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CONVERGENCE OF INTERIOR POINT ALGORITHMS
FOR THE MONOTONE LINEAR
COMPLEMENTARITY PROBLEM

J. FREDERIC BONNANS AND CLOVIS C. GONZAGA

The literature on interior point algorithms shows impressive results related to the speed of
convergence of the objective values, but very little is known about the convergence of the

iterate sequences.

This paper studies the horizontal linear complementarity problem, and derives general
convergence properties for algorithms based on Newton iterations. This problem provides a
simple and general framework for most existing primal-dual interior point methods. The
conclusion is that most of the published algorithms of this kind generate convergent
sequences. In many cases (whenever the convergence is not too fast in a certain sense), the
sequences converge to the analytic center of the optimal face.

1. Introduction. Among several different statements of the linear complemen-
tarity problem, we chose the following one, known as the monotone horizontal linear
complementarity problem:

" minimize sTx
(P) subjectto Qv+ Rs=b
X8=0,
4

where b € R™, and Q, R € R™ " are such that for any u,v € R",
if Qu+Rv=0 thenu"v>0.

The problem will be formally studied in §2, where state two hypotheses: the
existence of an interior feasible solution, and the existence of a strictly complemen-
tary optimal solution. As we shall see, this problem trivially includes the linear
programming problem and the convex quadratic programming problem in their usual
formulations, and thus provides a quite general framework for the study of algo-
rithms. The algorithms studied in this paper are restricted to feasible interior point
methods.

Rather than developing new methods, the scope of this paper is a unified study of
the iterate convergence of methods for which an R-linear convergence of the
pbjective values x”s is already guaranteed. We describe the usual variants of Newton
Iterations for the perturbed version of this problem (exact Newton steps, centering
steps and affine-scaling steps) and concentrate our attention on methods based on
C.Ombinations of these steps. We conclude that among the methods found in the
literature, the following ones generate convergent iterate sequences:

* All the path following methods that work in a Euclidean norm neighborhood of
the central path. Predictor-corrector algorithms (already studied by Gonzaga and

Received November 8, 1993; revised J uly 1994.

AMS 1991 subject classification. Primary: 90C33; secondary: 49M15, 65K05.

OR/MS Index 1978 subject classification. Primary: 622 Programming /Complementary.

Key Wwords. Linear complementarity problem, primal-dual interior-point algorithm, predictor-corrector
algorithm, analytic center.

0364-765X /96 /2101 /0001 /$01.25
Copyright © 1996, Institute for Operations R h and the Manag Sciences
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Tapia (1992) in the linear programming case) and linearly convergent methods
generate iterates that converge linearly to the analytic center of the optimal face. One
step superlinearly convergent methods that use only exact Newton iterates may
converge to another optimal solution. In particular, all the known primal-dual
algorithms with a complexity of O(Vn L) iterations generate convergent sequences.

* All methods for which superlinear convergence of the objective values has been
proved. If the convergence in values is very fast (say, quadratic), the iterates usually
converge to a noncentral optimal solution. Otherwise, the iterates converge linearly
to the analytic center of the optimal face.

Among the methods that we have considered, the only ones that may generate
nonconvergent sequences are the ones that do not follow the central path closely and
do not achieve superlinear convergence.

Apart from this study of convergence, this paper has two other contributions that
may be of interest:

+ We formulate the problem carefully, and show that by a simple change in the
order of the variables the properties of Newton steps become very clear. The
least-squares problems associated with the systems, as well as the relationship
between “large” and “small” variables become straightforward.

+ We develop in §4 a general convergence theorem for nonlinear programming
algorithms that may be useful in other contexts.

The algorithms to which these results apply cover the whole history of primal-dual
interior point methods. The first algorithm was introduced by Koj_ima, Mizuno and
Yoshise (1989), based on a work by Megiddo (1989). The same authors (1987) and
independently Monteiro and Adler (1989), developed a low-complexity version of the
algorithm. Kojima, Megiddo, Noma and Yoshise (1991) in their monograph make an
extensive treatment of methods for linear complementarity problems that, like the
Kojima-Mizuno-Yoshise algorithm, use exact Newton iterations followed or not by
line searches. The largest possible step for a path following algorithm using complete
Newton steps is described by McShane (1991) for linear programming and for linear
complementarity (McShane (1994)). He proves superlinear convergence under the
hypothesis that the iterate sequence converges: this hypothesis, as a consequence of
our results, is naturally satisfied.

Another consequence that will be discussed ahead is that the extension of the large
step primal path following methods developed by Gonzaga (1991) and by Roos and
Vial (1989) to the primal-dual setting is always convergent to the central optimum.

Primal-dual algorithms for linear programming with superlinear convergence were
developed by Zhang and Tapia (1991), without following the central path. Algorithms
that follow the central path and achieve 2-step quadratic convergence are based on
the Mizuno-Todd-Ye (1990) algorithm. This rate of convergence was first proved by
Ye, Tapia and Zhang (1991), with the hypothesis of convergence of the sequence of
iterates, and afterwards by Ye, Giiler, Tapia and Zhang (1993) and by Mehrotra
(1991) without this hypothesis.

The extension of these results to linear complementarity problems was done by
Kojima, Kurita and Mizuno (1991), Kojima, Megiddo and Noma (1989), Ji, Potra,
Tapia and Zhang (1991), Ji, Potra and Huang (1995), either using a nondegeneracy
hypothesis or assuming that the sequences converge. The result without these
hypotheses was found by Ye and Anstreicher (1993), who show convergence of order
2 for the objective values and low polynomial complexity.

