to say, denoting
by NI(y) the cone of outward normals at a point y 6 K,

/(x, ), u) := f (x, u) + (,k, G(x, u)),

Ao {k Y* ) NI,:(G(xo, 0))" Etx(XO, ), 0) --0}.

Define apath as a mapping u --+ Xu from/+ to X, with Xu --+ xo when u $ 0. The path is
said to be feasible if G (Xu, u) K for u small enough. Under a strong second-order condition
on the Lagrangian it can be shown [4] that any o(u2)-optimal path Xu, i.e., a feasible path Xu
such that f (Xu, u) < v(u) + o(u2), satisfies xu xo + O(u). In this case v’(0) exists, being
equal to v(L), and some estimates for the second-order variation of v(u) can be obtained. In
fact, under suitable conditions we proved that

(1.2) 1/,/2v(u) v(O) + u v(L) + - v(Q) "]" O(U2),

where (0) is a subproblem involving the expansion of orders and 2 of the data at (x0, 0).
A remarkable property in this case is that every weak limit of (xu xo)/u, with Xu an o(u2)
optimal path, belongs to S(O).

The available perturbation theory for nonlinear programming shows that this is not the
end of the story. Under the directional qualification hypothesis of Gollan 10] and the weak
second-order sufficient condition, it appears (see [9] by Gauvin and Janin) that v’(0) exists
but may be strictly less than v(L). In that case, a path of O (u -optimal solutions satisfies only
Xu xo + 0 (.v/d). One can still formulate (see Bonnans, Ioffe, and Shapiro [6]) a subproblem
(M) such that v’(0) v(M) and S(M) coincides with the limit points of (Xu xo)/-ff where
Xu ranges over the set of all possible o(u)-optimal paths. For this it is necessary to assume the
existence of at least one multiplier. A similar theory for the case when no multiplier exists
was developed in [3] by Bonnans; here the variation of the cost as well that of the solutions is
of order O

The aim of this paper is to extend these two theories to the Banach space setting. Our
main results are Theorem 3.9 and Theorem 4.6.

The first one, valid under the weak second-order sufficient condition, provides a first-order
expansion of the form

v(u) v(O) + uv(b) + o(u),
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where (D) is a problem involving the expansion of orders and 2 of the data. Moreover, it
shows that every weak limit point of (Xu xo)/x/-ff, with Xu an o(u)-optimal path, solves (/)).

The second one is concerned with problems where no Lagrange multipliers exist. In this
case we obtain a square root expansion of the form

v(u) v(O) + /-dv(b) + o(Cd),

where (/) is another linear-quadratic approximating problem.
To prove these results we need a constraint qualification that is still directional but, ap-

parently, stronger than (DCQ). Specifically, in addition to (DCQ) we need a restorability
property that, roughly speaking, asserts that to certain almost feasible square root paths (i.e.,
paths satisfying xu x0 + O (/ff)), one can associate a sufficiently close feasible path. In the
case of nonlinear programming, that stronger hypothesis (SDCQ) reduces to the condition of
Gollan (see 1, 10]) used in [9, 3, 6], so we recover the main results of these three references.
Let us mention that square root paths have already been used for sensitivity analysis in a
Banach space setting (see [2, 11, 12]). However, our qualification condition is weaker than
those in these references.

As in part I of this work, in our extension to the Banach space setting, an additional
difficulty related to the possible curvature of the convex K appears. To be more precise, let
us recall the definition of first- and second-order tangent sets:

Tr(y) := {h Y" there exists o(t) such that y + th + o(t) K},

T(y,h):={kY" thereexistso(t2) suchthaty+th+t2k+o(t2)K].
The fact that in general 0 does not belong to the set T (y, h) may cause a gap between the
upper and lower estimates for the cost. Some cases when the curvature makes no contribution
to the second-order variation of the cost were analyzed in part I, yielding the expansion (1.2)
under a condition of generalized polyhedricity. The results in this paper are obtained under
similar assumptions.

The paper is organized as follows. In 2 we describe the strong directional constraint
qualification (SDCQ). Then in 3 we develop a perturbation theory assuming the set of
multipliers A0 to be nonempty, whereas 4 deals with the case when A0 is empty. In both
cases we obtain sharp upper estimates as well as some lower estimates of the cost and, under
a no-gap condition, obtain the first term in the expansion of the cost. Finally in the appendix
we discuss sufficient conditions for the strong directional constraint qualification (SDCQ).

2. The strong directional qualification condition. Our upper estimates are based on
paths that vary as the square root of the perturbation parameter. Specifically, we consider
paths satisfying, for given d, w in X, the two conditions

(2.3) xu xo + x/ffd + uw + o(u),

(2.4) dist(G(xu, u), K) o(u).

Note that we can express (2.4) using the concept of a second-order tangent set. Namely, if Xu
satisfies (2.3), then the expansion

G(xu, u) G(xo, O) + /-ax(XO, O)d + u a’(xo, O)(w, 1) + -G(xo, O)dd + o(u)

shows that (2.4) is equivalent to

(2.5) tPa(w, d) 6 Tf (d),
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where we have set

TC (d) := - T(G(xo, 0), Gx(xo, O)d),

o(w, d) :-- G’(xo, O)(w, 1) + -G:(xo, O)dd,

qf (w, d) := f’ (xo, O) (w, 1) + - f’ (xo, O)dd.

