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Abstract

In this paper we discuss the problem of computing and analyzing the static equilibrium
nonrigid water tank. Specifically, we fix the amount of water contained in the tank, modell
a membrane. In addition, there are rigid obstacles that constrain the deformation. This amo
a nonconvex variational problem. We derive the optimality system and its interpretation in
of equilibrium of forces. A second-order sensitivity analysis, allowing to compute derivativ
solutions and a second-order Taylor expansion of the cost function, is performed, in spite of t
that the cost function is not twice differentiable. We also study the finite elements discretiz
introduce a decomposition algorithm for the numerical computation of the solution, and d
numerical results.
 2003 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Cet article discute le problème du calcul et de l’analyse de l’équilibre statique d’un réservoir
souple. La quantité d’eau est fixée et la déformation obéit à l’équation des membranes. De p
obstacles rigides limitent la déformation. Ceci aboutit à un problème variationnel non-convexe
obtenons le système d’optimalité et son interprétation en terme d’équilibre de forces. Une é
sensibilité au second ordre permet le calcul des dérivées de la solution ainsi qu’un dévelop
de Taylor au second ordre de la valeur, bien que le critère ne soit pas deux fois différen
Nous étudions aussi la discrétisation par éléments finis et nous introduisons un algorith
décomposition pour le calcul numérique, et finalement nous donnons des résultats numériqu
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1. Introduction

Let Ω be a connected, bounded and open subset ofR
n, n = 1 or 2, with Lipschitz

boundary∂Ω (Ω is an interval ifn = 1). Givenf ∈ L2(Ω), the classical obstacle proble
reads as follows:

Min
v∈K

1

2

∫
Ω

∥∥∇v(ω)
∥∥2 dω −

∫
Ω

f (ω)v(ω)dω, (OPf )

whereK ⊂ H 1
0 (Ω) is the set of functions satisfying the constraint of nonpenetration

a certain obstacle, defined by:

K = {
v ∈ H 1

0 (Ω); v(ω) � Φ(ω) a.e. onΩ
}
. (1)

HereΦ is a measurable extended value functionΩ → R ∪ {+∞}, such that the setK
above is nonempty. This holds ifΦ(ω) = +∞ a.e., which is the case without obstac
if Φ(ω) � 0 a.e., and also ifΦ belongs toH 1(Ω), and is nonnegative on the bounda
of Ω . This problem is perhaps the simplest example of a variational inequality
has been the subject of numerous works. The starting point of the study of varia
inequalities was Lions and Stampacchia [15]. Extension to various mechanical pro
was made in Duvaut and Lions [9]. At the same time, Brézis [6] established va
mathematical properties of the solutions of variational inequalities. Mignot [16] sh
that polyhedricity of the feasible set allowed to perform a sensitivity analysis of solu
(see also Haraux [13]), the expression of which necessitates the concepts of c
theory; see also the introduction to the subject [5, Section 6.4]. Two recent papers d
the case when the fieldf is itself the result of a mechanical equilibrium. In Aissani, Chi
and Fouad [1] the membrane supports one or two heavy disks. Buttazzo and Wag
consider the case of a support of a rigid body.

Another approach to the sensitivity analysis consists in studying the solutions
optimality system rather than those of the minimization problem. Among abstract r
that possibly apply, let us mention [5, Theorem 5.10], and Levy [14]. The latter com
proto-derivatives, which coincide with derivatives if the latter exist. This approach
the advantage of avoiding the second-order sufficient conditions. It has been appli
nonlinear obstacle plate problem in Figueiredo and Leal [10].

The novelty in our study lies in the fact that, in addition to the given distributed fo
field f , we take into account the weight of a given amount of water, filling the vol
between the part of the tank that is below the water level, and the water level itsel
latter is of course an unknown of the problem. The mechanical potential to be minimi
a nonconvex function of vertical displacement and water level. This potential is to be
imized under the restriction that the volume of water is given. Although the potentia
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constraints are nonconvex and nonsmooth, we can establish existence of solutions, give a
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mechanical interpretation of the optimality system, and perform, under reasonable a
tions, a sensitivity analysis. Finally, we study a decomposition algorithm whose ess
step is to solve at each iteration a classical obstacle problem, and display numerical

2. Setting and equivalent formulations

As said in the introduction, letΩ be a connected, bounded and open su
of R

n, n = 1 or 2, with Lipschitz boundary∂Ω . Consider a membrane fixed at t
boundary. Letv(ω) be the vertical displacement, positively oriented downward. Un
the hypothesis of small deformation, we have that the potential of elastic deforma
ED(v) = 1

2

∫
Ω

‖∇v(ω)‖2 dω. Here and later, we assume physical constants to be equa
for the sake of notational simplicity. The potential associated with a distributed forces
f ∈ L2(Ω) (oriented downward) isEC(v) = − ∫

Ω
f (ω)v(ω)dω. In addition, assume tha

the tank formed by the deformed membrane contains some water. Ifh ∈ R denotes the
water level, the gravity potential associated with the water is

EF (v,h) := −1

2

∫
Ω

(
v(ω)+ h

)(
v(ω) − h

)
+ dω.

Indeed, the height of water is(v(ω) − h)+, hence, after integration we obtain the abo
expression. The mechanical potential is defined as the sum of the three potentials
discussed:E(v,h) := ED(v) +EC(v) + EF (v,h). The constraint over the volumeL> 0
of water is

G(v,h) =
∫
Ω

(
v(ω) − h

)
+ dω = L. (2)

Let K be defined by (1). TakingH 1
0 (Ω) as the space of displacement, we may formu

the problem of static equilibrium as the minimization of the mechanical potential, su
to the constraint of the volume of water (2) and to the obstacle constraint:

minE(v,h); G(v,h) = L; (v,h) ∈ K × R. (3)

It may be more efficient to consider another formulation of this problem. Observe
whenever the constraint is satisfied, the gravity potential associated with the water
thatEF (v,h) = −1

2

∫
Ω
(v(ω) − h)2+ dω − hL. Therefore, define the cost function,

J (v,h,L) := 1

2

∫
Ω

∥∥∇v(ω)
∥∥2

dω − 1

2

∫
Ω

(
v(ω) − h

)2
+ dω −

∫
Ω

f (ω)v(ω)dω − hL.

A problem equivalent to (3) is

Min
v,h

J (v,h,L); G(v,h) = L; (v,h) ∈ K × R. (P)
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In the sequel, we will denote byF(P), S(P) and val(P) the set of feasible points, set of
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solutions, and value of an optimization problem; the value is the infimum of cost fun
over the feasible set. Let “meas” denote Lebesgue’s measure. Surprisingly, we may
the constraint” if the cost function is maximized (instead of being minimized) with res
to h.

Proposition 2.1. GivenL> 0, an element(v̄, h̄) of K × R is solution of(P) if and only if
v̄ is solution of the problem below:

Min
v∈K sup

h∈R

J (v,h,L). (4)

Proof. We have thath → J (v,h,L) is a concave function, with continuous derivat∫
Ω
(v(ω) − h)+ dω − L. We check in the lemma below that this derivative is continuo

and is equal to 0 for a unique value ofh, denotedh(v,L). This is precisely the value fo
which the constraint is satisfied; in other words,h(v,L) is the height of water associate
with deformationv and volumeL. Therefore suph∈R J (v,h,L) = J (v,h(v,L),L), from
which the conclusion follows easily.✷

The above result is related to the fact thath(v,L) has an interpretation as a Lagran
multiplier, see Lemma 10.1. We denote byR++ the set of positive real numbers.

