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PERTURBED OPTIMIZATION IN BANACH SPACES III:
SEMI-INFINITE OPTIMIZATION*

J. FRDiRIC BONNANS AND ROBERTO COMINETTI

Abstract. This paper is devoted to the study of perturbed semi-infinite optimization problems, i.e., minimization
over ]R with an infinite number of inequality constraints. We obtain the second-order expansion of the optimal value
function and the first-order expansion of approximate optimal solutions in two cases: (i) when the number of binding
constraints is finite and (ii) when the inequality constraints are parametrized by a real scalar.

These results are partly obtained by specializing the sensitivity theory for perturbed optimization developed in
part (cf. [SIAM J. Control Optim., 34 (1996), pp. 1151-1171]) and deriving specific sharp lower estimates for the
optimal value function which take into account the curvature of the positive cone in the space C() of continuous
real-valued functions.
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1. Introduction. This paper is the last of a trilogy devoted to the analysis of parametric
optimization problems of the form

min{f(x, u) G(x, u) E K},
x

with X and Y Banach spaces,, K a closed convex subset of Y, and f(x, u) and G(x, u)
mappings of class C2 from X x IR into R and Y, respectively. This third part is devoted to the
study of the parametric semi-infinite optimization problem

(Pu) min{f(x, u) G(x, u)o > O, Vco f2},
x

where f2 is a compact metric space; G(x, u) := {G(x, u)o}oea belongs to C(f2), the space
of continuous functions on endowed with the max norm; and the mapping (x, u) --+
(f(x, u), G(x, u)) is of class C2 from ]n X ]+ into C(f2). Since

C+(g2)’={yeC(f2) y>O}

is a closed convex cone in the Banach space C(f2), it follows that (Pu) is a particular case of
the above abstract optimization problem.

Semi-infinite optimization problems occur in robust control theory, the design of filters,
the design of devices having to respect some specifications in a certain range of pressure
and temperature, and optimal control problems when the control has a finite-dimensional
parametrization; see [16]. However, the wealth of applications is not the only motivation
for studying semi-infinite optimization. In the past few years, a rather complete perturbation
theory has been developed for optimization problems with a finite number of constraints, the
so-called perturbed nonlinear programming problem; see [2], [6], [8], [19]. The theory of
perturbed semi-infinite optimization problems, although it seems much easier than the general
perturbation problem in Banach space, includes an essential difficulty related to the curvature
of C+ (f2). As a consequence, the standard second-order upper and lower estimates for the cost
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do not, in general, coincide. Our main contribution here is to exhibit a sharp lower estimate
that, in some cases, is equal to the parabolic upper estimate.

There is already a large body of literature on semi-infinite optimization; see the early
references [3] and [11 ]. The recent review [9] describes in particular the so-called reduction
theory that reduces (Pu) to an optimization problem with a finite number of constraints (see
also [13]). This reduction is possible when the contact set includes a finite number of points
and each of them can be expressed locally as a function of the data, typically a local solution
of an optimization problem with finitely many constraints. Then the perturbation theory
for nonlinear programming can be applied for deriving optimality conditions as well as for
conducting a perturbation analysis; see the early reference 18].

In this paper we do not use any reduction device. In this way we may handle some cases
where there is a continuum of binding constraints, especially when f2 is a one-dimensional
interval. We are also able to treat the case of a finite number of binding constraints in cases
where the reduction theory does not apply.

The paper is organized as follows. In 2 we discuss the directional qualification condition
introduced in part I. We characterize it and show how to deduce a first-order upper estimate.
Section 3 is devoted to the parabolic (second-order) upper estimates. There we combine the
technique of parabolic estimates with the directional qualification condition and a character-
ization of second-order tangent sets to C+(2), recently obtained in [7]. This upper estimate
combined with the strong quadratic growth condition implies the upper Lipschitz property
for the set of solutions. In 4 we discuss some sharp lower estimates. We use there specific
properties of semi-infinite optimization, among them the fact that an extremal multiplier has
a finite support. Then in 5 we recapitulate and state our main result.

