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Abstract

In this paper we discuss the problem of computing and analyzing the static equilibrium of a
nonrigid water tank. Specifically, we fix the amount of water contained in the tank, modelled as
a membrane. In addition, there are rigid obstacles that constrain the deformation. This amounts to
a nonconvex variational problem. We derive the optimality system and its interpretation in terms
of equilibrium of forces. A second-order sensitivity analysis, allowing to compute derivatives of
solutions and a second-order Taylor expansion of the cost function, is performed, in spite of the fact
that the cost function is not twice differentiable. We also study the finite elements discretization,
introduce a decomposition algorithm for the numerical computation of the solution, and display
numerical results.
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Résumé

Cet article discute le probleme du calcul et de I'analyse de I'équilibre statique d’un réservoir d'eau
souple. La quantité d’eau est fixée et la déformation obéit a I'équation des membranes. De plus, des
obstacles rigides limitent la déformation. Ceci aboutit a un probléme variationnel non-convexe. Nous
obtenons le systeme d’optimalité et son interprétation en terme d’équilibre de forces. Une étude de
sensibilité au second ordre permet le calcul des dérivées de la solution ainsi qu'un développement
de Taylor au second ordre de la valeur, bien que le critére ne soit pas deux fois différentiable.
Nous étudions aussi la discrétisation par éléments finis et nous introduisons un algorithme de
décomposition pour le calcul numérique, et finalement nous donnons des résultats numériques.
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1. Introduction

Let 2 be a connected, bounded and open subs@&"¢frn = 1 or 2, with Lipschitz
boundary 2 (£2 is an interval ifr = 1). Given f € L?(£2), the classical obstacle problem
reads as follows:

Min %/”Vv(w)”zdw—/f(a))v(a)) do, (OPy)
2 2

wherekK C Hol(.Q) is the set of functions satisfying the constraint of nonpenetration with
a certain obstacle, defined by:

K ={ve H}(2); v(w) < ®(w) a.e. on2}. 1)

Here @ is a measurable extended value functi@n— R U {4+o00}, such that the sek

above is nonempty. This holds & (w) = 400 a.e., which is the case without obstacle,

if ®(w) >0 a.e., and also i belongs toH1(£2), and is nonnegative on the boundary

of £2. This problem is perhaps the simplest example of a variational inequality, and
has been the subject of numerous works. The starting point of the study of variational
inequalities was Lions and Stampacchia [15]. Extension to various mechanical problems
was made in Duvaut and Lions [9]. At the same time, Brézis [6] established various
mathematical properties of the solutions of variational inequalities. Mignot [16] showed
that polyhedricity of the feasible set allowed to perform a sensitivity analysis of solutions
(see also Haraux [13]), the expression of which necessitates the concepts of capacity
theory; see also the introduction to the subject [5, Section 6.4]. Two recent papers discuss
the case when the field is itself the result of a mechanical equilibrium. In Aissani, Chipot
and Fouad [1] the membrane supports one or two heavy disks. Buttazzo and Wagner [7]
consider the case of a support of a rigid body.

Another approach to the sensitivity analysis consists in studying the solutions of the
optimality system rather than those of the minimization problem. Among abstract results
that possibly apply, let us mention [5, Theorem 5.10], and Levy [14]. The latter computes
proto-derivatives, which coincide with derivatives if the latter exist. This approach has
the advantage of avoiding the second-order sufficient conditions. It has been applied to a
nonlinear obstacle plate problem in Figueiredo and Leal [10].

The novelty in our study lies in the fact that, in addition to the given distributed forces
field f, we take into account the weight of a given amount of water, filling the volume
between the part of the tank that is below the water level, and the water level itself. The
latter is of course an unknown of the problem. The mechanical potential to be minimized is
a nonconvex function of vertical displacement and water level. This potential is to be min-
imized under the restriction that the volume of water is given. Although the potential and
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constraints are nonconvex and nonsmooth, we can establish existence of solutions, give a
mechanical interpretation of the optimality system, and perform, under reasonable assump-
tions, a sensitivity analysis. Finally, we study a decomposition algorithm whose essential

step is to solve at each iteration a classical obstacle problem, and display numerical results.

2. Setting and equivalent formulations

As said in the introduction, let2 be a connected, bounded and open subset
of R", n =1 or 2, with Lipschitz boundary$2. Consider a membrane fixed at the
boundary. Letv(w) be the vertical displacement, positively oriented downward. Under
the hypothesis of small deformation, we have that the potential of elastic deformation is
Ep(v) = % fg | Vv(w)||? dw. Here and later, we assume physical constants to be equal to 1
for the sake of notational simplicity. The potential associated with a distributed forces field
f € L%(2) (oriented downward) i (v) = — f_Q f(@)v(w) dw. In addition, assume that
the tank formed by the deformed membrane contains some wafee R denotes the
water level, the gravity potential associated with the water is

1
Er(v, h):= -5 /(v(w) + 1) (v(w) — h). dw.
2

Indeed, the height of water i@(w) — k)4, hence, after integration we obtain the above
expression. The mechanical potential is defined as the sum of the three potentials already
discussedE (v, h) := Ep(v) + Ec(v) + Er(v, h). The constraint over the volume > 0

of water is

G(v,h):f(v(w)—h)+dw=L. (2)

2

Let K be defined by (1). Taking{(}(Q) as the space of displacement, we may formulate
the problem of static equilibrium as the minimization of the mechanical potential, subject
to the constraint of the volume of water (2) and to the obstacle constraint:

minE (v, h); G(,h)=L; (v,h)eK xR. 3)

It may be more efficient to consider another formulation of this problem. Observe that,
whenever the constraint is satisfied, the gravity potential associated with the water is such
thatEp(v, h) = —% oW(w) — h)?F dw — hL. Therefore, define the cost function,

J(v,h, L) :=%/||Vv(a))||2dw— %f(v(a)) —h)ida)—ff(a))v(a))dw—hL.
2 2

2

A problem equivalent to (3) is

Mi}? J(, h, L); Gw,h)=L; (v,h)eK xR. (P)
v,
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In the sequel, we will denote b¥ (P), S(P) and valP) the set of feasible points, set of
solutions, and value of an optimization problem; the value is the infimum of cost function
over the feasible set. Let “meas” denote Lebesgue’s measure. Surprisingly, we may “forget
the constraint” if the cost function is maximized (instead of being minimized) with respect
toh.

Proposition 2.1. GivenL > 0, an elementu, ) of K x R is solution of(P)if and only if
v is solution of the problem below

Min supJ (v, &, L). 4)
vek peR

Proof. We have that: — J (v, h, L) is a concave function, with continuous derivative
f_Q(v(a)) — h); dw — L. We check in the lemma below that this derivative is continuous,
and is equal to 0 for a unique value iof denotedi (v, L). This is precisely the value for
which the constraint is satisfied; in other worélgy, L) is the height of water associated
with deformatiorv and volumeL. Therefore sup.p J (v, h, L) = J (v, h(v, L), L), from
which the conclusion follows easily.O

The above result is related to the fact théb, L) has an interpretation as a Lagrange
multiplier, see Lemma 10.1. We denotelRy ; the set of positive real numbers.