Lemma 2.2. (i) Given (v,L) ∈ L2(Ω) × R++, there exists a uniqueh = h(v,L)

such thatG(v,h) = L. In addition, the functionh(v,L), with domainL2(Ω) × R++,
is convex, locally Lipschitz, nondecreasing(respectively nonincreasing) function of v
(respectivelyL), and satisfies, ifhi = h(vi ,Li), for i = 1,2:

meas
({v2 � h2; v1 � h1}

)|h2 − h1|
� |L2 −L1| + 2 meas(Ω)1/2‖v2 − v1‖L2(Ω). (5)

(ii) The functionh(v,L) has a directional derivativeδh in direction (δv, δL)

determined by the relation:∫
{v=h}

(δv − δh)+ +
∫

{v>h}
(δv − δh) = δL. (6)

(iii) The restriction ofh(v,L) to H 1
0 (Ω)× R++ is Fréchet directionally differentiable

More precisely,δh(δv, δL) denoting the solution of(6), we have that

h(v + δv,L + δL) = h(v,L) + δh(δv, δL) + o
(‖δv‖H1

0 (Ω) + |δL|). (7)

Proof. (i) Let (v,L) ∈ L2(Ω) × R+. Using Lebesgue’s dominated convergence theo
it is easily checked that the real function
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h → g(h) :=
∫ (

v(ω) − h
)
+ dω −L

ue’s
e

ly
et

for
Ω

is continuous, nonincreasing, and varies overR from +∞ to −L. It follows that g has
at least one zero, saȳh, and the set of zeroes is an interval. In addition, by Lebesg
dominated convergence theorem, we have thatg(h) has directional derivatives, whos
expression is

g′(h, δh) = −min(δh,0)meas{v = h} − δhmeas{v > h}. (8)

SinceL> 0, and hence, meas{v > h̄} > 0, we have thatg′(h, δh) is nonzero whenδh �= 0,
of sign opposite to the one ofδh. This implies uniqueness of the zero ofg. Denote
the latter byh(v,L). Sinceg is nonincreasing,h(v,L) is a nondecreasing (respective
nonincreasing) function ofv (respectivelyL). Let us prove that this function is convex. L
v1 andv2 belong toL2(Ω), andL1 andL2 be two positive numbers. Sethi = h(vi ,Li),
for i = 1,2. Letα ∈ (0,1), and setv = αv1 + (1 − α)v2, L = αL1 + (1− α)L2. SinceG
is convex, we have that

L = αG(v1, h1)+ (1− α)G(v2, h2) �G
(
v,αh1 + (1− α)h2

)
.

SinceG is a nonincreasing function of its second argument, convexity ofh(v,L) follows.
Being convex,h(v,L) is locally Lipschitz. Let us prove the estimate (5). Assume
instance thath2 � h1. We have:

L2 −L1 =
∫

{v2�h2;v1�h1}

(
v2(ω)− v1(ω)− h2 + h1

)
dω +

∫
{v2�h2;v1<h1}

(
v2(ω)− h2

)
dω

−
∫

{v2<h2;v1�h1}

(
v1(ω)− h1

)
dω.

We may majorize the last term by 0, and for the two others we have:∫
{v2�h2;v1�h1}

(
v2(ω)− v1(ω)− h2 + h1

)
dω

� meas
({v2 � h2; v1 � h1}

)
(h1 − h2)+ meas(Ω)1/2‖v2 − v1‖L2(Ω),

and ∫
{v2�h2;v1<h1}

(
v2(ω)− h2

)
dω �

∫
{v2�h2;v1<h1}

(
v2(ω)− v1(ω)

)
dω

� meas(Ω)1/2‖v2 − v1‖L2(Ω).

Combining the previous inequalities, we obtain (5).
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(ii) Fix (δv, δL) ∈ L2(Ω)× R, and letδh be such that (6) holds. Then

t
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tional

t

hard
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dary.
G(v + tδv,h + tδh) = L+ tδL + o(t).

Sinceh(· , ·) is locally Lipschitz, we have thath(v + tδv,L + tδL) = h + tδh + o(t).
Relation (6) follows.

(iii) For the sake of notational simplicity we prove the result whenδL = 0. Assume tha
(7) does not hold, and hence, there existε > 0 and a sequencevk → v in H 1

0 (Ω) such that∣∣h(vk,L)− h(v,L) − δh(vk − v,0)
∣∣ � ε‖vk − v‖H1

0 (Ω). (9)

We may writevk = v + tkwk , with wk of unit norm inH 1
0 (Ω) and tk → 0. Extracting,

if necessary, a subsequence, we may assume thatwk weakly converges to somew
in H 1

0 (Ω). Note thatw is of norm at most one, and may be equal to 0. We have thawk

strongly converges tow in L2(Ω). Sinceh(· , ·) is a Lipschitz function and has direction
derivatives, it is also Hadamard directionally differentiable, and has continuous direc
derivatives, see, e.g., [5, Proposition 2.49]. It follows that

h(v + tkwk,L) = h(v,L) + tkδh(w,0)+ o(tk) = h(v,L) + tkδh(wk,0)+ o(tk)

in contradiction with (9). ✷
DenoteF(v) := J (v,h(v,L),L), where(v,L) ∈ L2(Ω)×R++. A problem equivalen

to (P) is what we will call thereduced problem:

Min
v

F (v); v ∈ K. (RP)

3. Existence and basic properties

In this section we will establish the existence of solutions of problem (RP). The
point is to check coerciveness of the cost function in the sense that, for anyL > 0,
F(v) → +∞ when‖v‖H1

0 (Ω) → +∞. SinceΩ has a Lipschitz boundary, we have t
following Sobolev inclusion (e.g., Gilbarg and Trudinger [11, Theorem 7.26])

H 1(Ω)⊂ L4(Ω), with compact injection. (10

Since the dimension is at most 2, the compact inclusionH 1(Ω) ⊂ Lp(Ω) holds for allp
in [2,∞[. However, only (10) is used in our proofs, and not other property of the boun
Indeed, up to Section 6 (including it) we only use the compact injectionH 1(Ω) ⊂ L2(Ω).

Lemma 3.1. For all ε > 0, there existsCε > 0 such that, for allv ∈ H 1(Ω), one has:

∫
Ω

v2(ω)dω � ε

∫
Ω

∥∥∇v(ω)
∥∥2 dω +Cε

(∫
Ω

∣∣v(ω)∣∣dω

)2

. (11)
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Proof. If the conclusion were false, there would existε > 0 and a sequencevk in H 1(Ω)∫
2

s

kly
et
such that
Ω
(vk(ω)) dω = 1, and

1> ε

∫
Ω

∥∥∇vk(ω)
∥∥2 dω + k

(∫
Ω

vk(ω)dω

)2

. (12)

Clearlyvk is bounded inH 1(Ω), and has a weak limit point̄v. By (10), the latter satisfie∫
v̄2(ω)dω = 1, as well as(

∫
Ω

|v̄(ω)|dω)2 = 0, which is impossible. ✷
SinceΩ is bounded, Poincaré’s inequality holds, i.e., there existscP > 0 such that

‖v‖L2(Ω) � cP (
∫
Ω

‖∇v(ω)‖2 dω)1/2, for all v ∈ H 1
0 (Ω). Therefore, we endowH 1

0 (Ω)

with the norm‖v‖H1
0 (Ω) := (

∫
Ω ‖∇v(ω)‖2 dω)1/2.

Proposition 3.2. (i) For all ε > 0, Cε denoting the constant in Lemma3.1, for all
(v,L) ∈ H 1

0 (Ω)× R++, the following inequality holds:

F(v) �
(

1

2
− cP ε

1/2
)

‖v‖2
H1

0 (Ω)
− cP

(‖f ‖L2(Ω) +C1/2
ε L

)‖v‖H1
0 (Ω). (13)

(ii) If the reduced problem(RP) is feasible, its set of solutions is nonempty, wea
closed, and uniformly bounded whenever(f,L) varies in a bounded subs
of L2(Ω)× R++.

(iii) If fk → f̄ weakly in L2(Ω), Lk → L̄ in R++, and if vk is a solution of
problem(RP) with f = fk and L = Lk , then any weak limit point̄v of vk is a strong
limit point, and is solution of problem(RP)with f = f̄ andL = L̄.

