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Some typos in the book that we noticed are of trivial nature and do not need
an explanation. There are, however, more subtle corrections that need to be
made. There are also simple extensions and additions to the material presented
in the book which are worthwhile to mention.

1 Corrections

Section 2.1.1

Page 11, 7th line of the proof of the fixed-point theorem 2.2. The coefficient
p(eq, e1) is missing (two times).

Section 2.1.2

Minor correction in the proof of theorem 2.17, page 20: one should introduce first
x1 € S and discuss if xo — x1 (instead of () belongs of not to L. The corrected
proof is as follows:

Proof. Let x; € S, and set L := cl{Sp(S)}. If 9 — 21 ¢ L, then by theorem
2.14, zg — z1 and L can be separated, and hence S and {z(} can be separated.
If 29 —x1 € L, since xg — 27 & ri(S — z1), then by theorem 2.13, zy — x; can
be separated from (S — x1) by a linear continuous functional over L. This linear
functional separates xy from S. It can be extended to a continuous linear func-
tional on the space X (see proposition 2.11), and hence the result follows. §

Section 2.1.4

In Section 2.1.4, X and X* are assumed to be paired locally convex topological
vector spaces equipped with respective compatible topologies. The closure oper-
ation in that section is taken with respect to these topologies. In particular, if X
is a nonreflexive Banach space and X* is its dual, then the standard pair of com-
patible topologies is the strong (norm) topology in X and weak* topology in X*
(see the discussion after Definition 2.26 on page 25). In that case the closure in
the right hand sides of formulas (2.32) and (2.33), while in the space X*, should
be taken in the weak* topology. This may lead to a confusion since in the ” Basic
Notation” cl(-) is defined with respect to the norm (strong) topology. If X is a
reflexive Banach space, then one can use strong topologies in X and X*.



Page 52
In formula (2.115) the inequality h(w) > 0 should be replaced by h(w) < 0. Also,
in the following line z(w) > 0 should be replaced by z(w) < 0.

Page 56, Remark 2.73.

It is written that the core of a convex set S is contained in its interior, of course
this is a typo and the converse is true: the interior of a convex set is contained
in its core (typo kindly pointed to us by Alexey F. Izmailov).

Moreover, it is (correctly) stated that the core and interior coincide if the
convex set S has a nonempty interior. Let us give a short proof. Suppose that y
belongs to the core of S and x € intS. Then there exist € > 0 and a > 0 such
that B(z,e) € S and y + a(y —x) € S. Let C be the convex hull of B(z,¢)
and y + a(y — z). We have then that y € intC. Since S is convex it follows
that C' C S, and hence y € int S. This shows that core(S) C int(S), and hence
core(S) = int(9).

Page 66, Proposition 2.90.
For the given definition of the set 7 formula (2.171) is in error. Correct definition
of the set 7 should be

T :={h e X :G(xy) + DG(xp)h € K}. (1.1)

In order to see why (2.171) is wrong let us consider the convex set K C Y. Let
yo € K and Tk (yo) be the corresponding tangent cone. Then K € yo + Tk (yo)
and hence dist(d, Tk (o)) = 0 for any d € K — yo. Formula (2.172) then follows,
under Robinson’s constraint qualification, by Stability Theorem 2.87. However,
if Y is infinite dimensional, it is not true in general that

dist(y, K) = o[y — oll), ¥ € vo + Tic(wo). (1.2)
Consider, for example, space Y := ¢, and the set
K = {(yn) €l :y > ny?, n:2,...}. (1.3)
This is a nonempty closed convex set and
Tie(0) = {(y) € &1 : 1 > 0} (1.4)

We have here that for every n-th coordinate vector e, and ¢t > 0, te, € Tx(0),
and for n > (2t)71,

dist(te,, K) = i%f ]{ny2 +t—yl=t+ @dn)t >t =|te,]. (1.5)
ye[0,t
Consequently, (1.2) does not hold at yy = 0.
The assertion of Corollary 2.91 is correct. The fact that, under Robinson’s

constraint qualification, Ty (zo) = Ts(zo) and equation (2.173) holds can be easily
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derived from Stability Theorem 2.87 and the relation that for any fized d € Tk (yo)
and y(t) = yo + td + o(t) it follows that dist(y(t), K) = o(t), t > 0.