2. Directional qualification. We start with some notations. The feasible set, value func-
tion, and set of solutions of (Pu) are denoted

F(u) := {x In a(x, u) >_ 0},
v(u) := inf{f(x, u) x F(u)},
S(u) := {x e F(u) f(x,u)=v(u)}.

Similarly, given any optimization problem (P), we define F(P), v(P), and S(P) as the feasible
set, value function, and set of solutions of (P).

We recall that the dual space of C(K2) is the set M(f2) of bounded measures; see, e.g.,
[22]. If (X, y) 6 m(f2) x C(f2), then (., y) fa y(oo)d.(oo). The support of . 6 M(f2),
denoted supp()), is defined as the complement of the greatest open subset of S2 over which

IZl is null. The negative cone of M(f2) is denoted M_(f2).
The Lagrangian function associated with (Pu) is

.(x, ), u) f (x, u) + .] G(x, u)od1.(o)).

With x F(u) we associate the set of Lagrange multipliers

Au(X) "= {,k 6 m_(f2) supp(.) C Z(G(x, u)) and ’x(X, ), u) 0},

where, for y 6 C(S2), the set Z(y) is the contact set defined as

Z(y) := {w 6 y(w) 0}.

Letus fix a particular solution x0 6 S(0) and denote A0 := A0(x0)andZ0 := Z(G(xo, 0)).
The problem with linearized data (L) and its dual (D) are

(L) min{f’(x0, 0)(d, 1) G’(xo, O)(d, 1) > 0 on Z0},
d

(D) max E,’
u (xo, ), 0).

kAo
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We consider the directional qualification hypothesis

(DCQ) 3 d E ]1n G’(x0, 0)(d, 1) > 0 on Z0,

which is to be compared to the standard qualification hypothesis (see [12])

(CQ) 3 d E I Gtx(xo, O)d > O on Zo.

The following is essentially known.
LEMMA 2.1. Condition (CQ) is equivalent to each ofthefollowing two conditions:
(i) There exists d ]1n such that

G(xo, O) + Gtx (xo, O)d > 0 on

(ii) The set Ao is nonempty and bounded.
Proof. The equivalence between (CQ) and (i) is proven in [20]. That (CQ) implies (ii)

follows from [23]. Let us prove that (ii) implies (CQ). If (CQ) does not hold, then the linear
semi-infinite optimization problem

min{z G’(xo, 0)o(d, 0) + z >_ 0, o Z0}
d,z

has value 0. It follows that (d, z) (0, 0) is a solution of this problem at which the qualifica-
tion condition is satisfied by the direction (0, 1). By (i) = (ii), there exists at least one multiplier. Expressing the optimality conditions, we find that . M_(S2) \ {0}, supp(.)^C Zo, and. o G(x0, 0) 0. It follows that whenever ) A0 and E I+, then . + t. A0, in
contradiction to (ii).

A similar result holds for condition (DCQ).
LEMMA 2.2. Condition (DCQ) is equivalent to

(i) there exist e > 0 and d I such that

G(xo, O) + eG’(xo, 0)(a, 1) > 0 on

If in addition A0 0, then (DCQ) is equivalent to

(ii) the set S(D) is nonempty and bounded.
Proof. Noting that (DCQ) is nothing but the standard qualification condition for the set

of constraints {G(x, u) >_ 0; u >_ 0}, and applying Lemma 2.1, we obtain the equivalence of
(DCQ) and (i).

Now assume that A0 0. That (DCQ) implies (ii) follows from [4, Prop. 3.1]. Con-
versely, if (DCQ) does not hold, we have

a "= min{z G’(xo, O)o(d, 1) + z >_ O, o Zo} >_ O.
d,z

Considering the perturbation function

z
tp((d, z), h)

if h(o) + G’(xo, O)o(d, 1) + z >_ O, o Zo
otherwise,

we obtain the dual problem

min {- f G’u(x’ O)d" ) E M-(f2)’ supp(’) z’ fd) -l’ Gx(x’ O) O]



558 J. FRIDIRIC BONNANS AND ROBERTO COMINETTI

Applying [4, Thm. A2] we get the existence of an optimal solution . for this problem, and
we have

n
Gtu (xo, O)d. O.