Proof. (i) We have thatF(v) = 1
2‖v‖2

H1
0 (Ω)

− ∫
Ω f (ω)v(ω)dω − F1(v,L), where

F1(v) = 1

2

∫
Ω

(
v(ω) + h

)(
v(ω) − h

)
+ dω �

∫
Ω

v(ω)
(
v(ω) − h

)
+ dω

� ‖v‖L2(Ω)

∥∥(v − h)+
∥∥
L2(Ω)

� cP ‖v‖H1
0 (Ω)

∥∥(v − h)+
∥∥
L2(Ω)

. (14)

Applying Lemma 3.1, for anyε > 0, we obtain:

∫
Ω

(
v(ω) − h

)2
+ dω � ε

∫
Ω

∥∥∇(
v(ω) − h

)
+
∥∥2 dω +Cε

(∫
Ω

(
v(ω)− h

)
+ dω

)2

� ε

∫
Ω

∥∥∇v(ω)
∥∥2 dω +CεL

2,
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and hence, since
√
a + b � √

a + √
b for all nonnegativea andb,

d
rm

d

ibility
of the
t least

uence
nce of
is the

that

tional
t

∥∥(v − h)+
∥∥
L2(Ω)

� ε1/2‖v‖H1
0 (Ω) +C1/2

ε L. (15)

We also have, denoting again bycP the constant in Poincaré’s inequality,∫
Ω

f (ω)v(ω)dω � ‖f ‖L2(Ω)‖v‖L2(Ω) � cP ‖f ‖L2(Ω)‖v‖H1
0 (Ω). (16)

We obtain (13) by combining (14), (15) and (16).
(ii) We prove uniform boundedness of solutions. Whenever(f,L) varies in a bounde

subset ofL2(Ω)× R++, takingε small enough, we have by (13) an inequality of the fo
F(v) � 1

4‖v‖2
H1

0 (Ω)
− a‖v‖H1

0 (Ω), wherea > 0 does not depend on(v, f,L). On the other

hand, choosing a bounded feasible solutionv0 ∈ K, with associated heighth(v0,L), it is
easily checked that

F(v0) � 1

2

∫
Ω

∥∥∇v2
0(ω)

∥∥dω + cP ‖f ‖L2(Ω)‖v‖H1
0 (Ω) +L

∣∣h(v0,L)
∣∣.

Since the functionh(v0, ·) is bounded on bounded sets,F(v0) is uniformly upper bounde
whenever(f,L) is bounded. SinceF(v) � F(v0), combining with (i), we obtain uniform
boundedness of solutions.

By (10), G(v,h), and henceh(v,L) is weakly continuous. It follows thatF(v) is
weakly lower semicontinuous, hence the set of solutions is weakly closed. Feas
of (RP) and weak semi continuity of its cost function, as well as weak closedness
feasible set, combined with uniform boundedness of solutions implies existence of a
one solution.

(iii) This is an easy consequence of (ii), the strong convergence of the subseq
of vk being due to the fact that convergence of the cost function and weak converge
its arguments implies the strong convergence. The reason is that the cost function
sum of the square ofH 1

0 (Ω) norm and a weakly continuous term.✷

4. When is the cost function convex?

Using the rules for directional derivatives of locally Lipschitz functions, we have
F(v) has directional derivatives:

F ′(v)δv =
∫
Ω

∇v(ω) · ∇δv(ω)dω −
∫
Ω

[(
v(ω) − h(v,L)

)
+ + f (ω)

]
δv(ω)dω. (17)

This expression takes into account the fact that, by Proposition 2.1, the direc
derivative ofJ (v,h,L) with respect toh is, whenh = h(v,L), equal to 0. Observe tha
the directional derivative is linear and continuous with respect toδv, and hence,F is
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Gâteaux differentiable. In addition, this Gâteaux derivative is continuous, sinceh(v,L) is

tive

in [3].

ult of
a continuous function, and hence,F is continuously differentiable. We denote byDF the
derivative ofF . Similarly, it is easily checked that the second-order directional deriva
of F in directionδv, defined as,

D2F(v)(δv, δv) := lim
t↓0

F(v + tδv) − F(v) −DF(v)δv

1
2t

2
,

has the following expression, whereδh is the directional derivative ofh(v,L) in
directionδv:

D2F(v)(δv, δv) =
∫
Ω

∥∥∇δv(ω)
∥∥2 dω −

∫
{v>h(v,L)}

(
δv(ω) − δh

)2 dω

−
∫

{v=h(v,L)}

(
δv(ω) − δh

)2
+ dω.

It is clear thatF is convex iffD2F(v)(δv, δv) � 0, for all v andδv in H 1
0 (Ω). The cost

functionF is not always convex, as the following example shows.

Example 4.1. Let L = 1, and letv0 ∈ H 1(Ω)+ be such that
∫
Ω
v0(ω)dω = 1, whence

h(v0,L) = 0. ThenDF(v0)v0 = ∫
Ω

‖∇v0(ω)‖2 dω − ∫
Ω
v2

0(ω)dω. For v = 0 we have
h(0,1)= −meas(Ω)−1, andDF(0)v0 = −meas(Ω)−1. It follows that

(
DF(v0)−DF(0)

)
v0 =

∫
Ω

∥∥∇v0(ω)
∥∥2 −

∫
Ω

v2
0(ω)dω + meas(Ω)−1.

Assume thatΩ = ]0,m[ so that meas(Ω) = m, and takev0(ω) := c sin(Πx/m). That∫
Ω v0(ω)dω = 1 implies c = π/(2m). We have that

∫
Ω v2

0(ω)dω = π2/(8m), while∫
Ω

‖∇v0(ω)‖2 dω = π4/(8m3). Hence

(
DF(v0)−DF(0)

)
v0 = π4/

(
8m3) − (

π2/8− 1
)
m−1

is negative, and thereforeF is not convex, ifm is large enough.

Examples of nonconvexity of the cost for bidimensional problems are discussed
It can be suspected that the cost functionF is convex wheneverΩ is “small enough”,
since in that case the first term in the expression ofD2F(v)(δv, δv) should dominate the
two others. For proving such results we recall the following notions. A classical res
functional analysis (e.g., [8, Vol. 5, p. 120]) is that the positive amount

ν0(Ω) := inf
v∈H1

0 (Ω)

v �=0

∫
Ω ‖∇v(ω)‖2 dω

‖v‖2
L2(Ω)

(18)
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is in fact the smallest eigenvalue of−,, where , is the Laplacian operator in
1 2 a

]

a

um
H0 (Ω)∩H (Ω), and that the eigenvectorw0 �= 0 is unique (up to multiplication by
scalar), nonzero and of constant sign, say positive, overΩ .

For any open and connected subsetΩ̂ ⊂ Ω , let (see, e.g., [8, Vol. 3, p. 926
V (Ω̂) := {v ∈ H 1(Ω̂); ∫

Ω̂ v(ω)dω = 0} denote the set of functions over̂Ω with square
integrable gradient and zero mean, and set:

ν1(Ω̂) := inf
v∈V (Ω̂)
v �=0

∫
Ω̂ ‖∇v(ω)‖2 dω

‖v‖2
L2(Ω̂)

. (19)

If the injection ofH 1(Ω̂) intoL2(Ω̂) is compact, it is not difficult to check thatν1(Ω̂) > 0,
and that there exists a nonzero eigenvectorŵ ∈ V (Ω̂) solution of

−,ŵ = ν1(Ω̂)ŵ in Ω̂,
∂ŵ

∂n
= 0 on∂Ω̂, (20)

where∂ · /∂n denotes the normal derivative.

Lemma 4.2. (i) The functionη :R → R+ defined by:

η(δh) :=
∫

{v>h(v,L)}

(
δv(ω) − δh

)2
dω +

∫
{v=h(v,L)}

(
δv(ω) − δh

)2
+ dω,

is convex and attains its minimum whenδh = h′, where we denote in this lemm
h′ := h′((v,L), (δv,0)).

(ii) The cost functionF is convex(respectively strongly convex) overH 1
0 (Ω) whenever

ν0(Ω)� 1 or ν1(Ω)� 1 (respectivelyν0(Ω) > 1 or ν1(Ω) > 1).

Proof. (i) The functionη is easily seen to be convex, and therefore attains its minim
when its derivative vanishes, i.e., whenδh = h′.