Remark. The set T2K (d) should not be confused with the set

r(d) := r2K(G(xo, 0), G’(x0, 0)(d, 1))

defined in part I of this paper and which will not be used here.
DEFINITION 1. We say that xo is restorable (with respect to G and K) if, given a path

Xu satisfying (2.3) and (2.4), for y < close to one can find we X with we -- w and
feasible paths of theform

(2.6) Xru xo + y V/-ffd + uwr + o(u).

We say that the strong directional constraint qualification (SDCQ) holds at xo ifxo is restorable
and the weak directional constraint qualification (DCQ) holds.

We discuss some sufficient conditions for (SDCQ) in the appendix at the end of this
paper. We show in particular that for equality-inequality constrained problems (i.e., when
K {0} K2 with K2 a closedconvex cone with nonempty interior), property (SDCQ) is
equivalent to (DCQ). In fact, it may be that the restorability property is always a consequence
of (DCQ), but we do not have a proof nor a counterexample for this.

Before proceeding with the sensitivity analysis we summarize in the next lemma four
general properties that will be of constant use throughout the paper. Here a (., Tf (d)) "=

sup{ (), k) k Tr (d)} denotes the support function of T2r (d).
LEMMA 2.1. For every d X we have thefollowing.

(P1) T(d) + TK(G(xo, 0)) +G’,(x0, 0)d C Tff(d).
(P2) If(DCQ) holds, then 0 int[TK(G(xo, 0)) G’(x0, 0)X {1}].
(P3) rfi (rd) ’2r( (d) for all , > O.

(P4) If Tfi (d) qb, then thefollowing are equivalent:
(a) a (., rK (d)) < 0.
(b) a(), T(d)) isfinite.
(c) . NK(G(xo, 0)) and (;k, Gx(XO, O)d) O.

Proof. Properties (P 1) and (P2) are straightforward consequences of [8, Prop. 3.1 and
[4, Lem. B.3], respectively, while (P3) is an easy exercise.

Let us prove (P4). Since T2K (d) : b, the implication (a) =: (b) is straightforward. Also,
the nonemptyness of Tff(d) implies Gtx(XO, O)d TK(G(xo, 0)) and then (b) =: (c) follows
from property (P 1). To prove (c) = (a) let us pick y TK (d) and choose Yt -- y with
zt G(xo, O) + tGtx (xo, O)d + t2yt K. Using (c) we deduce

0 > (., zt G(xo, 0)) (., tG’x(Xo, O)d + t2yt) t2(), Yt),

so that (), y) lim(., Yt) <_ O, proving (a).

3. Perturbation analysis assuming the existence of multipliers. In this section we
study the case when A0 q. First we give an upper estimate of v+ (0), which we can express
as a supremum of a certain function over A0. We then rely on second-order conditions to
obtain lower estimates for v’_ (0) and to investigate the coincidence of both estimates.
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3.1. Sharp first-order upper estimates of the cost. Let Co denote the cone of critical
directions at x0, i.e.,

Co := {d X fj(xo, O)d < 0; G’x(xo, O)d Tl(G(xo, 0))}.

When Ao 4 one has in fact fx (x0, 0)d 0 for all d 6 Co. To a path satisfying (2.3) and
(2.4) is associated the constraint (2.5), whereas qf(w, d) is the first term of the expansion of
the cost. This leads to the problem

(Ld) inf.{f(w,d)" 6(w,d) Tf (d)},
wX

which admits the dual

(Dd) sup E,’u(XO,), O) + E(xo,), O)dd -a(;k, T2K(d))
.6Ao

We also consider the problem

() inf{v(Ld) d Co},
d

which plays a role in the following upper estimate of the cost.
THEOREM 3.1. Assume A0 to be nonempty and (SDCQ). Then

v+(0) < v(L)= inf v(Dd) < v(L) < c.
dCo

In particular, if v([) is finite, then

v(u) < v(O) + uv(L) + o(u).

The theorem is an immediate consequence of the next two lemmas. The first one gives
the primal upper estimate of v_ (0).

LEMMA 3.2. Assuming (SDCQ) we have

v+(O) < v(/,) _< v(L) < x.

Proof. Let d 6 Co and take a feasible w F(Ld). Using the restorability property we
may find w -- w and feasible paths of the form

x xo + g /--ffd + uw + o(u).

Expanding f(Xu u) and using the fact that d is critical, it follows that

v(u) < f(Xu u) < f(xo, O) + utPf(w, vd) + o(u)

so that v_(O) _< qf(w, gd). Passing to the limit when , "l" we deduce that v_(O) _<
qf(w, d), and taking the infimum over w F(L) and d 6 Co we get

v+(O) _< v(L).

We conclude by noting that for d 0 problem (L
by [4, Prop. 2.2].

Let us prove next the dual expression for v(L).
LEMMA 3.3. Assume Ao to be nonempty and (SDCQ). For each d Co we have the

following.
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(i) v(Da) < v(La).
(ii) If (Ld) is feasible, then for all F 6 (0, 1), v(Da) v(Ld) and S(Dd) is

nonempty and bounded.
(iii) If (Ld) is infeasible, then v(Dd) ofor all F > 1.
(iv) limsup.l v(Dr’d) < v(Dd).

As a consequence we obtain

(3.7) v([,) inf v(Dd).
deCo

Proof Let us begin by showing that (3.7) is a consequence of (i)-(iv). The inequality
v(/,) > infdec0 v(Dd) is obvious from (i). To show the converse inequality it suffices to check
that v(Dd) >_ v([) for those d Co such that v(Dd) < . By (iii) this implies (Lca) is
feasible for each , e (0, 1), and then (ii) gives v(Dd) v(Ld) >_ v([,) for all ?’ (0, 1).
We conclude by letting ?, "1" and using (iv).