The study of interior point algorithms is greatly simplified by the description of
properties of the so-called w-weighted trajectories associated with the problems.
These trajectories for the horizontal linear complementarity problem are described
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by Monteiro and Tsuchiya (1992), extending results by Kojima, Mizuno and Noma
(1990).

The convergence of the sequences of iterates for the Mizuno-Todd-Ye algorithm
for linear programming was studied by Gonzaga and Tapia (1992). The present paper
extends the results in this references to the horizontal linear complementarity
problem, and studies algorithms that are not of the predictor-corrector type.

The paper is structured as follows: §2 describes the LCP and its main properties.
Section 3 describes the class of algorithms under consideration and states the main
results. Section 4 is a self-contained convergence study of nonlinear programming
descent algorithms. Sections 5 and 6 contain the mathematical treatment of Newton
methods, and the proofs of the results described in §3.

Conventions. Given a vector x, d, the corresponding upper case symbol denotes
as usual the diagonal matrix X, D defined by the vector. The symbol e will represent
the vector of all ones, with dimension given by the context.

We shall denote component-wise operations on vectors by the usual notations for
real numbers. Thus, given two vectors u, v of the same dimension, uv, u/v, etc. will
denote the vectors with components u;u;, u;/v;, etc. This notation is consistent as
long as component-wise operations always have precedence in relation to matrix
operations. Note that uv = U and if A is a matrix, then Auv = AU, but in general
Auv # (AU )v.

We shall frequently use the O(-) and Q(-) notation to express the relationship
between functions. Our most common usage will be associated with a sequence {x*}
of vectors and a sequence {u,} of positive real numbers. In this case x* = O(p,)
means that there is a constant K (dependent on problem data) such that for every
ke N, |x*| < w,. Similarly, if x* > 0, x* = Q(y,) means that (x*)™' = O(1 /).
Finally, x* = g, means that x* = O(y,) and x* = Q( ).

We use the same notations for a point x in a set parameterized by w, say E,. We
say that x = O( ) (resp. x = Q(u), x = p) whenever there is a constant K such that
(for p small enough) for all x € E,, [Ixll < Ku (resp. x'=0(01/u), x= p). In
particular, x = 1 in E means that there are constants K, > K, > 0, such that any
x € E satisfies K, <x; <K,,i=1,...,n.

Given two vector functions x and y, x = y means that x; =y, fori=1,...,n.

2. The linear complementarity problem. The problem (P) can be stated in the
following format, which will be used in the paper: Solve

x5 =0,
(P) Ox + Rs = b,
x,s=0,

where b € R”, and Q, R € R"*" are such that for any u, v € R",

if Qu + Rov=0 then u’v>0.

The feasible set for (P) is

F= {(x,s) € R*|Qx+Rs=b, x,s > 0],



4 J. F. BONNANS AND C. C. GONZAGA

and the set of interior solutions is
F° = {(x,s) € Flxs > 0}.

We say that respectively x or s is feasible if there exists s or x such that (x, s) € F.

REMARK. We shall prove below that [Q R] has rank » under the monotonicity
hypothesis. One can use Q, R € R™*" with m > n, as long as r((Q R]) = n.

EXAMPLE: THE QUADRATIC PROGRAMMING PROBLEM. This format is quite general.
For instance, the convex quadratic programming problem is*
minimize c¢’x + 1xTHx
subjectto Ax =5
x =0,

where ¢ € R", b € R™, A € R™*", and H € R"*" is a positive semi-definite matrix.
The necessary and sufficient optimality conditions for this problem are

s =0,
-Hx+A'w+s=c,
Ax = b,
X, 802000

Let B be a matrix whose rows span the null space of 4. Multiplying the second
equation by B, one obtains the equivalent relation —BHx + Bs = B, so that (x, w, 5)
satisfies the first-order optimality system iff

xTs =0,
A | B -
—BH Bl|ls Be |’
X, 50,

Now let u, v € R" be such that Au = 0 and —Hu + A™w + v = 0. Multiplying this
equation by u”, we obtain u”v = u"Hu > 0, and conclude that the optimality condi-
tions constitute a monotone linear complementarity problem. This is also trivially true
for the linear programming problem, where H = 0.

The optimal face. We shall use several properties of problem (P), proved by
Monteiro and Tsuchiya in (1992). The set of optimal solutions of (P) is a face of the
polyhedron F, denoted 5.

The face is characterized by a partition {B, N, T} of the index set, called optimal
partition, such that i € T if x; =0 and s; = 0 for all optimal solutions; i € B or
i € N respectively if there exists an optimal solution (x, s) such that x; > 0 or 5; > 0.

In this paper we shall study separately the behavior of the so-called large variables
Xy, sy and small variables x, s5. A great simplification is obtained by the following
assumptions. Assumption 1 is necessary for the construction of feasible interior

* The notation in the example is local, and shall not be used in the remainder of the paper.
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algorithms. Assumption 2 is the strict complementarity hypothesis. Under Assump-
tions 1 and 2, the optimal face is bounded and has a relative interior 5° # .
Assumption 3 may look peculiar, but we explain below how it can be made without
loss of generality.

AssumpTiON 1. F° # @
AsSuMPTION 2. T = .
AssUMPTION 3. N =.

Ensuring assumption 3 by a reordering of the variables. Assuming that T = O,
Assumption 3 means that x is the vector of large variables, s is the vector of small
variables, so that for any optimal solution x > 0 and s = 0. This situation is easily
obtained by a reordering of the variables, as we show now. The constraint Ox + Rs = b
can be rewritten as

+ [Ry Q‘v][;"] ~b.