(ii) Using η(0)� η(h′), which follows from (i), get:

D2F(v)(δv, δv) � ‖δv‖2
H1

0 (Ω)
−

∫
{v>h(v,L)}

δv2(ω)dω −
∫

{v=h(v,L)}
δv2+(ω)dω

�
∫
Ω

∥∥∇δv(ω)
∥∥2

dω −
∫
Ω

δv2(ω)dω

which proves convexity ifν0(Ω) � 1 (respectively strong convexity ifν0(Ω) > 1). The
proof of the case whenν1(Ω) � 1 (respectivelyν1(Ω) > 1) is similar, usingη(h0) � η(h′),
whereh0 is such that

∫
Ω(δv(ω) − h0)dω = 0. ✷
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5. First-order optimality conditions

,

ical

of

ut
The first step consists in obtaining primal first-order optimality conditions. Thecone
of feasible directions, and thecone of tangent directionsto K at v̄ ∈ K are defined
respectively, as

RK(v̄) := {
t (v − v̄); t > 0, v ∈ K

}; TK(v̄) := clRK(v̄), (21)

where by cl we mean the closure inH 1
0 (Ω). The next lemma is a consequence of a class

result (see, e.g., [5, Lemma 3.7]), and hence, we skip the proof.

Lemma 5.1. Let v̄ be a local solution of(RP). Then

DF(v̄)δv � 0, for all δv ∈ TK(v̄). (22)

Let H−1(Ω) denote the topological dual ofH 1
0 (Ω). The normal cone (in the sense

convex analysis) toK at v ∈ K is

NK(v) := {
λ ∈ H−1(Ω); 〈λ,v′ − v〉 � 0, for all v′ ∈ K

}
.

We sometimes need the following regularity assumption on the domainΩ and obstacle:

For everyf ∈ L2(Ω), the solution of(OPf ) belongs toH 2(Ω). (23)

This holds if ∂Ω is of class C2, and under various hypotheses on the obstacleΦ, see
[6, Chapter I].

Theorem 5.2. Let v̄ be a local solution of problem(RP), and denote bȳh the associated
height. Then there existsλ ∈ NK(v) such that

−,v̄ − (v̄ − h̄)+ + λ = f in Ω. (24)

If in addition (23)holds, then̄v ∈ H 2(Ω) andλ ∈ L2(Ω).

Proof. Let λ := −DF(v̄) (element ofH−1(Ω)). ThenDF(v̄) + λ = 0 and, by (22),
λ ∈ NK(v). It follows also from (22) that̄v is a solution of the obstacle problem (witho
water) with the fieldf̂ := f + (v̄ − h)+. Therefore, (23) implies that̄v ∈ H 2(Ω). In that
case,λ = −DF(v̄) = ,v̄ + (v̄ − h̄)+ + f belongs toL2(Ω). ✷

We now discuss some consequences of the theorem.

Lemma 5.3. Assume thatf � 0 andΦ � 0 a.e. Letv be a solution of problem(RP). Then
v � 0 a.e.
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Proof. Since v is solution of the obstacle problem with the nonnegative field force
s [6,

e

t

the

er.
f + (v − h)+, and the obstacle is nonnegative, the conclusion follows from Brézi
Corollary I.5]. ✷

We say thatv ∈ K is a stationary pointof problem (RP) if (24) is satisfied, for som
λ ∈ NK(v), called the associated multiplier.

Proposition 5.4. Assume thatΦ = +∞. If v̄ is a stationary point, with associated heighth̄,
then

2F(v̄)+ h̄L +
∫
Ω

f (ω)v̄(ω)dω = 0. (25)

In particular, if f = 0 a.e., thenF(v̄) = −1
2h̄L, and hence, solutions of(RP) are the

stationary points with largest height of water.

Proof. It suffices to multiply (24) bȳv, and integrate overΩ , to obtain (25), from which
the conclusion follows. ✷
Remark 5.5. Let us highlight the dependence of (RP) overL by denoting it (RPL)
in this remark. Wheneverf is identically 0 andΦ = +∞, it is easily checked tha
S(RPtL) = tS(RPL), for all t > 0. Hence the height of water is proportional toL, and
val(RPL) = −aL2, wherea is a constant of the same sign ash̄.

As shown in the following proposition, iff = 0 and the obstacle is not present, then
sign of height of water depends only on the amountν0(Ω) defined in (18).

Proposition 5.6. Assume thatf = 0 andΦ = +∞ a.e. Letv̄ be a solution of(RP), with
associated height̄h. Thenh̄ � 0 iff ν0(Ω) � 1.

Proof. Let w0 be the positive eigenvector of unit norm inL2(Ω) associated withν0(Ω),
andα > 0 be such thatα

∫
Ω
w0(ω)dω = L. With αw0 is associated a zero height of wat

By Proposition 5.4,−1
2h̄L � F(αw0) = α2(ν0(Ω) − 1). It follows that, if h̄ � 0, then

ν0(Ω) � 1. Conversely, assume thatν0(Ω) � 1. Let v ∈ H 1
0 (Ω). Denotingh = h(v,L),

get

F(v) = 1

2

∫
Ω

∥∥∇v(ω)
∥∥2 dω − 1

2

∫
{v>h}

(
v(ω) − h

)(
v(ω) + h

)
dω

� 1

2

∫
Ω

∥∥∇v(ω)
∥∥2 dω − 1

2

∫
{v>h}

v2(ω)dω � 0 (26)

which proves that val(RP) is nonnegative; since val(RP) = −1
2h̄L by Remark 6.6(ii),̄h is

nonpositive. ✷
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For one-dimensional problems, all computations can be carried out explicitly; see [3].

alysis,

t

that
Given

,

t
t
s

. Denote
riate

ll

lement
6. Tangent and normal cone; polyhedricity

In order to state second-order sufficient conditions, and to perform a sensitivity an
we need the concept below. We say thatK, defined in (1), ispolyhedricat v̄ ∈ K if, for
anyµ ∈ NK(v̄), the following holds:

TK(v̄)∩µ⊥ = cl
(
RK(v̄)∩µ⊥)

. (27)

If this holds for everȳv ∈ K, we say thatK is polyhedric. IfΦ is identically zero, the nex
proposition is a particular case of Mignot [16], see also [5, Theorem 3.58].

Proposition 6.1. The setK is polyhedric atv̄.

Proof. SinceTK(v) ⊃ RK(v), and the left-hand side of (27) is closed, we have
the right-hand side is included in the left-hand side. Let us prove the converse.
w ∈ H 1

0 (Ω), setw− := min(0,w), andw+ := max(0,w). Observe first that ifw ∈RK(v),
thenw+ ∈ RK(v), since ifv + tw ∈ K for a givent > 0, we have that

v + tw+ = v + max(tw,0) = max(v + tw, v) � Φ a.e. (28)

Assume now thatw ∈ TK(v), thenw is the limit of a sequencewn ∈ RK(v), and hence
w+ = limn(wn)+ is limit of elements ofRK(v). We have proved thatw ∈ TK(v) implies
w+ ∈ TK(v). Let µ ∈ NK(v). Sincew+ ∈ TK(v), and also−w+ ∈ RK(v), we have tha
w+ ⊥ µ. Finally, letw ∈ TK(v̄) ∩ µ⊥, whereµ ∈ NK(v). Sincew+ ⊥ µ, we have tha
w− ⊥ µ. Let ŵn be a sequence inRK(v) converging tow+. Then(ŵn)+ also converge
to w+ and, by the above claims, belongs toRK(v)∩µ⊥. Therefore,w− + (ŵn)+ belongs
to RK(v) ∩µ⊥ and converges tow. The conclusion follows. ✷

We need some classical results, see, e.g., [5, Section 6.4] and references therein
by M(Ω) the set of locally finite Borel measures, which is the dual, for an approp
topology, of the spaceC00(Ω) of continuous functions with compact support inΩ . Let
M(Ω)+ be the set of nonnegative locally finite Borel measures. Also, denote byH 1

0 (Ω)+
the set of functions inH 1

0 (Ω) that are nonnegative a.e., and byH−1(Ω)+ the set:

H−1(Ω)+ := {
µ ∈ H−1(Ω); 〈µ,v〉 � 0, for all v ∈ H 1

0 (Ω)
}
.