We now prove properties (i)-(iv).
(i) It suffices to show that if w and ) are feasible for (Ld) and (Dd), respectively, then the

dual cost is not greater than the primal one. From the primal constraint it follows that

which implies

tPf(w, d) > qf(w, d) + (,k, *o(w, d)) a(., T2K (d))

1_ ., (xo,) O)dd a (I. Tf (d)),Eu (xo, ., O) +
2 x

as was to be proved.
(ii) We first claim that v(Ld) and v(Dd) are finite and equal with S(Dd) nonempty and

bounded, whenever

(3.8) Y JR+ Tf(d) G’(xo, 0)X {1} -G(xo, O)dd

To motivate this relation, let us consider the family of problems obtained by perturbing addi-
tively the constraint of (Ld), that is, minuex go(w, y) with

] qf(w, d) if (w, d) + y Tf(d),q)(w, Y) / cxz otherwise.

Property (3.8) amounts to Y + t3o dom o(w, .), so we may apply the convex duality
theorem of part I [4, Thm. A.2] to deduce

(3.9) v(Ld) inf 0(w, 0) min 99* (0,))
wX )Y,

as well as the boundedness and nonemptiness of the set of dual solutions. Now we compute

99*(0, .) sup {(., y) f(w, d) a(w, d) + y T2r(d)}
w6X,yY

sup aO, Tf(d))- .’(xo,),O)(w, 1)- -.x(XO,,O)ddwX

Maximizing over w we deduce that 99* (0, Jk) cxz if/2’x (x0,), 0) 5 0, and then using (P4)
we get

p*(0,)) { a ) T2K d "u X " o lc"2...x(XO, ,k O)dd if . Ao,
cxz otherwise.
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This and (3.9) imply the equality v(La) v(Dd). Moreover, since the dual is attained,
property (P4) shows that this common value is finite. This proves our claim.

In view of the previous discussion, to prove (ii) it suffices to check that for each ?, (0, 1)
property (3.8) holds with d replaced by de :-- ,d. To see this let us choose a feasible
w F(Ld), that is,

1
G’(xo, O)(w, 1) + :G(xo, O)dd Tf (d).

Multiplying by ,2 and using (P3) we deduce that

G’(xo, 0)(’2tO, }/2) + -G’(xo, O)dd Tf(d).

From this and (P 1) we get

TK(G(xo, 0)) G’(xo, O)X {1 ,2} C Tf(d) G’(xo, O)X {1} -G’(xo, O)dd,
which multiplied by + and using (P2) yields (3.8) for de as required.

(iii) Let , > 1 and set d := ?’d as before. If T2r(d) is empty, by (P3) so is Tf(d) and
then a(), T2r (de)) -o, hence v(Dd)

Let us then assume T2r (d) to be nonempty. Since (Ld) is infeasible, the convex set

T2r (d) G’(x0, 0)X x 1 does not contain G(xo, O)dd. But (P 1) and (P2) show that this
convex set has a nonempty interior, so that the Hahn-Banach theorem gives a nonzero/z 6 Y*
that separates the set and the point, that is,

(3.10) lz, G’(xo, O)(w, 1) + -G(xo, O)dd > a(lz, T2r(d)) for all w 6 X.

This inequality and property (P4) imply/z 6 NK(G(xo, 0)). Also, taking the infimum over
w 6 X we deduce/z o G’ (x0, 0) 0 (that is to say,/z is a singular multiplier, as defined in
the next section) so that for each ;k 6 A0 and > 0 we have . + t/z 6 Ao. Since S(D) is
bounded (see [4, Prop. 3.1]), it follows that

(#, G’ (xo, 0)) < O.

With these observations property (3.10) reduces to

U,(/z, d) := /z, Gu(XO, O) + - Gx(xo, O)dd a(lz, Tf (d)) > O,

which multiplied by ,2 and using (P3) gives

(3.11) U,(/z, de) > (1 ’2)(/z, G’u(Xo, 0)) > O.

Let us fix ;k 6 A0. Since U, (., de) is positively homogeneous and concave, and since . + t/z 6

A0, it follows that

v(Dd) >_ fu(XO, O) q- - f’(xo, O)dd + () d- t#, d)

tt> fu’ (x0, 0) + f (x0, O)ded + (, de) + (l, de).
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To conclude we observe that (P4) implies the finiteness of ,E0, de), so that letting " cxz
and using (3.11) we get v(Dd) cxz.

(iv) Using (P3) we obtain

v(Dd)--supzAo {/u (x’)’ 0)+ -/(x0, ), 0)dd- y2a(), Tf(d))}
2 ,2< sup{(1-y )/2,(xo,) 0)+ v(Dd)}

k6Ao

(1 y2)v(L) + y2v(Dd).

As v(L) < x, passing to the limit with y "1" we get the desired inequality. [3

When (CQ) holds, for every d Co problem (Ld) is feasible and then v(Dd) v(Ld).
Otherwise the previous lemma shows that v(Dd) v(Ld) except for at most an exceptional
value V0. The optimal values are finite for y < Y0 and equal to +cxz for > Y0. The following
lemma shows that 0 0 iff Tf (d) is empty. It will be useful in 4 as well.

LEMMA 3.4. Assume (DCQ) and suppose Tf (d) is not empty. Then letting dr := gd we
have F(Ld # for all y > 0 sufficiently small.