N

[QaE Ry]

Xp
SN

We can now rename the variables in the following sequence:

0« [0z Ryl, R<[Ry Oyl

N « &, B« {1, ..:5n).
With this reordering, the optimal face .is characterized simply by
F={(x,5) eR¥”|s =0,0r=b, x> 0}.

We note that monotonicity is not affected by reordering. In addition, the Newton
directions as well as the neighborhood of the central path (defined below) are
Invariant with respect to this transformation.

This means that all algorithms based on the Newton step and the proximity of the
central path are invariant with respect to permutation of variables. Of course the
algorithms never use the knowledge of the optimal partition, which is unknown.

_ The standard form. Our treatment will be done for the horizontal form of LCP,
Le., problefn (P). This form is obviously at least as general as the standard form.

owever, it is instructive to observe that a simple transformation reduces the
hon_zontal form to the standard form, so that the two classes of problems are indeed
equivalent. This has been recently shown (Giiler (1992)), and we give here an
elementary proof.

The standard form of linear complementarity problems is

minimize s7x
subject to s = Mx + ¢,
X;8=10.

(SP)
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If the matrix R is n X n and invertible, then reduction of (P) to the standard form is
trivial, simply take M == —R~!Q and g :== R™'q. We now prove that a reordering of
variables can always be done that reduces to the case of an invertible R.

Let r be the rank of Q. By a convenient ordering of the rows and columns of Q, we
can factorize it as a product Q = LU, with L invertible, the last n — r lines of U
being identically zero, and with an invertible block U, as follows:

Uu U

=L 1 2 .

o-( 5)

Denote D = L™ 'R. By u',u*® we denote the components of u in the first » and

n — r indices, respectively, and similarly for v. The homogeneous relation Qu +
Ruv = 0 is equivalent to:

U + Upu? + D' + Dypv* =0,
D, ' + Dyv? = 0.

We now prove that D,, is invertible. Choose v! = 0, v? arbitrarily in .#(D,,), and
u? = —p% Since U, is invertible, the above linear system has a solution, with
u?, v', v? as specified, and by monotonicity 0 < u”v = —|v?|]%. It follows that v* = 0,
i.e., the square matrix D,, is invertible, as was to be shown, so that the linear system
can be written as

u]
2T

This shows in passing that the rank of [Q R]is n. Defining the new s as (x!, 5%), we
obtain the desired result.

Later in this paper, we use this idea of reordering in order to identify x and s with
the set of large and small variables, respectively. Then of course, the LCP is in
general not in standard form. -

=1

Uy Dy,
0 D,

2 1
U,u® + Dy
1
D,

Notation. Here we introduce the notation that will be used in the paper. This
notation is quite standard, with exception of d(x, s), which usually does not include
the multiplication by w. Given an interior solution (x, s), we define:

u(x,s) =s"x/n,
w(x,s) =sx/u(x,s),

8(x,5) =[lw(x,s) —el,

d(x,s) = yp(x,s)x/s.

When no confusion can arise, we drop the reference to the variables, and continue

to use other symbols in a consistent manner. For example w = w(ZX,§) or u, =
k ok
u(x®, s%).

The scalar p and the vector w are the parameter and weight associated with the
w-weighted trajectory that passes through (x,s) (see below). § is the proximity
measure of (x, ) in relation to the central path (see below), and d will be used as a
scaling vector when solving Newton equations.
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Using these definitions, we define two sets of interior points which are bounded
away from the nonoptimal faces of F. Given € > 0 and g, > 0,

(1) F.={(x,s) € Flu(x,s) < po,w(x,s) = ee}.
Given «a € (0,1),
(2) A, = {(x,5) € Flu(x,s) < pp, 8(x,5)a}.

F. is the set in which all published convergent feasible primal-dual algorithms
operate (to our knowledge). The set .7, is the Euclidean norm a-neighborhood of the
central path, in which the path following algorithms to be studied in this paper
operate.

Trajectories. Here we summarize some properties of the central path and the
w-weighted trajectories for the problem (P). These trajectories and their properties
are described in Monteiro and Tsuchiya (1992).

The solution (x, ) is called central if xs = pe for u > 0. For the problem with the
hypotheses above, there is a unique central point (x( u), s( ) associated with each
p >0, and the map pu > 0 — (x(u), s(n)) defines a smooth curve, known as the
central trajectory, ending in an optimal solution. Note that x( w)s(w) = np, and
thus p = ulx, s).

In the same vein, given a vector w > 0 such that w'e = n, we can define a
w-weighted trajectory w > 0 — (x, (), 5,,( 1)) composed by the solutions (x, s) such
that xs = uw. Note that again u = u(x, s), showing the consistency of our notational
conventions.

Given w > 0 as above, the w-weighted barrier penalized function is defined as

. n
p>0, (x,8) €Fy = f,(x,5,p) =x"s — p ) wlog x;s;.
i=1

The following facts are known.
« (%5 = (x,(w),s,(w) if and only if

(%,5) = argmin(f, (x,s, u)l(x,s) € F%.
» The w-weighted trajectory ends at the optimal solution

(x%,0) = f—% (2, ( 1)y 5,( 1)),

x* = argmin{ — ) w, log x;|0x = b, x > 0}.

i=1

In words, (x*,0) is the w-weighted analytic center of the optimal set. In particular,

the cet?tral path ends at (x*,0), the analytic center of the optimal face.

th‘. _leep €> 0, the solutions (x, s) € F, satisfy x = 1, s = u(x, s). In particular,
18 1s satisfied for all points in .#, for a fixed a € (0, 1).