It follows that for each ) 6 S(D) and every > 0 we have ) + t. 6 S(D), contradicting the
boundedness of S(D) stated in (ii).

From the above lemma and [5, Prop. 5.2], it follows that (DCQ) is a particular case of the
abstract directional constraint qualification of part I.

PROPOSITION 2.3. If(DCQ) holds, then

v(u)- v(O)
lim sup _< v(D) v(L).

u$O

Proof. This follows from Propositions 2.1 and 3.1 in [4] and Lemma 2.2 above.
Remark. The above statements hold when f and G are merely of class C.
3. Second-order upper estimates. Define a path as a mapping u --+ x, from R+ to X,

with x, ---> x0 when u $ 0. The path is said to be feasible if G(x, u) K for u small enough.
In the study of second-order upper estimates, we analyze feasible paths of the form

2

x, := xo + ud + -z + o(u2).

Feasibility of Xu implies some relations between the expansion of G(x, u) and the ge-
ometry of C+ (f2). Given a convex subset K of a Banach space Y, we define the first-order
tangent set at y 6 K as

Tic(y) "= {h Y" there exists o(t) such that y + th + o(t) K}.

Similarly, the second-order tangent set at y 6 K in the direction h 6 T (y) is

T2K(y,h):= zY" there existso(t2) suchthaty+th+-z+o(t2) K

For the sake of simplicity we write T := Tc+(a and T2 := T+(a and denote the terms of the
second-order expansion of f (Xu, u) and G (Xu, u) as

(z, d):= y’x(XO, O)z + f"(xo, O)(d, 1)(d, 1),

qa(z, d) := G’x(XO, O)z + G"(xo, O)(d, 1)(d, 1).

Expanding G(x., u) we obtain that if x. is a feasible path, then

(1) G’(xo, O)(d, 1) 6 T(G(xo, 0)),

(2) qlG(Z, d) TZ(G(xo, 0), G’(xo, O)(d, 1)),

and, when d 6 S(L), we get

u2

(3) v(u) <_ v(O) + uv(L) + -qf(z, d) + o(uZ).

In [4], it was shown that an upper estimate of the second-order variation of the cost is
obtained by minimizing qf (z, d) over those z satisfying (2). The purpose of this section is
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tO make explicit this bound in the case of semi-infinite programming. In the statement of our
result, we use some expressions for the tangent sets of K C+ (f2). The first-order tangent
cone is well known (see, e.g., [20]):

T(y)--{hC(f2)’h>O on Z(y)}.

In particular, the tangent cone at G(x0, 0) is

T(G(xo, O)) {h 6 C(f2) h > O on Z0}.

A formula for the second-order tangent set has been recently obtained in [7]. This formula
uses the concept of lower epilimit that we now recall, referring to 1 for a detailed exposition.
Let (At)t>o be a family of subsets of a Banach space Y. The upper limit of (At)t>o at 0
in the sense of Painlev6-Kuratowski is defined as

limsup At "= {y Y liminf d(y, At) O}t,o t,o

The lower epilimit of a family (ft)t>o of extended real-valued functions on the topological
space K is defined as the function whose epigraph is lim supt$0 epi ft, where

epi j :-- {(x, r) 6 K x N" ft(x) < r}

is the epigraph of ft. An alternative characterization is given by

e-liminf ft (x) = sup liminf inf ft (Y) liminf ft (y),
t,[.O VEJV’(x) t,l.O yEV (t,y)-+(O+,x)

where N’(x) is the set of neighborhoods of x.
PROPOSITION 3.1 (cf. [7]). Let y C+() and h T(y). Then