A setA ⊂ Ω is said to be ofnull capacityif there exists a sequenceuk → 0 in H 1
0 (Ω),

such that for eachk, uk � 1 over a neighborhood ofA. It is easily checked that a set of nu
capacity has zero measure, but the converse is false. Letv ∈ H 1

0 (Ω). Thenv is in fact a
class of functions under the relation of being equal a.e.; in this class there exists an e
that is continuous except on a set of null capacity, called the quasi-representative.
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Lemma 6.2. Let µ ∈ H−1(Ω)+. Thenµ has a unique extension, also denotedµ, from
1 1

ay
set of

t

the

lation,
H0 (Ω) ∩ C00(Ω) to C00(Ω). The latter belongs toM(Ω)+. In addition, iff ∈ H0 (Ω),
with quasi-representativẽf , thenf̃ ∈ L1(µ), and∫

Ω

f̃ (ω)dµ(ω)= 〈µ,f 〉H−1(Ω),H1
0 (Ω). (29)

In the sequel we identify functions ofH 1
0 (Ω) with their quasi-representatives. We s

that a property is true quasi-everywhere, or q.e., if it is true everywhere except on a
null capacity.

Proposition 6.3. Let v ∈ K. If Φ ∈ H 1
0 (Ω), then the following equalities hold:

NK(v̄) = {
µ ∈ H−1(Ω)+; µ

({v̄ < Φ}) = 0
}
, (30)

TK(v̄) = {
v ∈ H 1

0 (Ω); v � 0 q.e. on{v̄ = Φ}}. (31)

Proof. It is clear thatµ ∈ NK(v) is equivalent toσK(µ) = 〈µ,v〉, where the suppor
function σK is defined byσK(µ) := sup{〈µ,w〉; w ∈ K}. If Φ ∈ H 1

0 (Ω), thenΦ ∈ K,
and hence,

σK(µ) =
{

〈µ,Φ〉 if µ ∈ H−1(Ω)+,
+∞ otherwise.

(32)

In that case, we have thatµ ∈ NK(v) iff µ ∈ H−1(Ω)+ and 〈µ,Φ − v〉 = 0. Since
µ ∈ H−1(Ω)+ andΦ − v � 0, this is equivalent to (30). For proving (31) we use
fact that a Borel setA ⊂ Ω has null capacity iffµ(A) = 0, for all µ ∈ H−1(Ω)+ (see,
e.g., Lemma 6.55 in [5]). Therefore,v is in the r.h.s. of (31) iff eachµ ∈ H−1(Ω)+ with
support in{v = Φ} is such that

〈µ,v − v̄〉 =
∫

{v=Φ}∩{v�v̄}
(v − v̄)dµ� 0. (33)

This is the characterization ofTK(v̄), since the latter is the polar cone ofNK(v). ✷
We have seen in Proposition 5.4 that stationary points satisfy a certain integral re

if Φ = +∞. Let us extend this kind of result to the case when the obstacle is active.

Corollary 6.4. Assume thatΦ ∈ H 1
0 (Ω). Let v̄ be a stationary point of problem(RP)and

λ its associated multiplier. Denote bȳh the associated height. Then(the duality product
below being in theH 1

0 (Ω) space)

2F(v̄)+ h̄L+
∫
Ω

f (ω)v̄(ω)dω + 〈λ,Φ〉 = 0. (34)
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Proof. Multiplying (24) by v̄ and integrating overΩ , we obtain, after some elementary

s

.
et
,

t

order
aylor
computations:

2F(v̄) + h̄L+
∫
Ω

f (ω)v̄(ω)dω + 〈λ, v̄〉 = 0. (35)

It remains to observe that〈λ,Φ − v̄〉 = 0. Indeed this quantity is nonpositive sinceΦ ∈ K

andλ ∈ NK(v̄). On the other hand,λ ∈ H−1(Ω)+, while v̄ � Φ, hence this amount i
nonnegative. The conclusion follows.✷
Remark 6.5. The conclusion still holds if we assume only thatv andΦ are continuous
In that case we apply Lemma 5.1 withδv a smooth function with support in the s
{v < Φ}. Therefore, the support of the measureλ belongs to{v = Φ}, and hence∫
Ω λ(ω)(Φ(ω) − v̄(ω))dω = 0 still holds, from which (34) follows.

Remark 6.6. Under the assumptions of the above corollary, sinceλ � 0 a.e., ifΦ � 0
a.e., the last term in (34) is nonnegative, and hence, ifΦ ∈ H 1

0 (Ω), we have tha
2F(v̄)+ h̄L + ∫

Ω f (ω)v̄(ω)dω � 0, with equality if v̄ < Φ quasi everywhere.

7. Second-order optimality conditions

Although the cost function is not twice differentiable, it is possible to state second-
necessary or sufficient conditions for optimality, thanks to the following pseudo-T
expansion in the lemma below.

Lemma 7.1. Let H :L4(Ω) → R be defined byH(v) := 1
2

∫
Ω
v2+(ω)dω. Then the

expansion below holds, for allv andz in L4(Ω):

H(v + z) = H(v)+
∫
Ω

v+(ω)z(ω)dω + 1

2

∫
{v=0}

z2+(ω)dω + 1

2

∫
{v>0}

z2(ω)dω

+ o
(‖z‖2

L4(Ω)

)
. (36)

Proof. Let us set:

A := H(v + z)−H(v) −
∫
Ω

v+(ω)z(ω)dω

− 1

2

∫
{v=0}

z2+(ω)dω − 1

2

∫
{v>0}

z2(ω)dω. (37)

We have to check the equalityA = o(‖z‖2
L4(Ω)

). Observe that
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A =
∫ (

v(ω) + z(ω)
)2 dω −

∫ (
v(ω) + z(ω)

)2 dω, (38)

the

he cost

f

l

{v<0;v+z>0} {v>0;v+z<0}

and hence, denoting byξz the indicator function of{v < 0; v + z > 0}, and using the
Cauchy–Schwarz inequality, get

A �
∫

{v<0;v+z>0}
z2(ω)dω � ‖ξz‖L2(Ω)‖z‖2

L4(Ω)
. (39)

By Lebesgue’s dominated convergence theorem, ifz → 0 in L4(Ω), ξz → 0 in L2(Ω).
With (38), it follows thatA � o(‖z‖2

L4(Ω)
). The opposite inequality can be obtained in

same manner. ✷
Thanks to the above lemma, we are able to state a pseudo-Taylor expansion for t

function of problem (RP). We remind that the expression ofDF is given in (17). Given
v ∈ H 1

0 (Ω), defineQv :H 1
0 (Ω) → R by:

Qv(z) :=
∫
Ω

∥∥∇z(ω)
∥∥2 dω −

∫
{v=h(v,L)}

ẑ2+(ω)dω −
∫

{v>h(v,L)}
ẑ2(ω)dω, (40)

whereẑ ∈ H 1(Ω) is defined bŷz(ω) := z(ω) − δh, δh being the directional derivative o
h(v,L) at v̄ in directionz (whose expression is given in Lemma 2.2).

Lemma 7.2. Let v̄ and z belong toH 1
0 (Ω), and denotēh the height associated with̄v.

Then the following expansion holds:

F(v + z) = F(v) +DF(v)z + 1

2
Qv(z)+ o

(‖z‖2
H1

0 (Ω)

)
. (41)

Proof. Given(v,L) ∈ H 1
0 (Ω)×R++, seth = h(v,L). LetDhJ (v,h,L) denote the partia

derivative ofJ with respect toh. By Proposition 2.1,DhJ (v,h,L) = 0. Combining with
Lemma 7.1, we have that, for every(z, δh) ∈ H 1

0 (Ω)× R:

J (v + z,h+ δh,L) = J (v,h,L) +DvJ (v,h,L)z + 1

2

∫
Ω

∥∥∇z(ω)
∥∥2 dω

− 1

2

∫
{v=h}

(
z(ω)− δh

)2
+ dω − 1

2

∫
{v>h}

(
z(ω)− δh

)2 dω

+ o
(‖z‖2

H1
0 (Ω)

+ (δh)2
)
.

The result follows by combining with (7).✷
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We can now state the second-order necessary conditions for local optimality. Thecone

n

,
o

step

, if

ond-

osi-
there
of critical directionsis defined by:

C(v̄) := {
z ∈ TK(v̄); DF(v̄)z = 0

}
. (42)

In the analysis we also use thecone of feasible critical directions,

C(v̄) := {
z ∈ RK(v̄); DF(v̄)z = 0

}
. (43)

Since the setK is polyhedricat v̄, we know thatC(v̄) is the closure ofC(v̄).