£ :{hold\ffam re_sults. This section describes a general model of primal-dual Newton
S and lists the main results to be shown in the subsequent sections.
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The Newton step. Interior primal-dual algorithms take at each iteration a Newton
step for solving the problem below, which corresponds to the search for a point in the
central trajectory:

xs = ype,

) Ox+ Rs=b,

where ‘y € (0,1) and, as usual u = u(x,s). The Newton step for this problem is
obtained by solving the system

su + xv= —xs + yue,

4 Qu + Rv=0.

Under our hypotheses the Newton step always has a unique solution (u, v). The
general algorithmic model below starts from a given initial point (x°, 5s”) € F, and
generates a sequence in F,. The generality is given by the choice of the aimed gap
reduction y and the steplength 6 in each iteration.

ALGORITHM 3.1.  General Newton method. Data: € > 0, (x°, s°) € F,.
k=0
REPEAT

¥ =gk gi=gk wi=uaTom,

Choose v = vy, € [0, 1] and solve the Newton equations (3).

Choose 0 = 6, € (0, 1] such that (x + 6u,s + 6v) € F,.

x*t = x + Qu, s¥*! =5 + Q.

k=1FKk+ 1.

We shall study the iterate convergence of a general class of algorithms based on
this model. We shall not prove convergence of the objective values. Rather, we
assume that the sequence (p,) converges R-linearly to zero, i.e., there exists a
sequence () such that for k € N, u, < @, and &, < Vi, with » < 1.

The values of y, and 6, at each iteration are chosen among the following three
possibilities (of which the second and third are obviously special cases of the first):

(i) Basic Newton step: v, € [0,1], 8, € (0, 1].
(ii) Affine-scaling step: y, = 0, 6, € (0, 1).
(iii) Centering step: y, = 1, 6, € (0,1] and (x*, s*) €4, for a < 0.25.

Convergence. Our main result is summarized in the following theorem, whose
proof occupies the remainder of the paper.

THEOREM 3.2. Consider the General Newton Method described above, and assume
that () converges R-linearly to zero. Choose a € (0,0.25]. Then there exists A > 0
such that If 6,7y, < A for all k such that (x*, s*) & 4., then

(i) The sequence of iterates (x*, s*) converges to a point (%,5) € 5.

() If Xi.gbcyx = +> then (X,5) = (x* s*), the analytic center of ¥. If
Ym0 0k Y < +o then possibly (%, 5) # (x*, s*).

This theorem allows us to describe the convergence properties of several algo-
rithms referenced in the introduction, according to the behavior of the sequences (6,)
and (). In these comments when we refer to speed of convergence we mean the
speed with which the sequence u, converges to zero. Actually there is a close
connection between the speed of convergence of w, and the parameters 6, and 7y,,
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as we prove in Lemma 5.8 below that
ey = (1= 6 + 07, e + 00( 1f).

We deduce from Theorem 3.2 that:

(i) Algorithms for which (x*, s¥) €4 and 6,7y, is bounded away from zero in
some subsequence: these algorithms generate sequences such that x* = x*, because
the series in the lemma is unbounded. This case includes the following methods:

—The predictor-corrector algorithm in .#,: this algorithm alternates affine-scaling
steps and centering steps with y, = 1 and 6, = 1. The algorithm is 2-step quadrati-
cally convergent.

—Short steps algorithms: these methods use y; > 0 fixed, and 6, bounded away
from zero (either 8, = 1 or §, results from a line search). The algorithms are linearly
convergent.

(ii) Algorithms for which (x*,s*) € F,, 6, — 1, ¥, — 0: this includes all O-super-
linearly convergent algorithms based on Newton steps and line searches. The se-
quences are convergent, but the limit point may not be the central optimum,
depending on whether Ly, = +% or not. _

(iii) The longest step path following algorithm: (x*,s*) €4, a <025, 6, =1,
and vy, < 1 such that 8(x**!,s**!) = a. From the theorem, the iterates converge.
Using this fact and the results of McShane (1991), we conclude that the algorithm is
superlinearly convergent. This means that y, — 0 and we fall in case (ii) above.

(iv) Large steps path following algorithms: from (iii), it is clear that taking y, <1
fixed, 6, = 1 and (x°, s°) €. sufficiently near the optimal face, the whole sequence
will be in .#,. Then x* — x* as for short step algorithms. For an arbitrary initial point
in #,, each iteration can be constructed as in the primal large steps algorithm for
linear programming developed by Gonzaga (1991) and by Roos and Vial (1989): use a
sequence of damped Newton steps to obtain (x**!, s¥*1) such that [[x**'s**! /y, p,
— e|l < a. The argument above shows. that for large values of k only one Newton step
will be needed.

4. Descent algorithms for nonlinear programming. Let I' € R" be an open set,
and f:T — R a differentiable function with locally Lipschitz continuous gradient
x €T - Vf(x).

We consider the unconstrained nonlinear programming problem

v minimize f( x).
xel

We shall study general properties of descent algorithms for this problem. The format
for the algorithms is the following, for a given x° € R™:

?LGORITI—M 4.1. Model algorithm.
= ()
WHILE Vf(x) # 0 do
xb*1 = gk 4 ARRE
k=k+1.
END WHILE

w!]uerc for each ‘k, h¥ € R" and A* € (0, +=) are such that x**! € I'. An algorithm
wi 'he cilled a “descent algorithm” if there exists A > 0 such that for all k € N,

@ 134 = 1A fCxb,

G fOx* + ARE) < (xk) — ANKIIR¥] IVFCR)IL
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A sequence (x*) in T will be said compact if it is contained in some compact set
I, T, and a point x € T is stationary if Vf(x) = 0.