Lemma 2.2. (i) Given (v,L) € L%(2) x R4y, there exists a uniqué = h(v, L)
such thatG (v, h) = L. In addition, the functior:(v, L), with domainL2(£2) x R,
is convex, locally Lipschitz, nondecreasi(gspectively nonincreasifjgunction of v
(respectivelyi.), and satisfies, if; = h(v;, L;), fori =1, 2:
meag{vz > ho; v1 > ha})|h2 — ha|
<Lz — La| +2meas2)?|lvz — vl 2o (5)

(i) The functionhk(v, L) has a directional derivativesh in direction (Sv,d8L)
determined by the relation

/ (Sv —8h)4 + f (8v — 8h) = §L. (6)

{v=h} {v>h}

(iii) The restriction ofi(v, L) to Hol(Q) x R4 is Fréchet directionally differentiable.
More preciselysh (v, §L) denoting the solution of6), we have that

h(v+8v, L +8L) = h(v, L) +8h(8v,8L) + 0(18v ]| 1 + 15L1)- @)

Proof. (i) Let (v, L) € L2(2) x Ry. Using Lebesgue’s dominated convergence theorem,
it is easily checked that the real function
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h— g(h) :=/(v(w)—h)+da)—L
2

is continuous, nonincreasing, and varies oRefrom +oo to —L. It follows that g has

at least one zero, sdy, and the set of zeroes is an interval. In addition, by Lebesgue’s
dominated convergence theorem, we have fab has directional derivatives, whose
expression is

g’ (h,8h) = —min(8h, 0) meagv = h} — §h measv > h}. (8)

SinceL > 0, and hence, mefas> 4} > 0, we have thag’(h, §h) is nonzero whedh # 0,

of sign opposite to the one d&fi. This implies uniqueness of the zero gf Denote
the latter bya (v, L). Sinceg is nonincreasingi (v, L) is a nondecreasing (respectively
nonincreasing) function af (respectivelyl). Let us prove that this function is convex. Let
v1 andv, belong toL2(£2), andL1 and L, be two positive numbers. Sét = h(v;, L;),
fori=1,2. Leta € (0,1), and setv = av1 + (1 — a)vo, L=aL1 + (1 — a)L>. SinceG

is convex, we have that

L=aG(v1,h1) + (1 —a)G(v2, h2) = G (v, ah1 + (1 — a)h3).

SinceG is a nonincreasing function of its second argument, convexib(@fL) follows.
Being convex,i(v, L) is locally Lipschitz. Let us prove the estimate (5). Assume for
instance that, > h1. We have:

Le-ti= [ (e@-n-hth)dot [ (v0) o) do

{va=ho;v12hy} {va=ho;vi<hy}
— / (vl(a)) - hl) do.
{va<ho;vizhg}

We may majorize the last term by 0, and for the two others we have:

(v2(w) — v1(®) — h2 + h1) do
{va=ho;v12h1}

< meag({vz > ha; v1 > ha})(h1 — h2) + meas2)?|vz — vill 2(q).

and

(v2(w) — h2) do < / (v2(w) — v1(w)) dw
{va=ho;vi<hy} {va=ho;v1<hi}

< meag2)?|lvz — il 2¢0).

Combining the previous inequalities, we obtain (5).
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(i) Fix (8v,8L) € L2(2) x R, and letsh be such that (6) holds. Then
G+ tév,h+1t5h) =L +t5L 4+ 0(¢).

Sinceh(-,-) is locally Lipschitz, we have thai(v + t§v, L + t8L) = h + t6h + o(t).
Relation (6) follows.

(iii) For the sake of notational simplicity we prove the result wiién= 0. Assume that
(7) does not hold, and hence, there exist 0 and a sequenag — v in H(}(.Q) such that

(e, L) = h(v, L) = 8h(ve — v, 0)| > ellog — vll g ) ©)

We may writevy = v + trwg, With wy of unit norm in Hol(Q) andr, — 0. Extracting,

if necessary, a subsequence, we may assumeuthatveakly converges to som@

in Hol(Q). Note thatw is of norm at most one, and may be equal to 0. We haveuwhat
strongly converges t@ in L?(£2). Sinceh(-, -) is a Lipschitz function and has directional
derivatives, it is also Hadamard directionally differentiable, and has continuous directional
derivatives, see, e.g., [5, Proposition 2.49]. It follows that

h(v + txwg, L) = h(v, L) + tx8h(w, 0) + o(tx) = h(v, L) + tx8h(wk, 0) 4+ 0(%k)
in contradiction with (9). O

DenoteF (v) := J (v, h(v, L), L), where(v, L) € L(£2) x R4 4. A problem equivalent
to (P) is what we will call theeduced problem

Mvin F(v); veK. (RP)

3. Existence and basic properties

In this section we will establish the existence of solutions of problem (RP). The hard
point is to check coerciveness of the cost function in the sense that, foi.any,
F(v) — +o00 when ”””H&(ﬂ) — +o00. Since? has a Lipschitz boundary, we have the

following Sobolev inclusion (e.g., Gilbarg and Trudinger [11, Theorem 7.26])

HY(2)c L*2), with compact injection. (10)
Since the dimension is at most 2, the compact inclugidis2) c L? (£2) holds for all p
in [2, oo[. However, only (10) is used in our proofs, and not other property of the boundary.

Indeed, up to Section 6 (including it) we only use the compact injediida2) c L2(£2).

Lemma 3.1. For all ¢ > 0, there existL, > 0 such that, for allv € H1(£2), one has

2
/vz(a))da)<€/||Vv(a))||2da)+Cg(/|v(a))|da)> . (12)
2 2 2
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Proof. If the conclusion were false, there would exist 0 and a sequenag in H1(£2)
such that/, (v (»))?dw = 1, and

2
1>s/”Vvk(a))HZda)—i-k(/vk(a))da)> . (12)
2 2

Clearlyv; is bounded inH(£2), and has a weak limit poirit. By (10), the latter satisfies
[ 9*(w) do =1, as well ag [, |#(w)| dw)? = 0, which is impossible. O

Since 2 is bounded, Poincaré’s inequality holds, i.e., there exigts- 0 such that
vl 22y < cp(fg IVV(@)]|? de)*2, for all v e H}(£2). Therefore, we endowHg (£2)
with the norm|v ya g, = (Jo IVv(@) |12 dw) /2.

Proposition 3.2. (i) For all ¢ > 0, C. denoting the constant in Lemntal, for all
(v,L) e Hol(.Q) x R4y, the following inequality holds

1 172 2 172
P > (5 - er) vy )~ crl1f iz + CH20) 0l ) (19

(ii) If the reduced problenfRP) is feasible, its set of solutions is nonempty, weakly
closed, and uniformly bounded whenevéy, L) varies in a bounded subset
of L2(2) x Ryy.