Theorem 7.3. Let v̄ be a local solution of(RP), and h̄ the associated height. The
Qv̄(z) � 0, for all critical direction z.

Proof. Let z be a feasible critical direction. By local optimality ofv̄, and using Lemma 7.2
get 0� limt↓0(

1
2t

2)−1(F (v̄ + tz) − F(v̄)) = Qv̄(z). SinceQv̄(·) is continuous, we als
have thatQv̄(·) is nonnegative over the closure ofC(v̄); the latter being equal toC(v̄)

sinceK is polyhedric, the conclusion follows.✷
We now turn to the second-order sufficient conditions for local optimality. A first

is the following lemma:

Lemma 7.4. The positively homogeneous form of second-orderQv̄(·), stated in(40),
is an extended Legendre form in the sense of[5, Section 3.3], i.e., is weakly lower
semi continuous and such that, if a sequencezk weakly converges toz in H 1

0 (Ω), and
Qv̄(zk) → Qv̄(z), thenzk → z strongly inH 1

0 (Ω).

Proof. We can writeQv̄(z) as‖z‖2
H1

0 (Ω)
+ q(z), whereq(·) is, by (10) and sinceh(v,L)

has continuous directional derivatives, continuous for the weak topology. Thereforezk
weakly converges toz in H 1

0 (Ω), andQv̄(zk) → Qv̄(z), then‖zk‖2
H1

0 (Ω)
→ ‖z‖2

H1
0 (Ω)

,

which in turn implieszk → z in H 1
0 (Ω), as was to be proved.✷

Theorem 7.5. Let v̄ ∈ K, and leth̄ be the associated height. Assume the following sec
order sufficient condition: for every nonzero critical directionz, Qv̄(z) > 0. Thenv̄ is a
local solution of(RP), satisfying the quadratic growth condition: there existsα > 0 such
that, for all v′ ∈ K:

F(v′) � F(v̄)+ α‖v′ − v̄‖2
H1

0 (Ω)
+ o

(‖v′ − v̄‖2
H1

0 (Ω)

)
. (44)

Proof. Although this is a variant of the proof of Theorem 3.63 combined with Prop
tion 3.74 of [5], it is useful to give a direct argument. If the conclusion were false,
would exist sequencesvk → v̄ in H 1

0 (Ω), andεk ↓ 0, such that

F(vk) < F(v̄)+ εk‖vk − v̄‖2
H1

0 (Ω)
. (45)
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Settk := ‖vk− v̄‖H1
0 (Ω), andδvk := t−1

k (vk− v̄). Then‖δvk‖H1
0 (Ω) = 1, andvk = v̄ + tkδvk .

-

,

er

ially

ter
ce

hat
Extracting if necessary a subsequence, we may assume thatδvk has a weak limitδv; obvi-
ouslyδv ∈ TK(v̄). From a first-order expansion ofF in (45), we deduce thatDF(v̄)δv � 0,
and hence,δv is a critical direction. SinceDF(v̄)δvk � 0 by the first-order optimality con
ditions, we have by Lemma 7.2:

F(vk) = F(v̄ + tkδvk) = F(v̄)+ tkDF(v̄)δvk + 1

2
t2kQv̄(δvk) + o

(
t2k

)
,

� F(v̄)+ 1

2
t2kQv̄(δvk)+ o

(
t2k

)
.

Combining with (45), obtainQv̄(δvk) � o(1). SinceQv̄(·) is an extended Legendre form
it follows thatQv̄(δv) � 0, with equality implyingδvk → δv strongly. In the latter caseδv
is a nonzero critical direction such thatQv̄(δv) � 0: this contradicts the second-ord
sufficient conditions. Similarly, by the second-order necessary conditions,Qv̄(δv) < 0 is
impossible. We have obtained the desired contradiction.✷

Note that, by Lemma 4.2(ii), the second-order sufficient optimality condition triv
holds if ν0(Ω) > 1 or ν1(Ω) > 1.

8. Sensitivity analysis

It is possible to perform a sensitivity analysis with respect to the volume of waL
and the field of forcesf ; for the sake of simplicity we will only study the dependen
of solutions with respect toL. For that reason we denote the cost function asF(v,L) =
J (v,h(v,L),L), and the minimization problem as

Min
v∈K F(v,L), (PL)

its value being denoted val(L). Denote also byS+(PL) (respectivelyS−(PL)) the set
of solutions of(PL) with maximum(minimum) height of water. Similarly, let(z, ;) ∈
H 1

0 (Ω) × R. Let δh denote in this section the directional derivative ofh(v,L) at (v,L)
in direction(z, ;), solution of (6). Let

Qv,L(z, ;) :=
∫
Ω

∥∥∇z(ω)
∥∥2 dω −

∫
{v̄=h̄}

ẑ2+(ω)dω −
∫

{v̄>h̄}
ẑ2(ω)dω − 2;δh, (46)

whereẑ(ω) := z(ω)− δh. An easy variant of the proof of Lemma 7.2 allows to prove t

F(v + z,L+ ;) = F(v,L) +DvF(v,L)z − h(v,L); + 1

2
Qv,L(z, ;)

+ o
(‖z‖2

H1
0 (Ω)

+ ;2). (47)
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Denote the critical cone as

lity

s

r.
C(v,L) := {
z ∈ TK(v); DvF(v,L)z = 0

}
. (48)

Consider the subproblem associated withv̄ ∈ K andL> 0:

Min
z∈C(v̄,L)

Qv̄,L(z, ;). (SP;)

Below s(;) denotes the sign of;, with value 1 (respectively−1) if ; is positive (respectively
negative). Note that val(SP0) = 0 in view of the second-order necessary optima
condition, and for; �= 0, due to positive homogeneity,

val(SP;) = ;2 val(SPs(;)); S(SP;) = |;|S(SPs(;)). (49)

Theorem 8.1. (i) When; → 0, the weak limit points of solutions of(PL+;), for ; > 0
(respectively; < 0) are strong limit points, and belong toS+(PL) (respectivelyS−(PL)).
In addition, the following expansion of value function holds:

val(L+ ;) = val(L)− ĥ;+ o(;), (50)

where ĥ is the maximum(respectively minimum) height of water among all solution
of (PL) if ; > 0 (respectively; < 0).

(ii) Assume that; > 0 (respectively; < 0), and thatS+(PL) (respectivelyS−(PL)) has a
unique element̄v satisfying the second-order sufficient condition. Then, ifv; ∈ S(SPL+;),
we have that

‖v; − v̄‖H1
0 (Ω) = O(;), (51)

and the following expansion holds for the value function:

val(L + ;) = val(L)− ĥ;+ 1

2
val(SPs(;));

2 + o
(
;2). (52)

In addition, any weakly convergent subsequence inH 1
0 (Ω) of (vL+; − vL)/; is in fact

strongly convergent, and its limit is solution of(SPs(;)). If (SPs(;)) has a unique solution̄z,
then the following expansion of solutions holds:

vL+; = vL + |;|z̄+ o(;). (53)

Proof. (i) Assume for instance that; > 0, and letĥ denote the maximum height of wate
Since the set of solutions is a nonempty, weakly closed and bounded subset ofH 1

0 (Ω),
S+(PL) is itself nonempty, weakly closed and bounded. Givenv ∈ S+(PL), we have
with (47) and (49),

val(L+ ;) � F(v,L + ;) = F(v,L) − ĥ;+ o(;). (54)
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It remains to prove the converse inequality. Take a sequence;k ↓ 0, along which
ˆ

on,
the
ce

t
a

limk(val(L+;k)−val(L))/;k attains the smallest possible value, say,. By (54),, � −h.
Let vk ∈ S(PL+;k)). Extracting a subsequence if necessary, we may assume thatvk has a
weak limit pointv̄ ∈ K. Passing to the limit in the inequality

F(vk,L + ;k) � F(v,L + ;k), for all v ∈ K, (55)

thanks to the l.s.c. ofF , we deduce that̄v ∈ S(PL). Taking v = v̄ in (55), we obtain
lim supk F (vk,L+;k) � F(v̄,L), which sinceF is l.s.c. impliesF(vk,L + ;k) → F(v̄,L).
In view of the expression ofF , this impliesvk → v̄ in H 1

0 (Ω). SinceF is continuously,
and hence strictly differentiable, we have that

, � lim
k

F (vk,L+ ;k)− F(vk,L)

;k
= −h̄, (56)

whereh̄ is the height of water associated withv̄, and hence,, � −h̄. Sinceh̄ � ĥ, this
implies, = h̄ = ĥ, and also that each (strong) limit point ofvk is solution ofS+(PL), as
was to be proved.