Proof. Taking k Tf (d) and using (P2) we get

y2-G(xo, O)dd V2k TK (G (xo, 0)) G’(xo, O)X

for all ?, > 0 sufficiently small. Then, using (P1) and (P3) we deduce

G(xo, O)dd TiC(d) G’(xo, O)X x {1},

so we may find w 6 X with q(w, dr) 6 Tf (de).
We end this section by giving a condition under which the upper estimate of Theorem 3.1

coincides with v(L). Using (P4), it is easy to see that this condition is satisfied in particular
if (P0) is convex in the sense that for all y 6 K and ) 6 NK(y), the mapping (., ), 0) is
convex. In that case the right-derivative v’(0) is actually equal to v(L) (see [4, Prop. 3.2]).

PROPOSITION 3.5. Assume (SDCQ). Then v(L) v(L) whenever

inf sup (xo, ., O)dd a(., T2r (d)) > 0.
Coso "x

Proof. By Lemma 3.3 and using the equality v(L) v(D) we get

v(L) inf v(Dd)
dECo

> inf sup ’. (xo, I., O) + - ’x (xo, I., O)dd (), T(d))
dECo kS(D)

> v(L) + inf sup (xo,) O)dd () T(d))
deCo JkS(D) 2

> v(L),

and we conclude with Lemma 3.2.
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3.2. Lower estimates and expansion of solutions. We derive next some lower estimates
for v’_ (0). As v’_ (0) _< v_(0) _< v(L) whenever (SDCQ) holds, this is only of interest if

v(L) > -cx. We give conditions that imply v’_ (0) > -cxz, based on a result of part I (see [4,
Prop. 6.1 ]) that we recall for the convenience of the reader.

For each set f2 C A0 we consider the second-order condition

soc() There exist c, > 0 s.t. max (xo, ), O)dd > otlldll 2 V d 6 C,

where

C :-- {d X" f(xo, O)d < lldll, G’x(XO, O)d TK(G(xo, 0)) + lldllnr}.

Note that for 0 the extended critical cone C, reduces to the critical cone Co.
PROPOSITION 3.6. Assume (DCQ) andsuppose SOC(f2) holdsfor some bounded f2 C A0.

Then,for each 0 (u)-optimal path Xu, we have Xu xo + 0 (x/d).
Now consider the function

and the problems

(D)

FI (d) := sup E (xo, ), O) + -gE(xo, ), O)dd
.6Ao

min{ 1-I (d) d 6 Co },

min{I-I(d) f,(xo, O)d < , Gtx(XO, O)d TK(G(xo, 0))}.

Note that v(/)) is a nonincreasing function of ; in particular, lim,+0 v(,) < v(/)). More-
over, from (P4) we get l-I(d) _< v(Da), so under the conditions of Theorem 3.1 we deduce
that

(3.12) lim v(/,) <_ v(/)) _< v().
$0

PROPOSITION 3.7. Assume (DCQ), the existence of an o(u)-optimal path, and SOC(f2)
for some bounded f2 C Ao. Then v

_
(0) > -cx and

(i) if (CQ) holds, thenfor each e > 0 we have

(3.13) v’_(0) _> v(/);

(ii) ifany of the following conditions hold:
(a) the path may be expanded as Xu xo + /-ffdo + o(x/-ff),
(b) X is reflexive and d --+ E(xo, ), O)dd is weakly lower semicontinuous at each

dCo,
then the previous lower bound may be strengthened to

(3.14) v’_(0) >_ v(/)).

Proof. Let Xu be an o(u)-optimal path. By Proposition 3.6 du (Xu xo)/x/-ff stays
bounded as u $ 0, and then for each ) 6 A0 we have

(3.15) v(u) f(x,, u) + o(u)
>_ v(O) + (Xu, ), u) (xo, ), O) + o(u)

-> v(O)+u[E’u(x’)’ o)+l-E"(x’)2 O)dudul+z(u),
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with IIo(u)ll/u 0 uniformly when ) varies over bounded sets. From this and the bound-
edness of du, it follows that v’_ (0) > -c.

To prove (i) we apply Robinson’s theorem [14] to the mapping G(x) "= G(xo, O) +
G (x0, 0)(x x0) in order to find u Xu + o(v/-ff) such that ((u) K. Then, by suitably
modifying the small term oz (u), in (3.15) we can replace du by du (Ycu -xo)/,v/ft. Moreover,
under (CQ) we know that A0 is bounded so that taking the supremum over ,k we get

v(u) >_ v(o) + un(du) + o(u),

from which (3.13) follows.
To show (ii), let us choose Uk $ 0 realizing the lower limit v’_ (0). When (a) holds we

have du --+ do, while in case (b) we may assume that du do. In both cases, do 6 Co, and
using (3.15) we get

v’ (0) > 12’ (xo ,k O) 4- - 17. (xo k O)dodo

where in case (b) we use the weak lower semicontinuity of/2 (x0,), O)dd. Taking the supre-
mum over ,k A0 we conclude (3.14). [3

We now analyze under which conditions the gap between the estimate of Theorem 3.1 and
(3.14) is null. We start with sufficient conditions for the equality between the optimal values
of the subproblems giving the upper and lower estimates. We define extended polyhedricity
of the second kind (for problem (P0) at point x0) as

0 Tf (d) for all d in a dense subset of Co.

We note that in the definition of extended polyhedricity given in part I, the set S(L) was
considered instead of Co. If the constraints are unperturbed, then S(L) Co and both
definitions coincide.