T2(y, h) {h C() h q- z-(y, h) >_ 0},

where z-(f, v) is the lower semicontinuous extended real-valuedfunction defined by

z’(f, v):= e-litnf If +tv]22-
Equivalently, z- (f, v) is given by theformula

0 if o9 int Z(f) and v(og) O,

(4) z-(f, v)(og) -0(o9) if o9 bd Z(f) and v(og) O,

+cx otherwise,

where

[-v(y)]+
(5) 0(o9) := limsup

y-,o) 2f(y)
f(y)>O

In view of this result, defining

E (d, u)o, :=
G(xo, 0)o + uG’(xo, O)a,(d, 1)

u2/2

z-(og) := e-liminf E(d, u)o,
uS0



1560 J. FRIDIRIC BONNANS AND ROBERTO COMINETTI

we get the characterization

Ta(G(xo, 0); G’(xo, O)(d, 1)) {h C(g2) h q- rd > 0}.

Writing T2 (d) for the above set for brevity, we see that T2 (d) - q if and only if Zd > --Cx.

In such a case the support function of Ta (d) can be characterized as

cr(,k, T2(d)):=sup{fah(o)dZ(o).h T2(d)} -f. a(w)az(w)
for all ) 6 S(D). (Since . <_ 0 and re is lower semicontinuous and nonpositive on supp()),
the integral on the right-hand side above is well defined.) To make this equality always valid
we define fa re (o9)d)(w) "= +o whenever re takes the value -o.

The function -re may be interpreted as an upper curvaturefunction.
Given d 6 S(L), the relations (1)-(3) suggest consideration of the subproblem

(Le) min{/(z, d) q6(z, d) / rd > 0},

with which we associate a dual formulation

(De) max "(xo, ), O)(d, 1)(d, 1) + f re(w)d.(w).
.S(D)

We also introduce the problem

(Q) min{v(Le) d 6 S(L)}.

Whenever v’(0) exists, we define the upper and lower second-order Dini derivatives

tt(6) v+(0) "= limsup 2Iv(u) v(0) uv’(O)]/u2,
uS0

(7) v’_’ (0) "= lim inf 2Iv(u) v(0) uv’ (0)]/ua.
uS0

PROPOSITION 3.2. If (DCQ) holds, then v(Le) v(De)for all d S(L), and we have
v(Q) < +o iff there exists d S(L)such that re(w) > -tiffor all o9 f2. Moreover, if
S(L) is nonempty and v(Q) > -o, we then have

u2

(8) v(u) <_ v(O) + uv(L) + -v(Q) + o(/,t2).

In particular, ifthere exists v’ (0) v(L), we get

(9) v+(0) < inf max -."(xo, ), O)(d, 1)(d, 1) + re(og)d.(og)
deS(L) .S(D)

Proof. This is a consequence of Propositions 2.1, 2.2, and 4.2 in [4]. U
By the above Proposition, v(Q) < +cx iff rd > --cx for some d S(L). We show that

a sufficient condition for this is a quadratic growth condition, recently introduced in [20].
LEMMA 3.3. Suppose that G’(xo, O) is Lipschitz with respect to o9 andassume that G(xo, O)

satisfies the quadratic growth condition

(QGC) c > 0 such that G(xo, 0)o > c dist(og, Z0)2.

Then rd > --0for all d S(L).
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Proof Using (4) it suffices to show that for all co 6 bd Z0 with G’(xo, O)(d, 1)o 0 we
have O(w) < +e. To this end let L be a Lipschitz constant for co G’(xo, O)(d, 1),o. For
each co Z0 let coo be a projection of o9 onto Z0. Then coo lies on the boundary of Z0 so that
G(xo, 0)oo 0, and since G’(xo, O)(d, 1) 6 T(G(xo, 0)) we deduce G’(xo, O)(d, 1)o0 > 0.
We obtain

-G’(xo, O)(d, 1)o < -G’(xo, O)(d, 1)o0 + L d(co, wo) < L dist(co, Zo).