(i) f fr - f weakly inL2(2), Ly — L in Ry, and if v is a solution of
problem(RP) with f = f; and L = L, then any weak limit point of v, is a strong
limit point, and is solution of probleffRP)with f = f andL = L.

Proof. (i) We have thatF (v) = %||v||§11(m — f_Q f(@)v(w)dw — F1(v, L), where
0

1
Fi(v) = > /(v(a)) —l—h)(v(a)) — h)Jr do < / v(a))(v(a)) — h)era)

2 2

<ol 2 |0 = W+ 20y < cplvlgae) [0 = D+ ] 20y (14)
Applying Lemma 3.1, for any > 0, we obtain:

[ (w2 dor<e [ 1900 ). [P0+ e [ o) o)

2 2

< 8/HVv(a)) |?doo+ C. L2,
9}
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and hence, sincg/a + b < /a + /b for all nonnegative: andb,
1/2 1/2
” (v—"h)+ ”LZ(_Q) <e / ||U||Hg(g) + Cg/ L. (15)

We also have, denoting again by the constant in Poincaré’s inequality,

/f(a))v(a)) dow < ||f||L2(_Q)||U||L2(_Q) < CP”f”LZ(.Q)”v”H(:)L(Q)' (16)
9}

We obtain (13) by combining (14), (15) and (16).

(i) We prove uniform boundedness of solutions. Whendyer.) varies in a bounded
subset ofL2(£2) x R, takinge small enough, we have by (13) an inequality of the form
F(v) > %1||v||§1&(9) — a||v||H01(_Q), wherea > 0 does not depend dw, f, L). On the other
hand, choosing a bounded feasible solutigre K, with associated heiglit(vg, L), it is
easily checked that

1
F(vo) < 5 f | Vv§(@) deo+ cpl fll 2oy vl a2y + LI (vo, L)].
2

Since the functiork (v, -) is bounded on bounded sef&vp) is uniformly upper bounded
whenever( f, L) is bounded. Sincé (v) < F(vg), combining with (i), we obtain uniform
boundedness of solutions.

By (10), G(v, h), and hencée:(v, L) is weakly continuous. It follows thaf (v) is
weakly lower semicontinuous, hence the set of solutions is weakly closed. Feasibility
of (RP) and weak semi continuity of its cost function, as well as weak closedness of the

feasible set, combined with uniform boundedness of solutions implies existence of at least

one solution.

(i) This is an easy consequence of (ii), the strong convergence of the subsequence

of vx being due to the fact that convergence of the cost function and weak convergence of

its arguments implies the strong convergence. The reason is that the cost function is the

sum of the square 0‘901(9) norm and a weakly continuous termo

4. When isthe cost function convex?

Using the rules for directional derivatives of locally Lipschitz functions, we have that
F (v) has directional derivatives:

F'(v)sv :/Vv(a)) - Vév(w) dw — /[(U(a)) —h(v,L))+ + f(@)]sv(w) dw. (17)
2 2
This expression takes into account the fact that, by Proposition 2.1, the directional

derivative of J (v, h, L) with respect tah is, whenh = h(v, L), equal to 0. Observe that
the directional derivative is linear and continuous with respectitoand hencefF is
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Gateaux differentiable. In addition, this Gateaux derivative is continuous, sincé.) is

a continuous function, and hendg,is continuously differentiable. We denote By the
derivative of F. Similarly, it is easily checked that the second-order directional derivative
of F in directionsv, defined as,

F(v+1tév) — F(v) — DF(v)év
|

D?F (v)(8v, $v) := lim
(V) (v, dv) im

has the following expression, whewh is the directional derivative ofi(v, L) in
direction§v:

D2F(v)(5v,8v):/”VSU(a))HZda)— f (5v(e) — 8h) dov
0 {v>h(v,L)}

— / (v(w) — 8h)? do.
{v=h(v,L)}

It is clear thatF is convex iff D?F (v)(8v, $v) > 0, for all v and§v in H}($2). The cost
function F is not always convex, as the following example shows.

Example 4.1. Let L = 1, and letvg € H(£2), be such thatf_(2 vo(w) dw = 1, whence
h(vo, L) = 0. ThenDF (vo)vo = [, Vvo(@)[[?dw — [, vé(w)dw. For v =0 we have
h(0,1) = —meas$2)~ 1, andDF (0)vo = — meass2) L. It follows that

(DF(vo)—DF(O))vozf”Vvo(a)) ||2—/v§(w) dw + meags2) %,
2 2

Assume that2 = ]0, m[ so that mea¥2) = m, and takevp(w) := csin({l1x/m). That
[ vo(®)do = 1 implies ¢ = 7/(2m). We have that/,, v3(w)dw = 72/(8m), while
fo [ Vvo(w) |2 dw = 74/ (8m3). Hence

(DF (vo) — DF(0))vo = n*/(8m®) — (7?/8 — L)m ™t
is negative, and therefoi is not convex, ifim is large enough.

Examples of nonconvexity of the cost for bidimensional problems are discussed in [3].
It can be suspected that the cost functi®ris convex whenevef? is “small enough”,
since in that case the first term in the expressio®é# (v)(3v, sv) should dominate the
two others. For proving such results we recall the following notions. A classical result of
functional analysis (e.g., [8, Vol. 5, p. 120]) is that the positive amount

[ IVv() ]| do

2
L2($2)

vo(£2) := (18)
veHR(2) vl

v#0
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is in fact the smallest eigenvalue ofA, where A is the Laplacian operator in
H&(Q) N H2(2), and that the eigenvectarg # 0 is unique (up to multiplication by a
scalar), nonzero and of constant sign, say positive, @ver

For any open and connected subsetc 2, let (see, e.g., [8, Vol. 3, p. 926]
V(.@) ={ve Hl(ﬁ); fﬁ v(w) dw = 0} denote the set of functions OVEr with square
integrable gradient and zero mean, and set:

[ IVv()]|? dew

2 o~
L2(£2)

v1(2):= inf

_ (19)
veV(2) lvll
v#£0

If the injection of H(£2) into L2(£2) is compact, itis not difficult to check thag (2) > 0,
and that there exists a nonzero eigenvettar V (£2) solution of

~ L~ 0 ~
Av=uw@o in2, 2_0 onsd, (20)

whered - /dn denotes the normal derivative.

Lemma4.2. (i) The function;: R — R defined by

n(8h) = / (5v(e) — 8h)° deo + f (3v(@) — 8h)? do,
{v>h(v,L)} {v=h(v,L)}

is convex and attains its minimum whéh = 4’, where we denote in this lemma
h' :=h'((v, L), (§v,0)).

(ii) The cost functiorF is convexrespectively strongly conv)e&verH(}(.Q) whenever
vo(£2) = 1orvi(2) > 1 (respectivelywo(£2) > 1 or v1(£2) > 1).