PROPOSITION 3.8. Assume A0 nonempty and (SDCQ). Ifone of the twofollowing condi-
tions hold:

(a) 0 Tf (d) for all d in Co,
(b) (CQ) and extended polyhedricity ofthe second kind hold,

then v() v(D) and S([) C S(D).
Proof. From (P4) it follows that when 0 6 Tf (d) we have a(), Tf (d)) 0 for

all . 6 A0, and then FI(d) v(Da). Consider now a minimizing sequence {dk} for (/))
satisfying a (), T2lc (d)) 0. The existence of such a sequence is obvious in case (a); while
in case (b) it is a consequence of the fact that, due to (CQ), FI (d) is continuous. Along this
sequence we have, by Theorem 3.1, I1 (d) v(Dd) >_ V(L). It follows that v(/) _< v(13).
Reminding (3.12), we get v(/) v(/). The inclusion S(/) C S(/) follows easily from
this. [3

The following is our main result in this section. It provides a formula for the derivative of
the marginal value function v’ (0) and analyzes the behavior of paths of approximate solutions,
for problems with existence of multipliers and satisfying the weak (but not the strong) second-
order sufficient optimality condition.

THEOREM 3.9. Assume X reflexive, the existence ofan o(u)-optimalpath, _. (xo, ), O)dd
weakly lower semicontinuous and one of the two hypotheses below.

(i) (CQ), SOC(Ao), and extended polyhedricity of the second kind;
(ii) (SDCQ), SOC(f2) for some bounded f2 C A0, and 0 Tf (d) for all d in Co.

Then:
(a) There exists v’(O) v([,) v(), and S([,) C S().
(b) For every o(u)-optimalpath Xu the weak accumulationpoints of(Xu xo / belong

to S(D).
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(c) If do S([) and wo S(Ld), then there exists an o(u)-optimal path of the form
Xu xo + /-&o + o(.

Proof. (a) This follows by combining Theorem 3.1 and Propositions 3.7 and 3.8.
(b) Let do be a weak limit point of (Xu xo)/Vcff. Expanding the Lagrangian as in (3.15)

we get v(/)) v’(0) > Fl(d0). As do is feasible for v(/), do is a solution of v(/)).
(c) Using (SDCQ) let us select we w0 and feasible paths of the form Xu x0 +

g q’-ffdo + uw + or(u), with (for each y) IIo(u)ll/u 0 when u -- O. Take ), ]" and
choose a strictly decreasing sequence u $ 0 such that

IIo(u)ll < Vu [0, u]
-k

from which we construct the feasible path

X --X Yk YU [Uk+ Uk)

Then we have

Ilxu xo /-ffdoll _< V/-(1 g)lldoll / ullw / - Vu [uk/, Uk)

from which we get Xu xo + /-ffdo + o(.v/-ff). Also, a second-order expansion implies that
for u [u+, u) we have

f(Xu, u) f(xo, 0).+ u f’(xo, O)(w, 1) + - fj’(xo, O)dodo + o(u)

so that

f(Xu, u) f(xo, O) + uf(wo, do) + o(u)

v(O) + uv([) + o(u) v(u) + o(u).

The conclusion follows.

4. Perturbation analysis assuming nonexistence of multipliers.

4.1. Preliminaries. In this section we analyze the situation when the set ofmultipliers A0
is empty, extending the theory of perturbed singular nonlinear programs of [3]. The qualitative
behavior is radically different from the case studied in 3, so we are led to introduce some new
objects. Indeed, if A0 is empty we have v(L) -c and by part I it follows that v’ (0) -zxz.

We will check that, under suitable second-order assumptions, the variation of the cost is
of order O(v/-ff). This leads us to define, analogously to the Dini derivatives, the following
quantities:

v#(0) := lim sup
uO

v(u) v(O)

v(u) v(o)
v#(O) := lim inf

uO W/
We define the singular Lagrangian, the set of singular multipliers (at x0, for problem (P0)),

and the set of normalized singular multipliers as

(x, ., u) (), G(x, u)),
A ": {) 6 Y*\ {0)" ) 6 Nr(G(xo, 0)), ’x(XO, ), O) -0},

The next proposition shows that A0 and A are both empty only in some very special situations.
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PROPOSITION 4.1. Ifboth Ao and A are empty, then the set

,A N+[K G(xo, 0)] G’ (xo, O)X

is dense in Y but not equal to Y.
Proof. If A Y we know that A0 - 4 [13, 14]. Suppose next that A is not dense in

Y and select y e Y not belonging to the closure of ft. By the Hahn-Banach theorem there
exists e Y* \ {0} such that

(;L, y) > (), t[k G(x0, 0)] G’x (x0, 0)w) for all w 6 X, k 6 K, > 0.

Taking the supremum over w 6 X, we get ; o G’ (x0, 0) 0, and letting 1" oo we deduce
(;k, k G(xo, 0)) < 0 for all k K, so ,k e Nr(G(xo, 0)) and then A

4.2. Upper estimate of the cost. To obtain upper estimates for v# (0) we consider the
following optimization problems:

and

dec0min fj (Xo, O)d -G(xo, O)dd Tf (d) G’(xo, O)X x

(/) decomin { fx’ (Xo O)d’,-G(xo, O)dd Tf(d) G’(xo, O)X x {1}

Problem () will give an upper estimate of the value function whereas (/), which has the
same optimal value as (), will provide a com.parison with the lower estimate of v#(0). We
remark that, when A is not empty, problem (D) is equivalent to

min f’x (xo, O)d ’u (xo, ), O) + -.x (xo, ,k, O)dd <_ a (., T (d) ), for all ;k e A’
deCo

To prove this equivalence it suffices to check that the constraints in (/) and (/’) coincide,
ttwhich follows from the next result applied with y G’u(XO, O) + 7Gx(xo, O)dd.