From this and (QGC) we deduce

[-G’(xo, 0)(d, 1),o]2+ < L2 dist(co, Zo)2 < L2G(xo, 0),
c

which implies 0 (co) <_ L2/ (2c) < +cxz.
Remark. Assuming (DCQ), we know by Lemma 2.2 that S(D) is bounded. Let d 6 S(L).

If(QGC) holds, as a consequence ofthe bound established for 0 (co), the amountf rd (co)d) (co)
is bounded uniformly for . 6 S(D), so v(Dd) is finite.

4. Stability of solutions. We state next a sufficient condition for ensuring a Lipschitz
behavior of the (sub)optimal paths Xu of the perturbed problems. The result, which is a rather
straightforward application of the preceding discussion and [4, Prop. 6.3], is based on the
strong second-order sufficient condition

(SOC) max (xo, ., O)dd > 0 for all d in C\{0},
Z6S(D)

where C denotes the critical cone

C :-- {d 6 In fx(x0, 0)d < 0 and Gtx (xo, O)d > 0 on Z0}.

PROPOSITION 4.1. Suppose that
(i) (DCQ) holds and Ao 7 9t.
(ii) There exists d S(L) such that ra(co) > -cx co 6 ft.
(iii) (SOC) holds.
Then every O(u2)-optimal path Xu satisfies Xu xo + O(u).
Remark. Combining Lemma 3.3 and Proposition 4.1, we obtain a sufficient condition for

Lipschitz behavior of solutions, similar to the result of [20].
Remark. Following 10], we may introduce the strong quadratic growth condition

(SQG) ot > 0, c > 0, F(x, u) > v(O) + uv(L) + ot dist(x, So)2 cu2,

where

f(x,u) ifG(x,u)>_O,
F(x, u) "--- +cx if not.

Then we can show that (SOC) =, (SQG), and Proposition 4.1 is still valid if we replace
assumption (iii) by (SQG).

5. Lower estimates. We recall for reference the following standard lower estimate,
which is in fact a particular case of the general lower estimate of part I.

LEMMA 5.1. Let us assume (DCQ) and suppose that there exists a path ofo(u2)-optimal
solutions Xu satisfying Xu xo -t- O(u). Then Ao 0, v’(0) exists with v’(0) v(L) v(D),
S(L) 7 0, and we have

v" (0) > inf max Z;"(x0 . 0)(d, 1)(d, 1)
d6S(L) L6S(D)
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Proof The existence of v’(0), as well as the equality v’(0) v(L) v(D), follows from
[4, Prop. 3.2]. The finiteness of v’(0) v(D) implies that A0 # 0, and [4, Prop. 3.3] gives
S(L) : 0. The lower estimate on v’_’ (0) is then obtained by applying [4, Prop. 4.3(b)]. ]

Comparing the previous lower estimate to the upper estimate (9) in 3, we observe a gap
due to the curvature of C+() at G(xo, 0). More precisely, if

rd 0 on supp(.) ) S(D),

then the two estimates coincide, but as one can see from (4) and (5), this may occur only in
some very special situations.

We are then led to search for sharper lower estimates. We will obtain a lower estimate on
v’_ (0) involving the upper epilimit of E (d, u).

We recall the concept of upper epilimit, for which we refer again to [1]. Let (At)t>0 be
a family of subsets of a Banach space Y. The lower limit of (At)t>o at 0 in the sense of
Painlev6-Kuratowski is defined as

limtnf At "= lY Y limsupd(y’At) =O}
The upper epilimit of a family (ft)t>o of extended real-valued functions on the topological
space K is defined as the function whose epigraph is lim inft,0 epi ft. A useful formula is

(10) e-limsup ft(x) sup limsup inf ft(y).
t,[,O V 6.N’(x) t,[,O y6 V

When the upper and lower epilimits coincide at a given point, we shall say that the family of
functions epiconverges at that point, and we shall denote

e-lim ft (x) e-lim inf ft (x) e-lim sup ft (x).
t$0 t$0 t$0

We shall say that the family of functions epiconverges on a subset K0 C K if it epiconverges
at each point of K0.