Proof. (i) The functionn is easily seen to be convex, and therefore attains its minimum
when its derivative vanishes, i.e., whé&n=#’.
(i) Using (0) > n(#’), which follows from (i), get:

H}(2)
{v>h(v,L)} {v=h(v,L)}

D?F (v)(8v, $v) > ||8v]? / 8v2(w) dw — / 802 (w) dw

>/||v5v(w)||2dw—/5v2(w)dw
2

2

which proves convexity ig(£2) > 1 (respectively strong convexity ifg(£2) > 1). The
proof of the case whem (£2) > 1 (respectively(£2) > 1) is similar, using; (ko) > n(h'),
wherehg is such that/,, (Sv(w) — ho)dw=0. O
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5. First-order optimality conditions

The first step consists in obtaining primal first-order optimality conditions. ddre
of feasible directionsand thecone of tangent directiond K at ¥ € K are defined,
respectively, as

Rg@) :={t(v—0); 1>0, veK};  Tx(®):=clRg(v), (21)

where by cl we mean the cIosureHg}(.Q). The nextlemma is a consequence of a classical
result (see, e.g., [5, Lemma 3.7]), and hence, we skip the proof.

Lemma5.1. Letv be a local solution o{RP). Then
DF(v)év >0, foralldve Tk(v). (22)

Let H~1(£2) denote the topological dual dfol(.Q). The normal cone (in the sense of
convex analysis) t& atv € K is

Nk () :={re H1(2); (x,v/ —v) <0, forallv’ € K}.
We sometimes need the following regularity assumption on the dofaaind obstacle:
For everyf € L?(£2), the solution ot OPy) belongs toH*(£2). (23)

This holds if 352 is of class &, and under various hypotheses on the obstdglesee
[6, Chapter I].

Theorem 5.2. Let v be a local solution of problertRP), and denote by: the associated
height. Then there exisise Nk (v) such that

—Ab— (U —h)s+r=f ing. (24)
If in addition (23) holds, therv € H2(£2) and € L2(£2).
Proof. Let A := —DF(9) (element of H1(£2)). Then DF (%) + » = 0 and, by (22),
A € Nk (v). It follows also from (22) thab is a solution of the obstacle problem (without
water) with the fieldf := f + (v — h). Therefore, (23) implies that H?(£2). In that
case) =—DF (D) = AU+ (0 — h)+ + f belongstaL2(£2). O

We now discuss some consequences of the theorem.

Lemma5.3. Assume thaf > 0and® > 0 a.e. Letv be a solution of problerfRP). Then
v>0a.e.
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Proof. Since v is solution of the obstacle problem with the nonnegative field force
f + (v — h)4, and the obstacle is nonnegative, the conclusion follows from Brézis [6,
Corollary 1.5]. O

We say that € K is astationary pointof problem (RP) if (24) is satisfied, for some
A € Nk (v), called the associated multiplier.

Proposition 5.4. Assume tha® = +oo0. If 7 is a stationary point, with associated height
then

2F (D) +hL + / f(w)(w) dw = 0. (25)
2

In particular, if f =0 a.e., thenF(v) = —%EL, and hence, solutions ofRP) are the
stationary points with largest height of water.

Proof. It suffices to multiply (24) byv, and integrate ovef, to obtain (25), from which
the conclusion follows. O

Remark 5.5. Let us highlight the dependence of (RP) overby denoting it(RP.)
in this remark. Whenevey is identically 0 and® = +o0, it is easily checked that
S(RP;.) = tS(RPy), for all > 0. Hence the height of water is proportional 9 and
val(RP;) = —aL?, whereq is a constant of the same sign/as

As shown in the following proposition, if = 0 and the obstacle is not present, then the
sign of height of water depends only on the amogit?) defined in (18).

Proposition 5.6. Assume thaf’ = 0 and @ = +oc a.e. Letv be a solution of(RP), with
associated height. Thenk < 0iff vo(£2) > 1.

Proof. Let wg be the positive eigenvector of unit norm irf(£2) associated withg(£2),
anda > 0 be such thak f_Q wo(w) dw = L. With awg is associated a zero height of water.
By Proposition 5.4~3hL < F(awo) = a?(vo(£2) — 1). It follows that, if & < 0, then
vo(£2) > 1. Conversely, assume thag($2) > 1. Letv € Hol(Q). Denotingh = h(v, L),
get

F) = %/va(w)nzdw_% / (v(@) — h)(v(w) + h) do
2 {v>h}
1 2 1 5
> E/HVv(a))” dw — > / v (w)dw >0 (26)
2 {v>h}

which proves that vaRP) is nonnegative; since WiP) = —3i L by Remark 6.6(ii)/: is
nonpositive. O
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For one-dimensional problems, all computations can be carried out explicitly; see [3].
6. Tangent and normal cone; polyhedricity

In order to state second-order sufficient conditions, and to perform a sensitivity analysis,
we need the concept below. We say tliatdefined in (1), ipolyhedricat v € K if, for
anyu € Nk (v), the following holds:

Tk (0) Nt =cl(Rg (9) N ). (27)

If this holds for everyb € K, we say thak is polyhedric. If® is identically zero, the next
proposition is a particular case of Mignot [16], see also [5, Theorem 3.58].

Proposition 6.1. The setK is polyhedric atv.

Proof. Since Tk (v) D Rk (v), and the left-hand side of (27) is closed, we have that
the right-hand side is included in the left-hand side. Let us prove the converse. Given
w e H(}(Q), setw_ := min(0, w), andw := max0, w). Observe first that ifv € Rx (v),
thenw, € Rk (v), since ifv + rw € K for a givens > 0, we have that

v+twy =v+maxtw,0) =maxv+rw,v) <P a.e. (28)

Assume now thatv € Tk (v), thenw is the limit of a sequence, € Rk (v), and hence,
wy = lim, (wy,)+ is limit of elements ofRx (v). We have proved thab € Tk (v) implies
wy € Tk (v). Let u € Ng (v). Sincew € Tk (v), and also—w, € Rk (v), we have that
w4 L w. Finally, letw € Tx (¥) N ut, whereu € Nk (v). Sincew, L u, we have that
w_ L u. Letw, be a sequence iRk (v) converging tow,. Then(w,)4+ also converges
to wy and, by the above claims, belongsRq (v) N ut. Thereforew_ + (,)4 belongs
to Rx (v) N ' and converges te. The conclusion follows. O

We need some classical results, see, e.g., [5, Section 6.4] and references therein. Denote
by M(£2) the set of locally finite Borel measures, which is the dual, for an appropriate
topology, of the spac€po(£2) of continuous functions with compact supportsh Let
M (£2)4 be the set of nonnegative locally finite Borel measures. Also, denoilblb;E)Jr
the set of functions idfol(Q) that are nonnegative a.e., and By 1(2) ;. the set:

H Y @2) = {pe HX2); (u,v) >0, forallve Hj(2)}.