The next lemma shows that there are two alternatives for a descent algorithm:
either the steps are sufficiently large to reach the optimal set, and then all accumula-
tion points are stationary, or the steps are short and the sequence converges to a
nonstationary point. We are unaware of the existence of this result in the literature.

LEMMA 4.2.  Assume that a descent algorithm as above generates an infinite compact
sequence (x*) in T. Then '

(D) Either Tp_oA* < + and (x*) converges to a nonstationary point or

(i) TF.oA* = + and all accumulation points of (x*) are stationary.

PROOF. Consider sequences (x*), (1), (A*) generated by the algorithm, and as-
sume that (x*) is contained in a compact I, c T

(M) If TE_oA* < +%, then Ii_,A¥[|h%|| < +o, because R8N = IVF(x®)Il s
bounded in Ty. Then (x*) is a Cauchy sequence and thus x* — %, with ¥ € I,. We
must prove that X is not stationary.

Let '={xe [y | Vf(x) = 0} be the set of stationary points in Ty. If ' = &, then
there is nothing to be proved. Otherwise, let L be a global Lipschitz constant for Vf
in Ty. Since [|A¥]| = [[VF(x®), [IA*]| < KIIVf(x*)|, where K> 0 is a constant. It
follows that

x5+t — k|| < M| R¥]| < AKIIVF(x5)].
After an iteration,
IVFC* ) 2 1979 ) = Lilaeksr - x4,
2 (1 - KLA)[vf(h) .

Since A* — 0, for k, sufficiently large 1 — KLA* > 0 and log(1 — KLA¥) > —2KL A,
Thus for k > k,,

i k-1 ;
nw&ﬂhﬁwuwmgm—xum
and

k-1 k-1
log|| Vf(x*)[| = logl Vf(x*) | + ¥ log(1 — KLAY) = log|| Vf(x*0)|| - 2L ¥ .

j-kﬂ ]"kg
It follows that log||Vf(x*)|| has a lower bound, and thus [VF(x®)|| is bounded away
from zero, establishing (i).
(i) Assume now that ¥3_, A* = +. For an arbitrary € > 0, define

L= {x € T, 1| Vf(x)] > €).

By definition of descent algorithm,

fUWSKﬂ)mﬁiHWﬂﬂNMW
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Since f is bounded in Iy and ||A*|| = ||Vf(x*)ll, we conclude that
i 2
(5) T MVFGE)T < +ee.
k=0

Now assume by contradiction that (x*) has an accumulation point ¥ € I}. Then the
set & = (k € N| x* € I} is infinite.
From (5), with [|Vf(x*)ll = € for k €%,

(6) Y A< 4o,
ked

and we conclude that the set of indices Z = N —.% is also infinite. For each k €.%,
let k' > k be the first index in 7. Then

k'—1 k-1
) Ix¥ —xfl < X AMlkl=0| T Af)-
i }-k

j=k -

Using (6), we see that as k €.% grows, [|x* — x*|| =0, and thus the subsequences
(x*), ey and (x*), .5 have the same accumulation points. But all accumulation
points of (x*), ¢  satisfy ||Vf(x)ll < e. This implies ¥ & I, contradicting the hypoth-
esis and completing the proof.

Perturbed descent algorithms. Consider the model Algorithm 4.1 and a sequence
of “perturbations” (n*) in R". A perturbed algorithm is an algorithm that follows the
model, but has the step given by

x¥+1 = gk 4+ ARRE 1+ k.

The next lemma shows that if the perturbations are summable in the sense that

2 lnkll < =,

k=0

then the capacity of a descent algorithm to find stationary points is not affected. But
now the first part of the lemma above is not guaranteed, since “clever” perturbations
might drive the sequence to a stationary point,

{..EMMA 4.3. Consider a descent algorithm with perturbed steps, with perturbations
gﬂ ) such that Zz_oll-.q" | < o, and assume that it generates a compact sequence of
iterates. Then

(9) Either kZI_O A*¥ < 400 and (x*) converges to a possibly nonstationary point or

i) Ti 0 A* = 4w and all accumulation points of (x*) are stationary.

th:l:{:.:oa 'I"he proof follows t%lalt ofll:cmma 4.2 step by step. We shall only indicate
D If;‘tges in the proqf. Part '(1) is trivial, because the resulting sequence is a Cauchy
i e. To prt?ve (ii), define I', as before and note that using the Lipschitz

ttion for Vf in the compact I, there exists a global Lipschitz constant L, for f
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in T,y and hence
F(x541) = f(x* + Xh* + 7*)
< (x% + XRF) + L lInk|
< F(x*) = AN VE(ER) [HIR*] + L lIn*.

Since f is bounded in T},
L (AXIVFCF) [1RH + Lyl <+,
k=0
As [|[R*]| = [IVF(x®)ll, we conclude that ¥Z_, AK[|VF(x*)||* < +c. The rest of the proof
follows directly the proof of Lemma 4.2, with expression (7) replaced by
k-1

¥ = x4l < X (MlAi] + lInfll) = O
j=k

K=1 \ k=1
b3 )d) + X lIn’ll.
i=k j=k

An interesting situation is the one in which A* — 0. In this case, the set of
~ accumulation points form a continuum, and if the series of (A) is infinite all these
points are stationary.

Algorithmic maps. A descent direction for a differentiable function at a point is a
vector that makes an angle of less than 90 degrees with the negative gradient
direction. Descent algorithms can be obtained by means of maps that associate with
each point a set of uniform descent directions, as follows.