The next proposition makes use ofthe set ofextreme points of S(D), which will be denoted
S*(D). The result will be derived under a technical assumption (H,), which will be further
clarified afterwards. B(d, r) denotes the ball of center cb and radius r.

PROPOSITION 5.2. Assume (DCQ) and suppose that there exists an o(uZ)-optimal path
such that Xu xo + O(u). Let G(xo, 0), G’(xo, 0), and G"(xo, O) be Lipschitz with respect to
oo and assume also thatfor every d S(L), each ;k S* (D), and every 39 supp()0, one has

(H) 3 V 6 .A/’(d), 3 r > 0 s.t. inf E(d, u)o inf E(d, u)o + o(1),
ooV ogB(,ru)

with o(1) converging to 0 uniformly as u $ O. Then

(11) v"_(O) >_ deS(L)inf )6S(D)maxl"(x’’O)(d’l)(d’l)/f’d(c)d;()]’
where

.d(W) := e-limsup E(d, u)o.
u,0

For f d(cO)d,(O) we adopt the same convention as in 3" its value is the usual integral
when ’a > -cx, and +cx when ’d takes the value -cxz. With this convention
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s2d(oJ)d)(o9)

--o’(,, {h 6 C(f2); h + fd 0}),

which is an upper semicontinuous function of ) 6 S(D).
The function --f’d may be interpreted as a lower-curvature function.
We discuss some consequences of this proposition, postponing the proof until the end of

the section.
Comparing the bounds obtained for v(0) and v’_ (0) in Propositions 3.2 and 5.2, we see

that the only difference is between the terms e-liminfu+0 E(d, u) and e-lim supt+0 E(d, u).
The statement below follows.

COROLLARY 5.3. Irt addition to the assumptions of Proposition 5.2, let us suppose that
(d, u) epiconverges on supp())for each ) S* (D) and d S(L). Then there exists

1)it(0) d6S(L)inf 6S(D)maxl"(x’;’o)+fe-limV(d’u)d;(c)l’u+O
It remains to find sufficient conditions to ensure the technical assumption (H6) in Propo-

sition 5.2. Lemma 5.5 below gives a result in this direction. We first need a technical lemma
which describes the structure of extreme points of S(D).

LEMMA 5.4. Suppose (DCQ) and A0 0. Then S(D) is the closed convex hull of S* (D),
and any ,k S* (D) is of theform

p

(12)
i=1

with p < n, ,koi < O, and 3oi being the Dirac mass at coi. (Recall that n is the dimension of
the space to which x belongs.)

Proof By Lemma 2.2, the set S(D) is nonempty and bounded. Being closed, it is weak*
compact. The Krein-Milman theorem implies that S(D) is the closed convex hull of its
extreme points (see, e.g., [22]). Now, S(D) is a face of A0 so that the points in S*(D) are also
extreme points of A0, and the latter are known to be the sum of at most n Dirac masses (see
[20]).

LEMMA 5.5. Suppose that G(xo, 0), G’(xo, 0), and G"(xo, O) are Lipschitz with respect
to co and (QGC) holds. Under each of the following conditions, property

supp()), V ) S*(D), d S(L)"
(i) Zo is a finite set.

(ii) f2 is an interval, and Zo is the union offinitely many intervals.

Proof. By the previous lemma, ) 6 S*(D) has a finite support included in Zo. Then,
using d 6 S(L), we obtain

G(xo, 0)6 G’(x0, 0)(d, 1)6 0 ’v’ d supp(;).