PROPOSITION 4.2. IfA dp, then thefollowing are equivalent.

(a) y 6 T2r (d) Gx (x0, 0)X.
(b) (;, y) < a(;k, Tf (d)) for all L e A.
Proof. Both (a) and (b) are false if T2r (d) is empty, so we may assume the contrary. The

implication (a) := (b) is straightforward and the converse follows by a separation argument.
Indeed, if (a) fails we may find a strictly separating hyperplane, that is, ;k 6 Y* \ {0} and ot 6/1{
such that

(,k, y) > ot >_ (,, k G’ (xo, O)w)

for all k e Tf (d), w e X. Taking the supremum over w e X it follows that ;L o G’ (xo, O) O,
and then taking the supremum over k we deduce that

(4.16) (., y) > ot > a (,k, Tf (d)).

Using this and (P4) we get ) Nr(G(xo, 0)), so . A and (4.16) contradicts (b).
We now state the upper estimate.
THEOREM 4.3. If (SDCQ) holds, then

v#(o) <_ v(L) v(D) <_ o,
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so when v() is finite, we have

v(u) <_ v(O) + 4v() + o(4-).

In addition, v() < 0 iff there exists a direction d such that fx (xo, O)d < 0 and T2K (d) c.
Proof. We begin by showing v#(0) < v() < 0. Let d F(/) and select w 6 X such

that G’(x0, 0)(w, 1) + G(xo, O)dd Tf (d). Using the restorability property we may find
feasible paths of the formx xo + y/-d +uw +o(u) with w -- w as y " 1. Expanding
f it follows that

v(u) < f(x, u) f(xo, O) + yV/-f (xo, O)d + o(/-),

from which we deduce

v# (0) < ,f (x0, 0)d.

Letting ?, " 1 and then takingthe infimum over d 6 F() we get v#(0) _< v(). Moreover,
(P2) implies 0 6 F(/), so v(L) < O.

We prove next v(/) v(/). Since clearly v(/) < v(/), it suffices to show that
v([.) < f’(xo, O)d for each d 6 F(/). Let d 6 F(/)and select sequences kn Tf(d),

ttwn 6 X such that 7Gx(xo, O)dd limn[k, G’(xo, O)(w,, 1)]. Using (P2) we find that
given any > 0 we will have for all n large enough

1
-tG’(xo, O)dd tkn + tG’(xo, O)(w, 1) Tr (G(xo, 0)) G’(xo, 0)X x {1}
2

which rearranged gives

1
(4.17) -G"x(XO, O)dd kn + TK(G(xo, 0)) G’(xo, 0)X x {1}.

21+t l+t

Letting dt "= /t/(1 + t)d and using (P1) and (P3) we deduce that- G’(xo, O)dtdt Tf (dt G’ (xo, O)X x }.

Hence dt F([,) and then

v(,) < f(xo, O)dt.

Letting tend to +cx we conclude that v() < fx (x0, 0)d, as required.
We conclude by proving the sufficient condition for v(/) < 0 (the necessity is evident).

If d 6 X is such that fx (x0, 0)d < 0 and T2K (d) : b, from Lemma 3.4 we get cd 6 F(/,)
for all ot > 0 sufficiently small, so that v(/) < otfx (x0, 0)d < 0. [3

Remark. From the estimate (1.1) we already know that v#(0) < 0. Henceforth Theorem
4.3 improves the upper estimate of the cost only if v() < 0.

4.3. Lower estimates and expansion of solutions. As in the case when A0 q, we
will give a lower estimate of the cost that is sharp when the contribution of the curvature of K
happens to be null.

We consider the singular second-order conditions

(SSOC) there exist or, e > 0 s.t. sup Z(x0, ;k, O)dd > c[[dl[ 2 d 6 C.
.Av
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PROPOSITION 4.4. If (SSOC) holds, then for each O(-ff)-optimal path Xu we have
x xo + o(4ff).

Proof. Let Xu be an O(v/-ff)-optimal path and let flu "= IlXu xoll, du "= (xu xo)/u.
For each . 6 Av we have

o >_ Xu, , u xo, , o
u’ (x0, , 0) + x (x0, , O)dudu + o(u) + o(fl).

The small tes o(u) and o(fl) may be chosen independent of 6 A%, so we may take the
supremum to deduce that

(4.18) f12 max (x0, , O)dud < O(u) + o(fl).
6A

If for some sequence Un 0 one has flU2n/Un , then for n large enough du, is in C. With
(SSOC) and (4.18), we obtain a contradiction.

To obtain the desired lower estimate for v#(0) we consider a relaxed version of problem
(b), namely,

() min { fj(xo 0)d "1 }Co G(xo, O)dd T(G(xo, 0)) G’(xo, 0)X x {1}

As for problem (), when AS is not empty one may use Proposition 4.2 (with d 0) to derive
the following equivalent foulation for ()"

(’) min ff (xo, O)d ’, (Xo, O) + x (xo, O)dd < 0 for all e A"
dCo

Comparing with (’) and using (P4), we see that F(’) C F(’). As these two problems
have the same cost, it follows that

(4.19) v() v(’) v(’) v().