Let x €T — H(x) cR" be a point to set map. We say that H(-) is a map of
descent directions in a set Iy C T" if there exists a constant A > 0 such that for any
x €T, and h € H(x):

@) Al = [VFCOl,
(D) VF(x)h < —AIVFC |IA]l

Given a map of descent directions defined in a set Iy €T, algorithms can be
constructed as in Algorithm 4.1. A complete algorithm with perturbations (n*)
will be:

Algorithm 4.4.  Perturbed algorithm based on a map of descent directions: given
x’ eT,.
k=0
WHILE Vf(x) # 0 do
choose h* € H(x*).
k= xk 4 Mgk 4 pk e T,
k=k+ 1.
END WHILE

In each iteration k, A* € (0, +=) must be such that x**! & I'. The lemma below will
show that if the A* are small and T}, is compact, the resulting algorithm will be a
descent algorithm, hence with the convergence properties described above. Two
situations in which T, is easily constructed are the following: in the first case, which is
frequent in the literature, the level set {x € I'| f(x) < f(x°)} is compact, and A* is
given by a line search that guarantees f(x**!) < f(x*). The second case is our direct
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interest, where the primal-dual algorithms are responsible for generating iterates in
the set F, defined in §2.

LEMMA 4.5. Let H(-) by a descent map defined as above in a compact I'y C I. There
exists A > 0 such that for any x € Ty, h € H(x) and A € (0, A]:

£(x + Ah) < £(x) = ZAIVFCR) AL

PROOF. We begin by using the Lipschitz condition to show that there exists
Al > 0 such that for any x € [, h € H(x) and A € (0, A"):

(8) V7 (x + Ak) — Vf(x) | < ALIIAl.

Since Iy is compact and I is open, there exists € > 0 such that I', = I, + B, c T,
where B, = {y € R"|llyll < €}. So Vf is locally Lipschitz continuous in the compact
I, and consequently satisfies a global Lipschitz condition in I';, with a constant L.
This means that for [|Akll < €, x € T, we have x + Ah € I'; and (8) is satisfied. We
must still specify the value of A': since [|All = [[VF(x)ll and Vf(x) is bounded in I,
there exists K, > 0 such that for x € Iy, [|All < K,. Choosing A' = €/K, the result is

complete.
Now we prove the lemma. Consider a point x € I, A € (0, A'), ad h € H(x).

Then

f(x + M) = f(x) + X[ WTVf(x + oMh) do,
0
= f(x) + ARTVf(x) + ,\fo‘hf[vf(x + oAh) — Vf(x)] do,

< £(x) = ASSAC) NIl + & LIAIE

As H(-) is a map of descent direction, there exists K, > 0 such that [l <
K, IVf(x)ll, for all x € Ty, h € H(x). Choosing A = min{\', A/K, L},

2
A LUK < AZIVF() A,

for A € (0, 2). The substitution of this into the expression above leads to the desired
result, completing the proof.

5. Study of the Newton step. In this section we study general aspects of the
Ne“{ton step associated with the problem (P). We begin by studying properties of
feasible directions.

Pl‘Operti;:s of feasible directions. Consider the equality constraint in (P). A pair
(u,0) € R* is a feasible direction if and only if Qu + Rv = 0. Feasible directions
can also be defined separately for x and s, as follows:

% = {u € R"|Qu + Rv =0 for some v € R"},
7= {veR"|Qu + Rv=0forsome u € R"}.

The . ; . ; o
next lemma resumes the nice geometrical properties of feasible directions under
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the monotonicity hypothesis, and is a particular case of Monteiro and Tsuchiya (1992,
Lemma 3.3). We give the proof in order to make the paper self-contained.

LemMMA 5.1. % c%(RT) and 77 c %(Q7).
Proor. Consider u € #. By definition, for some v € 7, Qu + Rv = 0. Given
v €#(R), and A € R,

Qu+R(v+A) =0,
and from the monotonicity assumption,
u(v+ A') 2 0.

This implies in u”v' = 0. Since v/ is arbitrary in #(R), u €#(R)* =%(RT). The
second inclusion in the lemma is shown similarly, completing the proof.

Orthogonal projections. Now we summarize some properties of orthogonal pro-

jections into an affine space.
Given the affine space defined by Ax = g, where 4 € R™*", g € R™, we define

the projection operators P, , and P, by
x = P, .x = argmin{|lw — x||| Aw = q},

and P, = P, ,. Since P, is a linear operator in R”, the same notation will be used for
its matrix representation.

LEMMA 5.2. Foranyx € R" and q € R™, Py X =Pyx + P, 0.

ProOOF. This follows directly from the linearity of the mapping (x, ¢) — Poghs
The linearity of this map is proven by examining the optimality conditions that
characterize the projection, as follows:

Consider w! = P, 1x' and w? = P, ,.x% The optimality conditions for the projec-
tions are Aw' = q¢', x' — w! L#(A4),i=1,2. It follows that for A € R, A(w' + Aw?)
=q' + Ag* and x'+ Ax? — (W' + Aw?) L#(A4). This means that w'! + Aw? =
Py p4ag2(x! + Ax?), completing the proof.

The next lemma describes properties of the orders of magnitude of projections.

LEMMA 5.3. Let @ C R" be such that d = 1 whenever d €2.' Then for y € R",
qgER(A),dez,

PAD.qO = O(IIqH),
Pyp,qy = O(ligll) + O(liyl),

IDP,p Dyll = [|24yll.

PROOF. Let A" be a right inverse of 4, i.e., A* is an (n X m) matrix such that
AA”q = q for all g € #(A). Then £ = D~'4*q is feasible for the problem

minimize(l|z — y||| ADz = g}.