A setA C 2 is said to be ohull capacityif there exists a sequeneg — 0 in Hol(.Q),

such that for each, u; > 1 over a neighborhood of. It is easily checked that a set of null
capacity has zero measure, but the converse is false Eelfl(}([z). Thenv is in fact a

class of functions under the relation of being equal a.e.; in this class there exists an element
that is continuous except on a set of null capacity, called the quasi-representative.
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Lemma 6.2. Let u € H~1(£2),. Thenu has a unique extension, also denojedfrom
H(£2) N Coo(2) to Coo(£2). The latter belongs ta4(2).. In addition, if f € H}(£2),
with quasi-representativg, then f e L(u), and

[ 7@ @) = 1. s e (29)
2

In the sequel we identify functions (H&(Q) with their quasi-representatives. We say
that a property is true quasi-everywhere, or g.e., if it is true everywhere except on a set of
null capacity.

Proposition 6.3. Letve K. If @ € H(}(.Q), then the following equalities hald

Nk (@) ={ne H ™ (2); n(lo <)) =0}, (30)
Tk (9) = {v e Hj(2); v<0q.e.onf{i = d}}. (31)
Proof. It is clear thatu € Nk (v) is equivalent toog (1) = (u, v), where the support

functionog is defined byog (1) := sup{u, w); we K}. If @ € H(}(.Q), then® € K,
and hence,

_lw o) ifreHHR2),,
oK (W) = { +o0 otherwise (32)

In that case, we have that € Nx (v) iff © € H (), and (u, ® — v) = 0. Since
we H1(2), and® — v > 0, this is equivalent to (30). For proving (31) we use the
fact that a Borel sefl C £2 has null capacity iffu(A) = 0, for all x € H1(2) (see,
e.g., Lemma 6.55 in [5]). Therefore,is in the r.h.s. of (31) iff eaclx € H~1(£2), with
supportin{fv = @} is such that

(m,v—10)= f (v—12v)du <0. (33)
{v=2}N{v<o}
This is the characterization @f (v), since the latter is the polar cone Bk (v). O

We have seen in Proposition 5.4 that stationary points satisfy a certain integral relation,
if @ = +o00. Let us extend this kind of result to the case when the obstacle is active.

Corollary 6.4. Assume tha® ¢ Hol(Q). Letv be a stationary point of probletfiRP)and
A its associated multiplier. Denote liythe associated height. Thethe duality product
below being in the}($2) spacg

2F(ﬁ)+ﬁL+/f(w)f)(a))dw+(A,dﬁ) =0. (34)
2
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Proof. Multiplying (24) by v and integrating over?, we obtain, after some elementary
computations;

2F(a)+EL+/f(w)ﬁ(w)dw+()\,a>=o. (35)
2

It remains to observe that, @ — v) = 0. Indeed this quantity is nonpositive sindec K
and € N (9). On the other hand, € H~1(£2)., while & < @, hence this amount is
nonnegative. The conclusion followso

Remark 6.5. The conclusion still holds if we assume only thaand @ are continuous.
In that case we apply Lemma 5.1 wittv a smooth function with support in the set
{v < @}. Therefore, the support of the measurebelongs to{v = @}, and hence,
f_Q Mw) (P (w) — v(w)) dw = 0 still holds, from which (34) follows.

Remark 6.6. Under the assumptions of the above corollary, sihce 0 a.e., ifd >0
a.e., the last term in (34) is nonnegative, and hencep i€ Hol(Q), we have that
2F(0) +hL + [, f(®)b(w) dw < 0, with equality if o < @ quasi everywhere.

7. Second-order optimality conditions
Although the cost function is not twice differentiable, it is possible to state second-order
necessary or sufficient conditions for optimality, thanks to the following pseudo-Taylor

expansion in the lemma below.

Lemma 7.1 Let H:L*2) — R be defined byH (v) := 3 [, v2 (w)dw. Then the
expansion below holds, for allandz in L*(£2):

2
Q2 {v=0} {v>0}

H(v+z)=H(v)—|—/v+(a))z(a))da)—|—} f zi(w)dw+% f 7%(w) do

+0(lzl1Zaq))- (36)

Proof. Let us set:

A=Hw+z2)—HQW) — / vy (w)z(w) do
2

1
zi(a))ola)—5 / 2(w) do. (37)
{v=0} {v>0}

2

We have to check the equality= o(||z||i4(9)). Observe that
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A= f (v(@) + 2(@)) doo — f (v(@) +z2(@)°do,  (38)
{v<0;v+z>0} {v>0;v+z<0}

and hence, denoting b§; the indicator function ofv < 0; v + z > 0}, and using the
Cauchy—Schwarz inequality, get

A< / (@) @ < [l 20 12124 (39)
{v<0;v+z>0}

By Lebesgue’s dominated convergence theorem - 0 in L*(£2), &, — 0 in L?(£2).
With (38), it follows thatA < 0(||z||i4(9)). The opposite inequality can be obtained in the
same manner. O

Thanks to the above lemma, we are able to state a pseudo-Taylor expansion for the cost
function of problem (RP). We remind that the expressiorDdf is given in (17). Given
v e H}(2), defineQ, : H}(£2) — R by:

0,(2) = f V(@)% do — f 22 (@) doo — f 2w)do,  (40)
2 {v=h(v,L)} {v>h(v,1)}

wherez € H1(£2) is defined by (w) := z(w) — 8h, 8h being the directional derivative of
h(v, L) atv in directionz (whose expression is given in Lemma 2.2).

Lemma 7.2. Let 7 and z belong to H3(£2), and denoter the height associated with.
Then the following expansion holds

1
Fo+2)=F@)+ DF)z+500() +0(Izll3 ) (41)

Proof. Given(v, L) € Hol(.Q) xRy, seth =h(v, L). Let D, J (v, h, L) denote the partial

derivative ofJ with respect to:. By Proposition 2.1D;, J (v, i, L) = 0. Combining with
Lemma 7.1, we have that, for evegy, 6h) € Hol(.Q) x R:

1
Jw4+z,h+8h,L)y=J(w,h,L)+ DyJ(v,h, L)z + é/HVz(a)) sza)

2
1 1
-5 / (:(@) = 8h)% do — 2 / (2(w) — 81)% do
{v=h} {v>h)}
+0(l12l,1, ) + (81)).

The result follows by combining with (7). O
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We can now state the second-order necessary conditions for local optimalityomae
of critical directionsis defined by:

C(v) :={z € Tx (v); DF(v)z=0}. (42)
In the analysis we also use thene of feasible critical directions

C(v) :={z € Rk (0); DF(v)z=0}. (43)
Since the seK is polyhedricat v, we know thatC () is the closure of (v).

Theorem 7.3. Let & be a local solution of(RP), and  the associated height. Then
Q3(z) = 0, for all critical direction z.