PROPOSITION 4.5. Assume there exists an o()-optimalpath x,. If SS0C) is satisfied,
then re(O) > -. Moreover, ifany ofthe ofollowing properties hold."

(a) the path may be expanded as x, xo + do + o(),
(b) X is reflexive andfor each A" the mapping d (xo, , O)dd is weakly lower

semicontinuous at every do Co,
then

(4.o v(o e v(.

Pro@ By Proposition 4.4 we have x, xo + O() and then

v(u f (x., u + o( f(xo, o + o(,

so v(O) > -.
Now let us choose u 0 realizing the lower limit re(0), and let d := (x, xo)/.

When (a) holds we have d do, while in case (b) we may assume that d do for some
do X. In both cases, do Co and we have

v#(o) L’(xo, 0)do.
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On the other hand for all . A

so, using in case (b) the lower semicontinuity of/J (x0, ., O)dd we get

o >_ ’u (xo, z, o) + 2’x’(Xo, z, O)odo.

It follows that do F(R’). Combining with (4.19) we get

v(/) v(/’) < f’(xo, 0)do v#(0)

as was to be proved. [3

Let us put together the different bounds obtained so far. If (SDCQ) and the assumptions
of Proposition 4.5 hold, then

v(k)- v(g’) _< v#(O) _< v#(O) _< v(zS’)= v(ZS)- v() _< o.

In our next statement, which is our main result for problems with nonexistence of multipliers,
we give a condition for all these optimal values to be equal. This gives the first term of the
expansion of the optimal value v(u).

THEOREM 4.6. Assume the existence ofan O(/’ff)-optimal path Xu, (SSOC), X reflexive,
the lower semicontinuity ofd (xo, ., O)ddfor each ) As, (SDCQ), andfinally

O6Tf(d) for alld6Co.

Then v() v()), S() S()), and

(4.21) v(u) v(o) + v(5) + o(,,/-d).

Proof. The equivalence between (/) and (/) follows by noting that when 0 6 Tf (d)
(see [8, Prop. 3.1 ])

Tf (d) Ti(G(xo, 0)) ]+G’x(XO, O)d,

from which we deduce

Tf (d) G’ (x0, 0)X 1 T/ (G (x0, 0)) G’(x0, 0)X 1 }.

The expansion of v(u) then follows from Theorem 4.3 and Proposition 4.5.

5. Appendix: Checking the strong directional constraint qualification. We give
some sufficient conditions for checking (SDCQ) in the case of decomposed constraints of
the form: Y := Y1 Ye with Y1 and Ye Banach spaces and K := K1 K2 with K1 and Ke
closed convex subsets of Y1 and Ye. We denote by G (G1, Ge) the components of G, and
we consider the decomposed directional constraint qualification:

(DDCQ)
(i)
(ii)

0 int[Gl(Xo, 0) + G’l(XO, 0)X {0} K1],
there exists tb 6 X such that G’l(XO, 0)(tb, 1) 6 Rec(K1) and

G2(xo, 0) + aG’2(xo, 0)(tb, 1) int K2 for some ot > 0,
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where Rec(K1) denotes the recession cone of K1, that is,

K1
Rec(K1) lim sup

To illustrate this condition, let us mention two particular cases. The first one is when K2
Y2 so that the constraint is only with K1. Then (DDCQ) reduces to Robinson’s condition
[14]. The second case is when K1 {0}. Then (DDCQ) (i) amounts to the surjectivity of
G’lx(XO, 0) and (DDCQ) appears as a natural generalization of Gollan’s condition [10] used
in the aforementioned literature devoted to nonlinear programming.

THEOREM 5.1. (DDCQ) implies (SDCQ).
Proof. We first prove that x0 is restorable. Let Xu be a path satisfying (2.3) and (2.4).

Choose w "= ),2w + (1 ),2)6) and consider

(5.22) Yu := xo + ),rdd + uw.
Expanding in series we get

G(yu, u) G(xo, O) + ), /-ffGtx (xo, O)d + u6(w, ),d) + o(u)

G(xo, O) + ),V/-ffG’x(XO, O)d + ),2UqlG(tO, d)

+ (1 ),2)uG’(xo, 0)(tb, 1) + o(u)

G(x(),2u), ),2u) + (1 ),2)uG’(xo, 0)(lb, 1) + o(u).

Using (DDCQ) (ii) and (2.4) we deduce d(G (Yu, u), K1) o(u). Then (DDCQ) (i) allows
us to use Robinson’s theorem to find a small correction Xu of yu,

(5.23) Xu xo + ),/-ffd + uw + o(u),

such that G l(Xu, u) K1.
Expanding G2(xu, u) as above, we get

(5.24) G2(xu, u) G2(x(),2u), ),2u) + (1 ),2)uG2(xo, 0)(/b, 1) + o(u),

so that letting z := G’z(Xo, 0)(tb, 1) and using (2.4) we have

G2(xu, u) tu + (1 ),2)uz -Jr-o(u)

for some tu K2, tu -+ G2(x0, 0). Moreover, letting Ctu (1 ),2)u/t we may write
G2(xu, u) (1 Otu)tu -+- Oturu with

ru tu + z + o(u)/(1 ),2)u tu + z + o(1).

By (DDCQ) (i) we have ru K for u small; since also tu K2 and Cu 6 (0, 1), it follows
that G2(xu, u) K2. Hence Xu is a feasible path and x0 is restorable.

We now check that (DCQ) is satisfied. By (DDCQ) (i) (see [14]) there exist e > 0 and
/3 > 0 such that, whenever Yl 6 YI satisfies IlYl < e, there exist d 6 X and kl 6 K1 such
that Ildll </3l[ylll and

G l(X0, 0) + Gl(X0, 0)(d, 0) kl yl.