(ii) Assume for instance that; > 0. Note that, by the second-order sufficient conditi
a minimizing sequence of(SP1) is bounded. Since the cost function is l.s.c. and
feasible set is weakly closed, this implies thatS(SP1) is nonempty and bounded. Sin
K is polyhedric, for anyε > 0, there existszε ∈ C(v,L) ∩RK(v) that is anε-solution
of (SP1). It follows that, for; > 0 small enough,

val(L+ ;) � F(v̄ + ;zε,L + ;) = F(v̄,L)− ĥ;+ 1

2
Qv̄,L(zε,1);2 + o

(
;2)

� val(L) − ĥ;+ 1

2

(
val(SP1)+ ε

)
;2 + o

(
;2). (57)

Sinceε can be arbitrarily small we deduce that

val(L + ;) � F(v̄,L) − ĥ;+ 1

2
val(SP1);

2 + o
(
;2). (58)

We will prove the converse inequality and (51). Given any sequence;k ↓ 0, by (i), the
associated sequencevk ∈ S(SPL+;k ) converges tōv. Let v; ∈ S(PL+;). In view of the
expansion (47) and the second-order sufficient condition (Theorem 7.5), settingz; :=
v; − v̄, we get an estimate of the form:

F(v̄ + z;,L+ ;) � val(L) +DvF(v,L)z; − ĥ;+ 1

2
α‖z;‖2

H1
0 (Ω)

− β‖z;‖H1
0 (Ω)|;|, (59)

for some β > 0. Combining with (58), we deduce that‖z;‖H1
0 (Ω) = O(|;|), which

proves (51).
Assume now that the sequence(val(L + ;k) − val(L) + h̄L)/;2

k attains its smalles
possible value. By (51),zk := (vk − v̄)/;k is bounded. Extracting if necessary
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subsequence, we may assume that it has a weak limitz̄. Sincezk ∈ RK(v̄), z̄ ∈ TK(v̄).

P) in
al
of

nvex
ining

side,
t

vanish
e

e

or
Using (50), obtainDvF(v̄,L)z̄ � 0. It follows thatz̄ ∈ C(v̄,L). SinceQv̄,L(· , ;) is l.s.c.,
we have with (47) that

val(L+ ;k) = F(v̄ + ;kzk,L + ;k) = F(v̄,L) − h̄;k + 1

2
Qv̄,L(zk,1);2

k + o
(
;2
k

)
� F(v̄,L) − h̄;k + 1

2
Qv̄,L(z̄,1);2

k + o
(
;2
k

)
� F(v̄,L) − h̄;k + 1

2
val(SP1);

2
k + o

(
;2
k

)
, (60)

which combined with (58) implies (52), as well asz̄ ∈ S(SPs(;)), as was to be proved.✷

9. Numerical approximation of solutions

In this section we give a basic discussion of the discretization of problem (R
the case whenΩ is a convex polygon ofR2 (although in our numerical results we de
also with the case whenΩ is a disc). A basic reference for the numerical analysis
variational inequalities is the book by Glowinski et al. [12]. These authors deal with co
problems. Here, due to nonconvexity, we have to rely on the local analysis for obta
error estimates. Consider a family of regular triangulation ofΩ . That is, with eachε > 0
we associate a finite familyTε of triangles whose union is equal toΩ , and such that (i) the
intersection of two of these triangles is either empty, or is a vertex, or a common
(ii) the diameter of each triangle is not larger thanε, and (iii) if rε denotes the smalles
radius of the circle inscribed in a triangle, then limε↓0 rε/ε > 0. Denote byVε the finite-
dimensional space of continuous functions that are affine on each triangle, and
on ∂Ω ; we have thatVε ⊂ H 1

0 (Ω). Let Kε := K ∩ Vε. We will study the approximat
reduced problem (to be compared to problem (RP), stated in Section 2),

Min
v

F (v); v ∈ Kε. (RPε)

In this section we assume thatKε is an approximation ofK in the following sense (sam
hypothesis as in [12, Section 4.3]):{

(i) everyv ∈ K is a strong limit ofvε ∈ Kε,

(ii) any weak limit point ofvε ∈ Kε belongs toK.
(61)

Point (ii) always holds sinceKε ⊂ K, andK is closed and convex. Point (i) holds, f
instance, ifΦ is continuous, and nonnegative on a neighborhood of∂Ω .

Theorem 9.1. (i) The set of solutions of(RPε) is nonempty, and uniformly bounded( for
ε > 0 small enough), and the following inequalities hold:

val(RP) � val(RPε) � val(RP)+ o(1). (62)
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(ii) Let v̄ be a solution of(RP). Then

ue

ded
r
(i). In
ce
gly

stacle,

the
he

g the

e
ion we
ions
ably
in [5].
∣∣val(RPε) − val(RP)
∣∣ � O

(
dist(v̄,Kε)

)
. (63)

(iii) Any weak limit point̄v of vε ∈ S(RPε) is a strong limit, and belongs toS(RP).

Proof. Let v̂ ∈ S(RP), and letv̂ε be the orthogonal projection ofv̂ ontoKε (in the space
H 1

0 (Ω)). Denote byLF a Lipschitz constant ofF nearv̂. We have that

val(RPε) � F(v̂ε) � F(v̂)+LF ‖v̂ε − v̂‖H1
0 (Ω) = val(RP)+LF ‖v̂ε − v̂‖H1

0 (Ω). (64)

By (61)(i),‖v̂ε − v̂‖H1
0 (Ω) → 0. The second inequality in (62) follows, while the first is d

to the fact that(RP) and(RPε) have the same cost function, whereasF(RP) ⊃ F(RPε).
Combining with the lower estimate ofF in (13), and standard arguments on boun
minimizing sequences, it follows that the set of solutions of(RPε) is nonempty and, fo
ε > 0 small enough, uniformly bounded. Relation (63) is a consequence of (64) and
addition, any weak limit̄v is such thatF(v̄) is the limit of the corresponding sequen
F(vεk ), which in view of the expression ofF implies that the subsequence stron
converges; this proves (iii).✷
Corollary 9.2. Assume the problem to be without obstacle, and(RP) to have a unique
solutionv̄ ∈ H 2(Ω). Letvε denote a solution of problem(RPε). Thenvε → v̄ in H 1

0 (Ω). If
in additionv̄ satisfies the second-order sufficient condition, then‖vε − v̄‖H1

0 (Ω) = O(ε1/2).

Proof. The first statement is a consequence of Theorem 9.1(iii). Since there is no ob
a classical result is that the distance ofv̄ to Kε (in the norm ofH 1

0 (Ω)) is O(ε). By
Theorem 7.5, ifvε ∈ S(RPε), we have that for someα > 0,

val(RPε) = F(vε) � val(RP)+ α‖vε − v̄‖2
H1

0 (Ω)
+ o

(‖vε − v̄‖2
H1

0 (Ω)

)
. (65)

Combining this with (63), the conclusion follows.✷
Remark 9.3. (i) This type of proof allows to obtain the same conclusion (under
assumption of a unique solution̄v satisfying the second-order sufficient condition) if t
obstacle is such that the distance (in the norm ofH 1

0 (Ω)) from v̄ to Kε is still O(ε). This
is the case, for instance, ifΦ is constant and nonnegative, since the operation of takin
punctual minimum of two functions is Lipschitz inH 1

0 (Ω).
(ii) The result is to be compared with the O(ε1/2) error estimate obtained for th

standard obstacle problem in [12, Proposition 4.1], whereas for the Laplace equat
have an O(ε) error estimate, see [18]. It would be interesting to identify specific situat
when the O(ε) error estimate holds for the problem studied in this paper. This prob
requires some strong form of second-order sufficient conditions as those presented



J.F. Bonnans et al. / J. Math. Pures Appl. 82 (2003) 1527–1553 1549

10. Decomposition algorithms

ate the
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ater.