From this we deduce that for all V 6 A/’(d) we have for all r > 0, u > 0 small enough

(13) inf E(d, u)o _< inf E(d, u)o < E(d, u)6 0.
coEV o9EB(6,ru)

Let V be a closed neighborhood of
V \ Z0: this is possible by (i) or (ii). Let us consider a Lipschitz constant L for

g(co) G’(x,O)(d, 1)o,

and let cou minimize E (d, U)o over co V. If cou 6 Z0, then we get E (d, U)ou > O, which
combined with (13) gives (H6) with o(1) 0 and r > 0 arbitrary. Let us then assume that
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o)u ’ Z0. Then we may use (QGC) and (13) to obtain

/,/2 U2
c dist(COu, Z0)2 + ug(oOu) < G(xo, 0)o), + ug(cOu) - (d, u)ou < - Z(d, u)a, ug(d)).

Since g(co) is Lipschitzian, we get

c d(oou, ())2 _< u(g(?o) g(COu)) < uL d(wu, o),

and then d(o)., &) < uL/c. This proves that minimizing E(d, u)o over o) V is equivalent
to minimizing it over B(o, uL/c), proving (Ha,) with r L/c and o(1) 0.

We now return to the proof of Proposition 5.2, starting with the following lemma, which
does not use the specific properties of semi-infinite optimization.

LEMMA 5.6. Assume (DCQ) and suppose that there exists an o(u2)-optimal path such
that x xo + O(u). Then there exists Uk $ 0 and d S(L) such thatfor any )v S(D)

(14) v’_ (0) =/2"(x0, , 0)(d, 1)(d, 1) lim [ o(zk, d)odZ(co),
k-- xz

where

(15) zk "=
x"k x0 ukd

u,/2

Proof. Let us take a sequence uk $ 0 such that

(16) 2(v(u) v(0) uv(L))/u -+ v"_ (0).

Denoting x x,k and passing to a subsequence we may also assume that

(17) (x xo)/uk -+ d

for some d 6 Nn, which, by [4, Prop. 3.3], satisfies d 6 S(L).
Since x, xo + O(u), a second-order expansion of G gives

G(x, u) G(xo, O) + uG’(xo, 0)(d, 1) + @qa(z1, d) + o(u).

Since d 6 S(L) and )v 6 S(D) we have

(), G(xo, 0)) (., G’(xo, O)(d, 1)) 0,

from which we get

(; G(x u))= u_ () qo(z d)} q-O(U2)k

Taking into account that ;(xo, )v, O) v(O), (xo, , O) O, and ’u (xo, , O) v’ (0),
we deduce

v(u) f(x, u) + o(u) (x, , u) (, G(x, u)) + o(u)

v(O) + uv’(O) + [E"(x0, X, 0)(d, 1)(d, 1) (L, o(z, d))] + o(u),

from which the conclusion follows. S
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In order to get the best lower estimate, and recalling that the multiplier is nonpositive, we
must minorize 6(z, d) efficiently. Note that by expanding G(x, u), we get the following
relation, which we shall use later:

(18) (z d)+ E(d u) > o(1)

where the inequality is to be understood in C (f2), i.e., o(1) --+ 0 uniformly when u $ 0.
We now proceed with the proof of Proposition 5.2.
Proof Let u, d, z be chosen as in Lemma 5.6. Consider the problem

max {C"(xo,),O)(d, 1)(d, 1) + fnd(co)d.(co) }.6S(D)

As the cost function is affine and upper semicontinuous and S(D) is weak* compact, the
maximum is attained at an extreme point )* 6 S*(D). By Lemma 5.4, ;k* Y=I )oi3oi

Let us take d wi. From (18) we have

6(z d) + .V.(d U)o > (z d) (z d)o + o(1)

with o(1) uniform with respect to co. Minimize the right-hand side first and then the left-hand
side for co B(dg, ru) to obtain

6(z, d) + inf E(d, u)o _> 6(z, d)6 sup q6(z, d)o + o(1).
co6B(?o, ruk o6B(dg,ru

Now if we fix r > 0, because G’(xo, 0) and G"(xo, 0) are Lipschitzian, using the fact that
uz 0, we get

(z, d)# sup
ogB(dg,ruk)

tP(z, d)o > O(u)llzll + o(1) o(1),

which combined with the previous estimate gives

(z, d) + inf E(d, U)o >_ o(1).
o9_B(o,ru

Invoking assumption (Hd,), we may select V 6 A/’(cb), r > 0 such that

liminf(z, d) + lim sup inf E(d, u)o _> 0,
k--++cx3 u $O

and therefore, by (10)

liminf a(z, d) + d(()) 0.