Proof. Letz be afeasible critical direction. By local optimality ®fand using Lemma 7.2,
get 0< lim, o(312)~X(F (¥ + 1z) — F(¥)) = Q5(2). Since Q(") is continuous, we also
have thatQ;(-) is nonnegative over the closure 6tv); the latter being equal t@'(v)
sinceK is polyhedric, the conclusion follows.O

We now turn to the second-order sufficient conditions for local optimality. A first step
is the following lemma:

Lemma 7.4. The positively homogeneous form of second-orgg(-), stated in(40),
is an extended Legendre form in the sense[®f Section 3.3]i.e., is weakly lower
semi continuous and such that, if a sequenceveakly converges te in H(}(Q), and

035(zx) = Q3(2), thenzy — z strongly in H}(£2).

Proof. We can writeQ3(2) aS||Z||12L,1(_Q) + ¢(z), whereg(-) is, by (10) and sincé (v, L)
has continuous directional derivatoives, continuous for the weak topology. Therefgre, if

weakly converges ta in H1(£2), and Q;(zx) — Q3(z), then ||zx||? — zl%y
y g 0 (£2) 03(zr) = O3(2) I kllHol(m I ”H(}(.Q)

which in turn impliesz;y — z in H(}(Q), as was to be proved.o

Theorem 7.5. Let v € K, and letk be the associated height. Assume the following second-
order sufficient conditionfor every nonzero critical direction, Q3(z) > 0. Thenv is a
local solution of (RP), satisfying the quadratic growth conditiothere existsx > 0 such
that, forallv' € K:
’ = ’ -2 l A
FW')Z2F@)+alv — v||H01(m +o(Jv — v||H&(Q)). (44)
Proof. Although this is a variant of the proof of Theorem 3.63 combined with Proposi-

tion 3.74 of [5], it is useful to give a direct argument. If the conclusion were false, there
would exist sequencag — v in H(}(Q), andgy | 0, such that

Foe) < F@) + eillve = 0l - (45)
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Setty := |lvk — 6||H&(9), anddvy 1= t,:l(vk —v). Then||§vg ||H01(9) =1,andvy = v + S vy.
Extracting if necessary a subsequence, we may assumsvihiads a weak limiv; obvi-
ouslysv € Tk (v). From a first-order expansion &fin (45), we deduce thdd F (v)dv < 0,
and hencejv is a critical direction. Sinc® F (v)dv > 0 by the first-order optimality con-
ditions, we have by Lemma 7.2:

F(u) = F(0 4+ txdvy) = F(0) + tx DF (V)8 + %thQ,;((Svk) + o(z,f),
1
> F(0) + 51 Qs (5v0) + 0(f).

Combining with (45), obtairQ; (Svx) < 0(1). SinceQ;(+) is an extended Legendre form,
it follows that O (Sv) < 0, with equality implyingSvx — Sv strongly. In the latter casty

is a nonzero critical direction such thé;(sv) < 0: this contradicts the second-order
sufficient conditions. Similarly, by the second-order necessary condit@s$y) < O is
impossible. We have obtained the desired contradictiam.

Note that, by Lemma 4.2(ii), the second-order sufficient optimality condition trivially
holds if vg(£2) > 1 orv1(£2) > 1.

8. Sensitivity analysis

It is possible to perform a sensitivity analysis with respect to the volume of water
and the field of forcey'; for the sake of simplicity we will only study the dependence
of solutions with respect té. For that reason we denote the cost functiorFas, L) =
J (v, h(v, L), L), and the minimization problem as

Min F (v, L), (Pr)
vek

its value being denoted vdl). Denote also byS; (P.) (respectivelyS_(P.)) the set
of solutions of (P) with maximum(minimun) height of water. Similarly, letz, ¢) €

H(}(.Q) x R. Let 84 denote in this section the directional derivativelgb, L) at (v, L)

in direction(z, £), solution of (6). Let

QU,L(Z,E):=f||vZ(w)||2dw— / 22 (w) do — / 22(w) dw — 2¢5h,  (46)
J i

(5=h) {v>h}

wherezZ(w) := z(w) — 8h. An easy variant of the proof of Lemma 7.2 allows to prove that

1
F+z,L+{8)=F(,L)+ DyF(v, L)z — h(v,L)¢ + EQU,L(Z,E)

+ (211, +€%)- (47)
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Denote the critical cone as
C(v,L) :={z € Tg(v); DyF(v,L)z=0}. (48)
Consider the subproblem associated with K andL > O:

Min 5 ). SP,
ZEC(I_),L) QU,L(Za ) ( Z)

Below g¢) denotes the sign df, with value 1 (respectively-1) if £ is positive (respectively
negative). Note that vébR) = 0 in view of the second-order necessary optimality
condition, and for # 0, due to positive homogeneity,

Val(SP@) = KZVBJ(SPSQ)); S(SP{) = |€|S(SP3(£)). (49)
Theorem 8.1. (i) When¢ — 0, the weak limit points of solutions @P¢), for ¢ > 0
(respectively < 0) are strong limit points, and belong t8, (P.) (respectivelys_(P.)).
In addition, the following expansion of value function holds
val(L + ¢) = val(L) — ht + o(¢), (50)
where i is the maximum(respectively minimujnheight of water among all solutions
of (Pp) if £ > 0 (respectively < 0).
(i) Assume that > 0 (respectively¥ < 0), and thatS, (P.) (respectivelys_ (P.)) has a

unique elemeni satisfying the second-order sufficient condition. Then; & S(SP.4¢),
we have that

e = Bl 430 = OC®), (51)

and the following expansion holds for the value function
o1
val(L +¢) =val(L) — he + > val(SPy)) €2 + o(¢?). (52)

In addition, any weakly convergent subsequencéljmsz) of (vp4¢ — vr) /L is in fact
strongly convergent, and its limit is solution @Px¢)). If (SPy)) has a unique solutioa,
then the following expansion of solutions holds

VL+e = v + [£|Z + 0(F). (53)
Proof. (i) Assume for instance thdt> 0, and leth denote the maximum height of water.
Since the set of solutions is a nonempty, weakly closed and bounded sutiié(!@j,
S+ (Pp) is itself nonempty, weakly closed and bounded. Givea Sy (P.), we have
with (47) and (49),

val(L + ) < F(v,L 4+ ¢) = F(v, L) — ht + o(f). (54)
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It remains to prove the converse inequality. Take a sequépcg 0, along which
limg(val(L +¢;) —val(L)) /¢, attains the smallest possible value, 2ayBy (54),A < —h.
Let vy € S(PL4y,)). Extracting a subsequence if necessary, we may assumethas a
weak limit pointv € K. Passing to the limit in the inequality

F(u, L+4y) <F(v,L+¢), forallveKk, (55)

thanks to the |.s.c. o, we deduce that € S(P.). Takingv = v in (55), we obtain
limsup, F(vk, L+4¢x) < F(v, L), which sinceF is l.s.c. impliesF (vg, L + £x) — F(v, L).
In view of the expression of, this impliesvy — v in H(}(.Q). SinceF is continuously,
and hence strictly differentiable, we have that

. F(u,L+4€y)— F(vg, L -
A> Ilkm (vk + g) (vk, L) =, (56)
k

wheref is the height of water associated withand henceA > —h. Sincei < A, this
impliesA = h = h, and also that each (strong) limit point @f is solution of S (PL), as
was to be proved.