Now take d of the form d d + otb. Then

GI(X0, 0) + G’1 (x0, 0)(d, or) [k + otG’(xo, 0)(tb, 1)] Yl
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and

Gz(x0, 0) + Gz(Xo, O)(d, or) y2 G2(xo, O) + otGz(Xo, 0)(tb, 1) + G2(xo, O)(d, O) Y2.

We may choose e small so that for all Ilyl < e, Ily2ll < e we have IlG(xo, 0)(d, 0) y2[I
small enough to deduce, using (DDCQ) (ii), that the left-hand side above is in K2. From this
(DCQ) follows easily.

Remark. We do not know (even for nonlinear programming problems) if the property
d(G(xo + /-ffd + uw, u), K) o(u) together with (DCQ) suffices or not to construct a
feasible path of the form Xu xo + /-ffdo + uw + o(u) (without 9/and w).

Our final result .shows that, for the important class of equality-inequality constrained
problems, the restorability property is a consequence of the directional constraint qualification
condition (DCQ). So in this case the strong qualification (SDCQ) is equivalent to (DCQ).

PROPOSITION 5.2. If K := {0} x K2 with int(K2) nonempty, then (DCQ), (SDCQ), and
(DDCQ) are equivalent and are satisfied iff the condition (EDCQ) holds.

(EDCQ)
O)
(ii)

6’l(X0, 0)x x {0}
there exists fro X such that GI1 (x0, 0)(tb, 1) 0 and
Gz(x0, 0) -F otG2(xo, 0)(tb, 1) G int Kzfor some ot > O.

Proof. Obviously each of the conditions (DCQ), (SDCQ), (DDCQ), and (EDCQ) is
a consequence of the one that follows. Therefore it suffices to prove that (DCQ) implies
(EDCQ). From (DCQ), G’ (xo, 0)X (0, oo) contains a neighborhood of 0. Being a cone,
this set is equal to Y1. In particular there exist d0 6 X, or0 > 0 such that G’ (x0, 0)(do, co) 0,
i.e., G, (x0, 0) 6 GI (x0, 0)X x {0}. We deduce that

Y1 Gf1(xo, 0)X x (0, xz)- Gl(X0, 0)X x {0},

i.e., (EDCQ) (i) holds. Now pick a 6 int(K.) close enough to G2(x0, 0) SO that there exist
d 6 X and & > 0 such that (0, a G2(x0, 0)) G G(xo, O) -+- G’(xo, O)(d, t) K. It is easily
checked that (EDCQ) (ii) is satisfied with tb d/&, ot 6t/2. [3

REFERENCES

A. AUSIFrqDFR AtqD R. COMINETTI, First and second order sensitivity analysis of nonlinear programs under
directional constraint qualification conditions, Optimization, 21 (1990), pp. 351-363.

[2] L. BAR3a’, Etude de sensibilitd diffdrentielle dans un problOme d’ optimisation paramdtrd avec contraintes en
dimension infinie, Thesis, Universit6 de Poitiers, 1992.

[3] J. E BOtqrqANS, Directional derivatives ofoptimal solutions in smooth nonlinearprogramming, J. Optim. Theory
Appl., 73 (1992), pp. 27-45.

[4] J. E BONNANS AND R. COMINETTI, Perturbed optimization in Banach spaces I: A general theory based on a
weak directional constraint qualification, SIAM J. Control Optim., 34 (1996), pp. 1151-1171.

[5] ,Perturbed optimization in Banach spaces III: semi-infinite programming, SIAM J. Control Optim., 34
(1996), to appear.

[6] J. E BONNANS, A. D. IOFFE, AND A. SHAP1RO, Expansion of exact and approximate solutions in nonlinear
programming, in Proc. French-German Conference in Optimization, Lecture Notes in Econom. and Math.
Systems, W. Oettli and D. Pallaschke, eds., Springer-Verlag, New York, 1992, pp. 103-117.

[7] J. E BONNANS AND A. SHAPIRO, Sensitivity analysis ofparametrizedprograms under cone constraints, SIAM
J. Control Optim., 30 (1992), pp. 1409-1422.

[8] R. COMIZTrI, Metric regularity, tangent sets and second order optimality conditions, Appl. Math. Optim., 21
(1990), pp. 265-287.

[9] J. GAUVIN AND R. JANIN, Directional behaviour ofoptimal solutions in nonlinear mathematical programming,
Math. Oper. Res., 13 (1988), pp. 629-649.

[10] B. GOLLAN, On the marginalfunction in nonlinear programming, Math. Oper. Res., 9 (1984), pp. 208-221.



PERTURBED OPTIMIZATION IN BANACH SPACES II 1189

11 A.D. IOFFE, Variational analysis ofa compositefunction: aformulafor the lower second order epi-derivative,
J. Math. Anal. Appl., 160 (1990), pp. 379-405.

12] , Variational analysis ofa compositefunction: perturbations, valuefunction and sensitivity, preprint,
Haifa MT 880.

13] H. MAURER AND J. ZOWE, First and second order necessary and sufficient optimality conditions for infinite
dimensional programming problems, Math. Prog., 16 (1979), pp. 98-110.

14] S.M. ROBINSON, Stability theoremsfor systems ofinequalities. Part ii: differentiable nonlinear systems, SIAM
J. Numer. Anal., 13 (1976), pp. 497-513.