t
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the
In this section we discuss how to solve the discretized problem(RPε). There are
several ways to do this. If the obstacle is present, it may be convenient to approxim
constraintv �Φ, for instance by upper bounds on the value of the deformationv ∈ Vε only
at the nodes of the triangulation. This upper bound may be the value ofΦ at these nodes
or an average value ofΦ in a neighboring region. Or we may keep the constraintv � Φ

everywhere, which means that we have to solve a semiinfinite programming problem
e.g., [5, Section 5.4]). In this paper we will not go into the details of discretizatio
the constraint, but rather discuss how to design a decomposition algorithm for solvi
problem. If the discretized problem has upper bounds only at nodes of the triangu
then it reduces to the minimization of a continuously differentiable cost function
upper bounds on the variables. There are efficient algorithms for this, even for large
problems, such as limited memory quasi-Newton algorithms with projections, and int
point algorithms, see, e.g., Bertsekas [2], Bonnans et al. [4], or Nocedal and Wrigh
However, in view of the integration of such algorithms in the software for mecha
design, it may be desirable to state an algorithm whose essential step is to solve a c
obstacle problem. Such an algorithm is already available in many of these soft
Another desirable property is that the algorithm behaves well when the discreti
parameterε vanishes. A favorable situation is when the algorithm makes sense fo
original (nondiscretized) problem, if we can prove that, for smallε, the sequence compute
by the algorithm applied to(RPε) is close to the one for problem(RP). Such a property is
not easy to prove. In this section we will design an algorithm which at least makes sen
the original problem. To this end, consider the following reformulation of problem(RP):

Min
v,g

F(v, g); v ∈ K; g ∈ K, (RFRP)

where we setK = {g ∈ L2(Ω)+; ∫
Ω g(ω)dω = L}, and

F(v, g) = 1

2

∫
Ω

∥∥∇v(ω)
∥∥2 dω −

∫
Ω

f (ω)v(ω)dω −
∫
Ω

(
v(ω) − 1

2
g(ω)

)
g(ω)dω.

In this formulation,g(ω) is the amount of water at the vertical of pointω ∈ Ω , that clearly
is nonnegative and whose integral must equalL. This means that we allow the height
water to vary overΩ . The average level of water at pointω ∈ Ω is v(ω) − 1

2g(ω). The
last term ofF(v, g) represents therefore the potential energy associated with the w
Note thatF is a convex function of each of its two variables, but not of(v, g) together in
general. Let us compute the minimum overg, for a givenv.

Lemma 10.1. Givenv ∈ H 1
0 (Ω), the minimum overg ∈ K is attained at the unique poin

γ (v) := (v − h(v,L))+, and the associated Lagrange multiplier ish(v,L).

Proof. The problem of minimization overg is strongly convex and is feasible for a
positive value ofL. Therefore there exists a unique minimum, characterized by
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existence of a Lagrange multiplierλ, such thatg attains the minimum overL2(Ω)+ of

hat

w
each

2,
s

the Lagrangian function:

−
∫
Ω

(
v(ω) − 1

2
g(ω)

)
g(ω)dω + λ

(∫
Ω

g(ω)dω −L

)
. (66)

The minimum is attained overL2(Ω)+ at the unique point(v − λ)+. In view of the linear
constraint it appears thatλ = h(v,L). The result follows. ✷

Substituting this expression ofγ (v) and using the linear constraint, we obtain t
F(v) = F(v, γ (v)). Therefore it is equivalent to minimize eitherF overK, or F over
K × K. We remind that the obstacle problem(OPf ) was defined in Section 1. We no
consider the relaxation algorithm, that consists in minimizing alternatively over
variable:

Relaxation algorithm RA.

1. Choosev0 ∈ K; k := 0.
2. Computegk := γ (vk), and setfk := gk + f .
3. Computevk+1, solution of(OPfk ).
4. k := k + 1; go to step 2.

Theorem 10.2. The sequence(vk, gk) is bounded inH 1
0 (Ω) × H 1(Ω), and every weak

limit-point (v̄, ḡ) of this sequence is a strong limit-point, such thatḡ = γ (v̄). In addition,
v̄ satisfies the first-order optimality conditions of(RP).

Proof. By definition ofgk and step 3, we have that, fork � 1,

F
(
vk+1) =F

(
vk+1, gk+1) � F

(
vk+1, gk

)
� F

(
vk, gk

) = F
(
vk

)
. (67)

SinceF(vk) is nonincreasing, by Proposition 3.2, the sequencevk is bounded inH 1
0 (Ω).

Let us prove thatgk is bounded inH 1(Ω). Denote byv? the solution of(OPf ). Since
fk � f , we have thatvk+1 � v?, for all k, see [6, Corollary I.5]. This, by Lemma 2.
implies thathk := h(vk,L) � h? := h(v?,L) for all k. Therefore, by well-known propertie
of the maximum of two functions inH 1(Ω),

∥∥gk∥∥
H1(Ω)

= ∥∥(
vk − hk

)
+
∥∥
H1(Ω)

�
∥∥(

vk − h?
)
+
∥∥
H1(Ω)

�
∥∥(

vk − h?
)∥∥

H1(Ω)
�

∥∥vk∥∥
H1(Ω)

+ ∣∣h?∣∣meas(Ω)1/2. (68)

This proves thatgk is bounded inH 1(Ω). SinceF is a quadratic function ofv, its Hessian
being the identity, andF(· , gk) attains its minimum overK atvk+1, we have that

F
(
vk+1, gk

) + 1

2

∥∥vk+1 − vk
∥∥2
H1

0 (Ω)
�F

(
vk, gk

)
� F

(
vk, gk−1). (69)
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Since F(vk+1, gk) is bounded from below, the previous inequality implies that
k+1 k 1 k k

btain
m

n-

traints
ved at
CG

tion of

s
is

stacle
‖v − v ‖ → 0 in H0 (Ω). Let (v̄, ḡ) be the weak limit of(v , g ), for k ∈ N , an in-
finite subset ofN. Since‖vk+1 − vk‖ → 0 in H 1

0 (Ω), we have thatgk−1 has for the
subsequenceN the same limitḡ. By (10), we have the strong limits ofvk and vk−1

in L2(Ω). Passing to the limit, thanks to the weak l.s.c. of the elastic energy, we o
F(v̄, ḡ) � F(v, ḡ), for all v ∈ K. This means that̄v is solution of the obstacle proble
(OPḡ+f ), proving thatv̄ satisfies the first-order optimality conditions of(RP). Let us prove
the strong convergence. By step 3 of the algorithm,F(vk+1, gk) �F(v̄, gk). Passing to the
limit, we obtain thatF(vk+1, gk) → F(v̄, ḡ), which implies convergence of the elastic e
ergy, and therefore strong convergence ofvk in H 1

0 (Ω). Sinceh(v,L), and henceγ (v),
are continuous functions, this implies strong convergence ofgk in H 1(Ω) too. ✷

11. Numerical results

We have implemented the decomposition algorithm, setting the bound cons
only at the nodes of the triangulation. Then a quadratic program has to be sol
each iteration. For this we use the function ‘quadprog’ of Matlab, with option P
(preconditioned conjugate gradients). The stopping criterion is based on the varia
cost function. SettingSk = F(vk+1, gk), we stop if|Sk − Sk−1| + |Sk−1 − Sk−2| � ε. In
our tests we have usedε = 0.0001.

We consider the case whenΩ is a disc with center 0 and radiusr, whose triangulation
is as in Fig. 1. The number of elements isp2nT , and the size of the rigidity matrix i
of orderN = 1

2p(p − 1)nT + 1. HerenT is the number of sectors into which the disk
equally divided, whilep is the number of rings. We user = 10, L = 10, andnT = p = 8.
We display the results for the cases with or without obstacles in Fig. 2. Without ob
the algorithm needs 9 iterations and the height ish = 2.2162. We next add the obstacleΦ
given byΦ(ω) = (ω1)

2 + (ω2)
2 + 2. Then only 8 iterations are needed, andh = 1.5899.

Fig. 1. Triangulation of circular domain.
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(a) No obstacle, no force field. (b) Obstacle, no force field.

(c) Case (a), view from below. (d) Case (b), view from below.

Fig. 2. Numerical results.
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