Page 68, proof of Prop. 2.95. FError and correction kindly indicated to us
by Nguyen Huy Chieu. The multifunction M(x,t) defined at the beginning of
the proof is not closed as is wrongly stated. It should be redefined as follows,
denoting by By the closed unit ball of Y

[ DG(xo)x — t((K — G(x0)) N By), ift >0,
M) ={ 120

Page 82. Formula (2.230) of Proposition 2.118 is correct. However, its proof is
imprecise. First line of the proof of Proposition 2.118 should be replaced by the
following.

It follows from (2.229), applied to f**, that z* € 0f**(x) iff

o) = (@t ) = (7). (1.6)

Since, by the Fenchel-Moreau-Rockafellar Theorem 2.113, f** = f* the above
equation is equivalent to (2.231). Starting from equation (2.231) the proof can
be completed as in the book.

Page 215. In the right hand side of formula (3.191), “F'G(x¢)w” should be re-
placed by “DF(x¢)w”.

Page 220. Error kindly indicated to us by Shaohua Pan, South China University
of Technology. The proof of Prop. 3.88 should be corrected as follows:

Let x, := x¢ + t,h + 3t2w, € G7'(K) be such that ¢, | 0 and t,w, — 0. A
second order expansion of G(x,,) gives

G(x,) = G(x0) + t,DG(zo)h + 12 (DG(xo)wn + D*G(x)(h, h)) + o(t2).

Since G(z,) € K, the outer second order regularity of K implies that for some
e, = 0inY, 2z, := e,+ DG (z0)w,+D?*G(xq)(h, h) belongs to TE(G(xg), DG(xo)h).
By Prop. 2.97, Y = DG(x0)X — Tk (G(x0)). Applying Prop. 2.77 to the con-
vex multifunction over X, ¥(x) := DG(z)r — Tk (G(x0)), we deduce the exis-
tence of C' > 0 not depending on n, w], € X and k, € Tx(G(xo)), such that
en = DG (zo)w), — kn, and ||w)||x < C|len]|ly. Then w! := w, + w], satisfies.

DG(xo)w! + D*G(x0)(h, h) = 2, + kp.

By (3.63) (since the tangent to a convex cone contains this cone), the r.h.s.
belongs to T (G(z0), DG(z0)h). Proposition 3.33 implies w! € Té,l(K)(xg,h).
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Since ||w! — wy||x = ||w),||x — 0, the conclusion follows. &

Page 242. Line before equation (3.268), “for any z € Z” should be replaced by
“for any z € C”.

Page 244. Errors kindly indicated to us by Shaohua Pan. The last sentence of
example 3.139 should be as follows: In that system of coordinates the set K is
C*°-cone reducible with the reduced cone C being polyhedral; if moreover the a;
are linearly independent, then p = k and we can take C = IR".

Page 270. Errors kindly indicated to us by Alexey F. Izmailov.
In the first line of (4.21), read D,g;(xq, ug) (and not Dg;(xq, uo)).
In the second line of (4.22), read ed instead of d.

Page 275. Formula (4.39) should be

cl conv (Uxes(uo)Duf(Ji, u0)> : (1.7)

Under the assumptions of theorem 4.13, the set U, g0 Duf (2, %) indeed is com-
pact. Therefore, in case the space U is finite dimensional, the convex hull of that
set is also compact and hence is closed, and hence the topological closure in the
above formula can be omitted.

Page 297. Error kindly pointed to us by Daniel Steck. For the ‘converse’ part of
Proposition 4.47, we need the additional assumption that the radial cone Rk (o)
is closed. This assumption is used when applying (2.32) to derive formula for
the normal cone to Ky (second display, page 298). This converse part is used
only in the second paragraph of page 374, where K is a polyhedron, so that the
additional assumption is satisfied there.

Page 302. Line before equation (4.131), “h,, := x,, — x¢” should be replaced by
“hy, := K, (2, — 10)”.

Pages 404. In equation (5.11): read F(zg,up) instead of D, F'(z,up).

Page 420. Error kindly indicated to us by Diethard Klatte and Ebrahim Sarabi.
Theorem 5.20 is correct, but the proof of the converse part, starting p. 420 on
line 14, must be corrected in the following way. We first recall a classical property
of strong regularity, and then state the corrected proof.