'Le., there are constants K3 > Ky > 0, such that any d € & satisfies K, <d; < K, i=1,...,n.
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It follows that

IPyp v =yl <lZ =yl <ID~'4A7gll + lIyll.

The first two results follow from this inequality.
As a consequence of these results, for any z € R”, DP,;,Dz = O(||z[). Taking
z=P,y=y— A"w for some w € R",

It follows that DP,,Dy = O(|PpylD. By the same process, with a change of
variables y = Dy, we get P,y = O(|[DP,, Dyl), completing the proof.

Shifted scalings. The following lemma, shown in Gonzaga and Tapia (1992), will
be useful ahead. We reproduce the proof here for completeness.

LEMMA 54. Let g € R" be such that lg — ell= < @, where a €(0,1). Set G =
diag(g), and consider the projections h = P p, h = gP48 p. Then

5 [
Ih = Al < a(1 + a) T—=llAll.
In particular, if a € (0,0.25):
lh — All < 3allAll.

PROOF. Since p = h + A™w for some w € R"™,
gp=gh+ (AG)Tw
and thus '

Picgp= PAGgﬁ'
It follows that

g 'h =P gh.
On the other hand, by definition of projection,
gh=Picgh +y,
where y € #(GA”). Merging the last expressions,
gh=g"h+y,

:i*gere g 'h €#(AG) and y € #(GAT). Subtracting g~'h €#(AG) from both
es,

(g7 —g)h=g7'(h—h) +y,
and from the orthogonality of the right-hand side terms,

l(g™* - &)l =llg~(h - Al
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Now use the following facts: [( — AIl < llgllllg=*(h — A)ll and (g™ — g)All <
[(g=! = g)llzll4]l. Combining these three expressions leads to

lh - &l < liglllig™ = gllllAl.

Finally, llgllzllg™ —gll- < (1 + a)1/(1 = @) + 1 — @)). The inequality for a €
(0, 0.25) follows trivially, completing the proof.

The scaled equations. The right-hand side of the first equation in (4) will vary
according to the algorithm. At this point we shall study general results for the Newton
step with a generic right-hand side, namely
(9) sut+xw=f, Qu+Rv=0,
where f & R". Our scope now is to characterize the direction u in relation to v. We
begin by scaling the equations, to obtain a simpler situation. The scaling will use the
scaling vector d = y/ux/s defined above.

The scaled equations are obtained from (9) by multiplying the first equation by
d/ux, which results in

=1 v_4df _
(10) d u+d#—x“, Qu + Rv = 0.

Defining now the scaled variables
(11) i=d'u, D=dv/p,

we obtain the scaled equations
(12) a+5=2L,  opa= —uRD's,

and @D > 0 whenever @, D satisfy the second relation in (12).

The least squares problem. Lemma 5.1 will be used to relate large and small
variables by means of a least squares problem. We start by a simple situation, to
which we will reduce after a scaling of the problem:

(13) u+v=c, Qu + Ruv =0,

where ¢ € R” is a given vector.

LEMMA 5.5. Consider the system (13) and assume that v is known. Let € 7 be
chosen arbitrarily. Then u solves the problem

minimize, . g« lr — ¢ + |

subject to QOr = —Ruv.
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Proor. The optimality conditions for the least squares problem above are Qu =
—Rvand u — ¢ — b € #(Q7). The first one is trivially satisfied. To check the second
one, substitute ¢ — u = v to obtain the condition v + 7 € Z(Q7). This follows from
Lemma 5.1, completing the proof.

We are ready to apply Lemma 5.5 to (12). Let & € 7° be an arbitrary feasible
direction for the small variables, and let di/u be the corresponding direction for the
scaled problem. Assume that v is given. Then & solves the problem

df , db

T —

px - p

minimize . . g«
(14)
subject to ODr= —Ru.

Using orthogonal projections and Lemma 5.2, we obtain from (14):

< df db
U= PQD(H = —};) + PQD,RUO’

(15)
u = du.

Orders of magnitude for the general Newton step.

LEMMA 5.6.  Consider the general Newton step as above, starting at a point (x, s) € F,.
Then:

x=1, s = W, d=1, w=1;

i-ofL).  s-ofL)

B
u=0(f/r), v=0(f/n),
u=0(f/n), v=0(f).
PROOF. The magnitudes of x, s, d and w follow immediately from the discussion

in §2.
From the scaled equations (12), taking norms,

o

117 + 5] + 2375 =|

By the monotonicity hypothesis, #’7 > 0, and it follows that

df
;—I.

||au's“ e Y

Siice d=1 Emd X = 1, this implies the desired magnitudes for # and 0. Finally,
U=dui=0(), and v=d 'up = O(uD), because d = 1. This shows the two last
equalities, completing the proof.

Algorithms using the exact Newton step. The exact Newton step from a given

i ]izi I . 2 2 . h 11 }‘
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LEMMA 5.7. Let § be an arbitrary feasible vector of small variables, and assume that v
is known. Then u is given by

=l
I

5 o
du.

S
Il

In joam'cular, taking § = 0,
i = yPypdi™' + Ppp .0,
(17)
u=du.
PROOF. Let § be an arbitrary feasible vector of small variables (note that

by definition §= 0 is feasible). The direction & =§ —s is feasible. Substituting
f= —xs + ype from (4), the first equality in (15) becomes

— d = n
u =PQDI(_S + v+ YHLX l) +'PQD.RUO'

The desired expressions are obtained by substituting § = s + 0.

Orders of magnitude for the exact Newton step.