Combining this estimate with (14) and noting that ),oi < 0, we obtain (11) as required.

6. Conclusion. Let us assume that the original problem (P0) has a unique solution

(H1) ,S(0) {x0}

and that we have the uniform boundedness of solutions:

(H2) r > 0, uo > 0 such that for all u <_ uo, S(u) 0 and S(u) C B(O, r).

THEOREM 6.1 (main result). Let us assume (HI), (H2), (DCQ), (QGC), (SOC), and
S(L) 0. Suppose also that G(xo, 0), G’ (xo, 0), and G"(xo, O) are Lipschitz with respect to
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co. Suppose finally thatfor each d S(L) there exists e-limu+0 E(d, u) and also that one of
thefollowing conditions holds:

(i) Zo is finite.
(ii) f2 is an interval, and Zo is the union offinitely many intervals.
Then we have
(a) The value function has first- and second-order (right) derivatives given by v’(O)

v(L), v"(O) v(Q). Moreover, if v(Q) > -cx, we have the expansion

bt 2

V(U) v(O) + uv(L) + -v(Q) + o(u2).

(b) The set of all limit points of (xu xo) /u, where x ranges over all paths of O(U2)
optimal solutions, is included in S(Q). In particular, if S(Q) is a singleton, i.e.,
S(Q) {d}, and x is as above, then x xo + ud + o(u).

(c) Let d S(Q). If there exists z S(L/) (this is always the case when (i) holds), then
there exists an o(uZ)-optimal path Xu xo + ud + o(u).

(d) Let ) be a multiplier associated with a solution xu of (P). Then all weak* limit
points of) belong to S(D).

Proof From (H1) and (H2) there exists x S(u) which satisfies xu --+ x0 when u $ 0.
Then, from Proposition 4.1 we get Xu xo + 0 (u), and part (a) follows by combining Lemmas
5.1 and 5.5 with Corollary 5.3.

If x is a path of o(uZ)-optimal solutions, expanding f(xu, u) as in the proof of Lemma
5.6, we obtain the first statement in (b). The second statement is an immediate consequence
of the first.

We now prove (c). Let d S(Q) and z S(Ld). Then there exists a feasible path
x xo + ud + -z + o(u2). Expanding f(x, u) and G(x, u), we obtain v(Q) qf(z, d)
as well as (2). The conclusion follows.

Assertion (d) is a consequence of [4, Prop. 3.3]. [3

Concluding remarks. Our final result is an extension to semi-infinite optimization of
the results of the sequence of papers [8], [19], [2], and [6] in the following sense: if f2 is a
finite set, then we exactly recover the above-mentioned results up to the presence of equality
constraints. However, there is no difficulty in adding a finite number of equality constraints to
our formulation. We avoided it for the sake of clarity of exposition and in order to concentrate
on the real difficulty, which is to handle an infinite number of constraints.

Some of our hypotheses, however, may seem unduly strong. First of all, we assume
that S(L) is nonempty. While this hypothesis is automatically satisfied when the contact set
is finite (due to the standard theory of linear programming), we are not aware of general
criteria allowing to check nonemptyness of S(L) for semi-infinite programming. Performing
an analysis of the variation of the solutions when S(L) is empty is an open problem. Some of
the results of part II might be useful for dealing with this case.

The other hypothesis that seems excessively strong is the alternative (i) or (ii). We need
it in order to satisfy the geometrical hypothesis (H). Still, the most important contribution of
this paper is to present a new way of obtaining sharp lower estimates of the cost, and we hope
that the technique presented here can be improved in order to deal with more general contact
sets.
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