(i) Assume for instance that> 0. Note that, by the second-order sufficient condition,
a minimizing sequence ofSP) is bounded. Since the cost function is I.s.c. and the
feasible set is weakly closed, this implies tt#8P;) is nonempty and bounded. Since
K is polyhedric, for any > 0, there existg. € C(v, L) N Rk (v) that is ane-solution
of (SPy). It follows that, for¢ > 0 small enough,

val(L +€) < F(0+fze, L+0) = F(, L) —he + %szg, 1)e2 +o(¢?)
<val(L) — he + %(val(SPl) +¢)e% +o(?). (57)
Sincee can be arbitrarily small we deduce that
val(L +¢) < F(9, L) — he + %val(SPl)Ez +0(¢?). (58)

We will prove the converse inequality and (51). Given any sequépgeO, by (i), the
associated sequeneg € S(SP.4¢,) converges ta. Let v, € S(Pr¢). In view of the
expansion (47) and the second-order sufficient condition (Theorem 7.5), settiag
vg — v, We get an estimate of the form:

_ N 1 5
F(U+z¢, L+40) >val(L) + Dy F (v, L)z — he + Eallzz ”HOI(Q) - ﬁllzellyol(g)lel, (59)
for some 8 > 0. Combining with (58), we deduce th&ltellH&(m = O(|£]), which
proves (51). _

Assume now that the sequenoal(L + ¢;) — val(L) + hL)/e,f attains its smallest
possible value. By (51)zx := (vk — v)/¢x is bounded. Extracting if necessary a
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subsequence, we may assume that it has a weak3in8tncez; € Rx (v), 7 € Tk ().
Using (50), obtainD, F (v, L)z < 0. It follows thatz € C(v, L). SinceQ; (-, ¢) isl.s.c.,
we have with (47) that

_ 1
Vmaf+&)=]Xﬁ+£ubln%&)=FKiL)—h&~k§Q&LQb1M%+o@@
- _ 1‘ _ = 2 2
> F(0, L) = hte + 5 05,12, DEE +0(£)
_ 1
>F@Jj—h&+§vmﬁﬂﬂf+o@@, (60)

which combined with (58) implies (52), as well ag S(SPy)), as was to be proved.O

9. Numerical approximation of solutions

In this section we give a basic discussion of the discretization of problem (RP) in
the case whem® is a convex polygon oR? (although in our numerical results we deal
also with the case wheg is a disc). A basic reference for the numerical analysis of
variational inequalities is the book by Glowinski et al. [12]. These authors deal with convex
problems. Here, due to nonconvexity, we have to rely on the local analysis for obtaining
error estimates. Consider a family of regular triangulatio®2ofThat is, with eaclz > 0
we associate a finite family, of triangles whose union is equal £, and such that (i) the
intersection of two of these triangles is either empty, or is a vertex, or a common side,
(ii) the diameter of each triangle is not larger thgrand (iii) if . denotes the smallest
radius of the circle inscribed in a triangle, then Jifgr: /¢ > 0. Denote byV; the finite-
dimensional space of continuous functions that are affine on each triangle, and vanish
on 9£2; we have thatV, C Hol(.Q). Let K. := K N V.. We will study the approximate
reduced problem (to be compared to problem (RP), stated in Section 2),

Min F(v); veK,. (RP:)
v

In this section we assume th&t is an approximation oK in the following sense (same
hypothesis as in [12, Section 4.3]):

{ (i) everyv € K is a strong limit ofv, € K, (61)

(i) any weak limit point ofv, € K, belongs toK .

Point (ii) always holds sinc&. C K, andK is closed and convex. Point (i) holds, for
instance, if® is continuous, and nonnegative on a neighborhodi¥®f

Theorem 9.1. (i) The set of solutions dRP,) is nonempty, and uniformly boundétbr
& > 0 small enough and the following inequalities hoid

val(RP) < val(RPR;) < val(RP) + o(1). (62)
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(ii) Letv be a solution of RP). Then
[val(RP,) — val(RP)| < O(dist(s, K;)). (63)
(iii) Any weak limit point of v, € S(RP;) is a strong limit, and belongs t&(RP).

Proof. Let v € S(RP), and lett, be the orthogonal projection éfonto K, (in the space
H(}(.Q)). Denote byL ¢ a Lipschitz constant of nearv. We have that

Val(RPe) < F(ﬁe) < F(ﬁ) + LF”ﬁe - 6”]101(9) :Val(RP) + LF”ﬁe - 6”[-]&(9)- (64)

By (61)(i), |0 — ﬁ||H&(_Q) — 0. The second inequality in (62) follows, while the first is due

to the fact that(RP) and (RP.) have the same cost function, wherda®kP) O F(RP.).
Combining with the lower estimate of in (13), and standard arguments on bounded
minimizing sequences, it follows that the set of solutiong®P,) is nonempty and, for

& > 0 small enough, uniformly bounded. Relation (63) is a consequence of (64) and (i). In
addition, any weak limity is such thatF'(v) is the limit of the corresponding sequence
F(vg,), which in view of the expression of implies that the subsequence strongly
converges; this proves (jii). O

Corollary 9.2. Assume the problem to be without obstacle, &R&) to have a unique
solutions € H2(£2). Letv, denote a solution of proble®P;). Thenv, — v in Hy (). If
in additionv satisfies the second-order sufficient condition, then— ’7||H01(9) =0(e1/?).

Proof. The first statement is a consequence of Theorem 9.1(iii). Since there is no obstacle,
a classical result is that the distancewto K. (in the norm ofHol(.Q)) is O(g). By
Theorem 7.5, ifv, € S(RP,), we have that for some > 0,

_ _~p2 _ =12
Val(RR.) = F(ve) > ValRP) + allve = Ul ) + 0(Jlve v||H&(Q)). (65)

Combining this with (63), the conclusion follows o

Remark 9.3. (i) This type of proof allows to obtain the same conclusion (under the
assumption of a unique solutiansatisfying the second-order sufficient condition) if the
obstacle is such that the distance (in the nornﬁlétsz)) from v to K, is still O(e). This

is the case, for instance,df is constant and nonnegative, since the operation of taking the
punctual minimum of two functions is Lipschitz iH&(.Q).