A classical property of strong regularity Strong regularity (SR) for the
inclusion
©(z)+ N(2)>0 (1.8)
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is defined as the local existence of a univalued, Lipschitz inverse for the perturbed
linearized system

©(20) + Dp(20)(z2 — 2z0) + N(2) 2 0. (1.9)

We claim that SR holds iff the local existence of a univalued, Lipschitz inverse
holds for the perturbed system

o(2) + N(z) 0. (1.10)

Indeed, suppose that the SR holds for the linearized system (1.9). It is shown
in Theorem 5.13 that this implies that the system (1.10) has a local solution.
Proof of this is based on a fixed point theorem (contraction principle). Converse
implication of existence of local solution can be proved in a similar way.

As far as Lipschitz continuity is concerned we can proceed as follows. We
may by a translation argument assume that z; = 0 and that p(zy) = 0. We must
analyze the relation

Az+ N(z) 39, (1.11)

where A := Dy(z9). We check first the Lipschitz property. Consider sequences
dr and Jx and zy, z;, all converging to 0, such that Az, + N(z;) 3 0, and Az) +
N(z,) 2 0. We may write these relations as ¢(z;) + N(zx) 2 0 + ©(2k) — Az,
and similarly for z;, so that by our hypothesis

12k = 2kll = O(llo, — &% + (1) — Az — (k) — Aze). (1.12)

Since the r.h.s. is of order O(||d;, — 0;||) + o(||2; — 2&||), the Lipschitz property
follows. Uniqueness of the solution follows whenever § is close enough to 0.

Proof of the converse part of thm 5.20 (starting p. 420 on line 14).
From the uniform second order growth condition, and since DG(zy) is onto and
hence Robinson’s constraint qualification holds, theorem 5.17 implies that there
exist neighborhoods V of 0 € X* x Y and Vx of xg such that for all 6 € V, the
canonically perturbed problem

N{Emf(x) —(01,z); G(z)+ 6 € K. (1.13)

has a locally unique solution x(d), and since DG(zy) is onto, there exists a unique
w1(0) € Y* such that (x(9), 1(0)) is solution of the canonically perturbed optimal-
ity system, i.e.

Df(x)+ DG(z)'n=10d1; G(x)+d € K. (1.14)
It remains to show that the mapping (z(-),u(-)) is Lipschitz continuous. So
consider two elements 4 and ¢ in V, and the associated solutions of (1.14) denoted
by (&, 1) and (, 1), respectively. Since DG(x) is onto, we may apply the stability
theorem 2.87 to the relation G(z) + d2 = 0. It follows that (reducing the size of
the neighborhoods if necessary) there exists x € X such that

G(z) 4 b6y = G(@) + 0y || — z|| = O(|02 — b5])). (1.15)



Let 0y := Df(x) + DG(z)*fi. Then (z, i) is a solution of (1.14) for § = (&1, ).
We have that

01 — 0y = Df(z) — Df () + (DG(z) — DG())" .
This and (1.15) imply [[d; — 1| = O(||6 — d||). By proposition 4.32 we have that
|l — || = O(||6 — d||), and so by (1.15) again, ||z — z|| = O(]|6 — 4||). Since
DG(x) is onto, there exists € > 0 such that, for any 2’ close enough to o,

we have that |DG(2)*pn|| > €l||u||. Since Df(z) + G(2)*it = 0, we deduce that
2l < e M Df(@)]l = O(1). Since

Df(#) - Df() = G()'fi~ G+~ )
= DG(@)"(ji— ) + (DG(E) ~ DG(&)"i + b — b1,

We deduce that ||i — jil| = O(|| — 2| + [|0 — 8]|) = O(||6 — 4]|). The conclusion
follows.

Pages 460-461. In the proof of theorem 5.60, some terms are missing in the
optimality system at the end of page 460 and for the quadratic program at the top
of page 461. The missing terms are D?g; (o, uo)((h1,u1), (h1,u1)) in the expansion
of constraints, and (D(Q%U)IG(:UO, ug) (h1,u1))*A; in the expansion of D, L, as well
as the corresponding Ay - D7y, G(%0, uo)((h1, u1), he) in the cost function of the
quadratic program. One should read, starting at the display at the bottom of page
460:

DY, o L0, Ao, o) (ha, ) + DYy ) oa L (205 Aoy o) (R, un), (B, )
+(D(2$7u)xG(:v0, ug) (h1,u1))* A1 + DG(g, up)*Aa = 0,

D?gi(wo, uo)((h1,ur), (hi,w1)) + Dgi(zo, uo)(ha,ug) =0, i€ {l,...,q} UL,

D?gi(o, ug) ((h,u1), (h1, 1)) + Dgi(zo, uo)(ha,ug) <0, i € L, (w0, ug, hy) \ ]i,

AaiDgi(zo, uo) (ha, uz) = 0, i € I, (w0, up, h1) \ 1.