(i) The result is to be compared with the(€/2) error estimate obtained for the
standard obstacle problem in [12, Proposition 4.1], whereas for the Laplace equation we
have an @¢) error estimate, see [18]. It would be interesting to identify specific situations
when the Qg) error estimate holds for the problem studied in this paper. This probably
requires some strong form of second-order sufficient conditions as those presented in [5].
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10. Decomposition algorithms

In this section we discuss how to solve the discretized prohlBf.). There are
several ways to do this. If the obstacle is present, it may be convenient to approximate the
constrainty < @, for instance by upper bounds on the value of the deformatiof¥, only
at the nodes of the triangulation. This upper bound may be the val@eadfthese nodes,
or an average value @ in a neighboring region. Or we may keep the constraigt @
everywhere, which means that we have to solve a semiinfinite programming problem (see,
e.g., [5, Section 5.4]). In this paper we will not go into the details of discretization of
the constraint, but rather discuss how to design a decomposition algorithm for solving the
problem. If the discretized problem has upper bounds only at nodes of the triangulation,
then it reduces to the minimization of a continuously differentiable cost function with
upper bounds on the variables. There are efficient algorithms for this, even for large scale
problems, such as limited memory quasi-Newton algorithms with projections, and interior-
point algorithms, see, e.g., Bertsekas [2], Bonnans et al. [4], or Nocedal and Wright [17].
However, in view of the integration of such algorithms in the software for mechanical
design, it may be desirable to state an algorithm whose essential step is to solve a classical
obstacle problem. Such an algorithm is already available in many of these softwares.
Another desirable property is that the algorithm behaves well when the discretization
parameter vanishes. A favorable situation is when the algorithm makes sense for the
original (nondiscretized) problem, if we can prove that, for smate sequence computed
by the algorithm applied t6RF;) is close to the one for probleRP). Such a property is
not easy to prove. In this section we will design an algorithm which at least makes sense for
the original problem. To this end, consider the following reformulation of prol{iRB):

Min F(v,g); veK; gek, (RFRP)
U’g

where we sek = {g € L2(2)4; [, g(»)dw =L}, and
1 2 1
Fv,g) = é/HVU(Q))” da)—/f(a))v(a)) da)—/(u(a}) — ég(a))>g(a)) dw.
2 2 2

In this formulation g (w) is the amount of water at the vertical of point £2, that clearly

is nonnegative and whose integral must eglial’his means that we allow the height of
water to vary over2. The average level of water at poiate 2 is v(w) — %g(w). The

last term of F(v, g) represents therefore the potential energy associated with the water.
Note thatF is a convex function of each of its two variables, but notwfg) together in
general. Let us compute the minimum oyeifor a givenuv.

Lemma 10.1. Givenv € Hol(.Q), the minimum oveg € K is attained at the unique point
y(v) := (v — h(v, L))+, and the associated Lagrange multiplietic, L).

Proof. The problem of minimization oveg is strongly convex and is feasible for any
positive value ofL. Therefore there exists a unique minimum, characterized by the
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existence of a Lagrange multiplier such thatg attains the minimum ovet2($2),. of
the Lagrangian function:

—/(v(w) - %g(a)))g(w) da)—l—)»(/g(a)) da)—L). (66)
2 2

The minimum is attained over?(£2), at the unique pointv — 1), . In view of the linear
constraint it appears that= A (v, L). The result follows. O

Substituting this expression gf(v) and using the linear constraint, we obtain that
F(v) = F(v, y(v)). Therefore it is equivalent to minimize eith&r over K, or F over
K x K. We remind that the obstacle problgf@P;) was defined in Section 1. We now
consider the relaxation algorithm, that consists in minimizing alternatively over each
variable:

Relaxation algorithm RA.

1. Choosa® e K; k :=0.

2. Computeg® :=y (v%), and setf; := g* + f.
3. Computer**1, solution of(OPy,).

4. k:=k+1;gotostep 2.

Theorem 10.2. The sequence, gb) is bounded inH}(2) x H(£2), and every weak
limit-point (v, g) of this sequence is a strong limit-point, such tgat y (v). In addition,
v satisfies the first-order optimality conditions@P).

Proof. By definition of g* and step 3, we have that, foe> 1,
F(vk+1) :F(Uk+l’gk+l) < ]_'(,UkJrl’ gk) < f(vk,gk) — F(vk). (67)

Since F (v*) is nonincreasing, by Proposition 3.2, the sequarfcis bounded inHol(Q).
Let us prove thag* is bounded inH1(£2). Denote byv® the solution of(OPy). Since
fi > f, we have that*** > v, for all k, see [6, Corollary 1.5]. This, by Lemma 2.2,
implies thath* := h(v*, L) > h* := h(v?, L) for all k. Therefore, by well-known properties
of the maximum of two functions i#/1(£2),

”gk ” HYQ) = ” (Uk - hk)+ ” Hi2) S ” (”k - hﬁ)+ ”Hl(.Q)

< (v - hﬁ)Hyl(Q) <o HHl(.Q) +|nf| meag2) /2, (68)

This proves thag® is bounded in71(£2). SinceF is a quadratic function aof, its Hessian
being the identity, andF (-, g*) attains its minimum ovek atv**+1, we have that

1 2
]_-(karl, gk) 4= ||Uk+1 _ vk ”Hol

5 < f(vk, gk) < f(vk, gkil). (69)

) =
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Since F(v**t1, gk is bounded from below, the previous inequality implies that
[vfTL — vk — 0 in H}(£2). Let (3, g) be the weak limit of(v*, gX), for k € N, an in-
finite subset ofN. Since|[v**! — v*|| — 0 in H}(52), we have thatg"~! has for the
subsequenc&/ the same limitz. By (10), we have the strong limits aff and v*~1

in L2(£2). Passing to the limit, thanks to the weak I.s.c. of the elastic energy, we obtain
F,8) < F(v, g), for all v € K. This means thaf is solution of the obstacle problem
(OP; ), proving thaty satisfies the first-order optimality conditions(®P). Let us prove
the strong convergence. By step 3 of the algoritlioy 2, g¢) < F(v, g¥). Passing to the
limit, we obtain thatF (vft1, g¥) — F (o, ), which implies convergence of the elastic en-
ergy, and therefore strong convergence/bfin Hol(.Q). Sinceh(v, L), and hencer (v),

are continuous functions, this implies strong convergengé af H1(£2) too. O

11. Numerical results

We have implemented the decomposition algorithm, setting the bound constraints
only at the nodes of the triangulation. Then a quadratic program has to be solved at
each iteration. For this we use the function ‘quadprog’ of Matlab, with option PCG
(preconditioned conjugate gradients). The stopping criterion is based on the variation of
cost function. Settingy = F(v*t1, gX), we stop if| Sy — Sx_1] + |Sk—1 — Sk_2| < e&. In
our tests we have used= 0.0001.

We consider the case whéh is a disc with center 0 and radiuswhose triangulation
is as in Fig. 1. The number of elementsyidnr, and the size of the rigidity matrix is
of orderN = %p(p — Dn7 + 1. Hereny is the number of sectors into which the disk is
equally divided, whilep is the number of rings. We use= 10, L = 10, andny = p = 8.

We display the results for the cases with or without obstacles in Fig. 2. Without obstacle
the algorithm needs 9 iterations and the heiglitis 2.2162. We next add the obstade
given by® (w) = (w1)? + (w2)? + 2. Then only 8 iterations are needed, @ng 1.5899.
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Fig. 1. Triangulation of circular domain.
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Fig. 2. Numerical results.
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