The above system has a unique solution, since it is the optimality system of
the quadratic problem

Ming, D, ) (a0 (e L (%05 Aoy o) (R, wn ), (R ), (hay )
+D7, (e (0, A, 1g) (o, u2), (ho, us))
+A1 - D(in)xG(xo, wo)((h1,u1), ha)
s.t. Dgi(xo,up)(he,uz) =0, i€ {1,...,q}U[}L,
Dgi(zo,up)(ha,uz) <0, i € I, (w0, up, 1) \ I},

whose objective, etc.



Page 476. Second line after equation (5.171), “C*°-smooth and G, WV,” should
be replaced by “C*°-smooth and GAW,”.

Page 516. First line.

The sentence: “If xg is a stationary point of (P), then the first order growth con-
dition holds at ¢ iff C'(x¢) = {0}”, should be replaced by: “If z, is a stationary
point of (P) and the extended MF constraint qualification holds, then the first
order growth condition holds at z iff C(xy) = {0}".

2 Additional material
Page 301. The result of Proposition 4.52 can be extended as follows.

Proposition 2.1 Suppose that the assumptions of proposition 4.52 hold and let
(Z(u), A(u)) be a stationary point of (P,) such that z(u) — xo as u — ug. Then

l(w) = 2ol = O (J|u = uo|/?) . (2.17)

Proof. It suffices to show that for any sequence u, converging to ug and
T, = (u,), it follows that k, = O (Tn1/2>, where k, = ||z, — xo|| and 7, :=

||lu — ugl||. Denote also A, := S\(un) By passing to a subsequence if necessary we
can assume that ), converges to some A\g € A(x).

We have that f(x,,u,) = L(x,, A\, u,) and f(zo, ug) = L(xg, Ao, ug). Because
of Robinson’s constraint qualification, there exist points 2/, which are feasible for
the unperturbed problem (P,,) and such that ||z, — z}|| = O(7,). Consequently
by the second order growth condition we obtain

f(x’ruun) - f(l'O,UO)
= f(2,,u0) — f(@0,u0) + f(@n,uo) — f(2),, u0) + f(Tn, Un) — f(Tn, uo)
> ||z, — wo||* — coT > K2 — 1Ty — C1TnFn,

where ¢, ¢y and ¢; are some constants with the constant ¢ being positive. Since
| L(w0, Ao, un) — L(20, Ao, uo)| = O(7),
it follows that
L(Zp, Ay tn) — L(20, Moy tp) > k2 — comp(1 + ) (2.18)
for some constant c;. We also have that

L(ZL‘n, )‘na un) - L(l‘n, /\Ovun) = </\n - /\07 G(l’n, un))



and (A, G(zn,u,)) = 0. Moreover, since K is generalized polyhedral we can as-
sume by passing to a subsequence if necessary that (Ao, G(zn,u,)) = 0. Together
with (2.18) this implies

L(2, Mo, tn) — L(w0, Mo, Up) > ¢k — comn(1 4 Ky). (2.19)

Consider the mapping F'(z,u) := (D, L(x, \,u), —G(x,u)), where z := (z, \),
and let z, := (z,, \,) and zg := (2, \g). Since the multifunction I'(z) is monotone
we obtain by the generalized equations (4.115) that

(zn — 20, F(zpn,upn) — F(z0,up)) < 0. (2.20)

On the other hand

(zn — 20, F(zn, upn) — F(z0,u0))
= <:Un — o, D1L<xn7 )\na un) - DxL($0> )\07 uO)) - <)\n - >\0> G(ﬂfn, un) - G(l’o, U0)>
= (xy, — To, Dp L(2p, Mo, tun) — Dy L(xg, Ao, up))
—(An = o, G, un) — G(xo,u0) — DpG (20, up) (2, — 0))
= k2D? L(xo, Ao, Un) (M, b)) + C360Tn + 0(K32)
—3 (A — Ao, D2,G (0, up) (hy, hi) + O(13,))
= k2D?_L(z9, \o, un)(hn, hn) + c3knTy + 0(K2) + o(T5)

for h, := (x, — x9)/k, and some constant c3. Together with (2.18) and (2.20)
this implies that
0> 6/{% + C4Kn Ty + C5T,

for some constants ¢, ¢4 and c¢; with the constant ¢ being positive. It follows then
that x, = O ( 1/ 2) which completes the proof. g