LEMMA 5.8. Consider an exact Newton step from a point (x, s) € I,. Then
B=0(y) +0(n), u=0(y)+0(n);

0(1)! U=O(P’-);

I

v
uTv =0(u?);
w(x + 0u,s + 0v) = (1 — 0+ 0y)p + 620( p?).

ProoF. For the exact Newton step, f = —xs + yue = O(u) by Lemma 5.6. From
the same lemma it follows that o = O(1) and v = O( ). To prove the results for the
large variables, we shall use the Lemma 5.3 and expression (17) to obtain & =
yO(dx~') + O(Rv). This immediately implies the desired results, since dx~' = 1 and
Rv = O(v) = O(p). Let us now turn to the analysis of " v. From (11) and Lemma 5.7

we get
i = T
uTv = pi"s = p(yPyp dx™' + O(w)) .
By Lemma 5.1 adapted to the scaled problem (12) we find that 0 € Z(DQ") =
#(QD)* so that 57P,, dx™' = 0. As D= O(1), the relation u"v = O(u*) follows.
We now prove the last relation. By (4),

(x + 6u)(s + 0v) =xs + 6(xv + su) + 0%u,

=(1-0)xs + Oyue + 60%uv,
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so that
p(x + Ou,s + 0v) = (1 — 6+ 0y)u + 0*u"v/n.
Using u"v = O( u?), the result follows.

6. Reduction to the optimal face. Consider a sequence (x*, s*) such that w, — 0.
As k grows, (x*, s¥) approaches the optimal face and s* — 0. Let the optimal face
for the large variables be defined by

Z={xeR"|Ox=>b;x=0}.
Denote its relative interior by Zie.,
Z={x<R"|Qx=b; x> 0}.
To x € R" we associate its projection onto 2
y(x) = argminf{llx —yll|y €2}.

The next lemma shows, in particular, that the sequences (x*) and (y*) have the
same limit points. The rest of this section is devoted to the analysis of the asymptotic
behaviour of {y*}.

LEMMA 6.1. Consider the map (x, s) € F = y(x) € 2 defined above. Assuming .,
(in the definition of F,) small enough, for all (x,s) € F., one has y(x) =1 and
x —y(x) = O(p).

ProOF. Given (x,s5) € F,, let 9 =P, ,x. Since Qx=0b — Rs, we can use the
linearity of the map (x, ¢) = P, ,x to deduce

x=PFp p-psX = PQ.bx = Py, &0 = + Py, &s0-

Using Lemma 5.3 and the fact that s = O(u), we conclude that x = + O(w).
Finally, since x = 1 in F,, for u sufficiently small, § > x/2 and thus y=1

In this case, § > 0 and thus § € £, If follows from the definition of projection that
¥(x) = §, completing the proof.

Without loss of generality, we shall assume for the remaining of the paper that the
set _F, is defined with u, = f, given by the lemma above. So the corresponding
projections in £ will be in the set

(18) 2= {y(x)|(x,5) €F} c2.

Since y = 1 in 22, this set is bounded away from the boundary of £, and thus its
closure satisfies :

(19) clZ cZ.
We observe that, by (17) and Lemma 5.8, the increment on {x*} satisfies
(20) X+ = xk g BkykdkPQDtd"(x")ql + O( ).

We now derive a similar relation for {y*}.



20 1. F. BONNANS AND C. C. GONZAGA

LEMMA 6.2. Consider a sequence (x*,s*) in F, constructed by an algorithm as
described above, and let y* = y(x*). Then x* — y* = O(w,), the sequences x* and y*
have the same accumulation points and

(21) yo = yk 4 '91;‘)”::dmf';'zz:*dk(l"k)_l + O m)-

PrROOF. By Lemma 6.1, x* — y* = O(w,) and consequently the sequences (x*)
and (y*) have the same accumulation points. Since x* = 1, (x¥)~1 — (y¥)~! = 0(p,),
and thus d*Ppped*(x*)™! = d*Ppped*(y*)~" + O( ). It follows from (20), Lemma
5.3 and the linearity of projections that

P = x5 4 O gen)
=y*+O0(my) + 9k7kdkPQD*dk(}’k)—l + O( ) + O( ys1)-

By Lemma 5.8 we know that u, ., = O(u,). This completes the proof.

At this point we may clarify our strategy: the scope is studying the convergence of
(x*, s%). Since s* — 0, it is enough to study (x*), but this sequence has the same
asymptotic properties as (y*), which is apparent from a comparison of the expres-
sions (20) and (21).

We will show now that (21) can be interpreted as a perturbed descent algorithm for
the logarithmic barrier function defined in £

The barrier function in 2. The logarithmic barrier function is defined by

n
xeR", x>0-p(x)=-Y logx,.

i=1

The properties of this function are well known; see for instance Gonzaga (1992). The
analytic center of & is

x* = argmin{p(y) |y e.%"’]. _
The gradient of the barrier function restricted to 2 is
8(y) =FVp(y) = —Fpy~'.
The Newton direction for minimizing the barrier function in £ is given by
4(y) = yPoyyy™" = yPoye.

The primal proximity of a point y €% to x* is measured by the norm of the
primal scaled Newton centering step in 2,

8(y) = "PQYe"‘

Using an orthonormal basis of .#(Q), we may reduce the minimization of the barrier
function over #(Q) to an unconstrained problem. The gradient of the latter is
precisely g(y), and the Newton direction is invariant. This allows us to apply the
analysis of §4. After a Newton step, the barrier function decreases if the point is
sufficiently close to x*. It appears that we can control the (primal) proximity of y(x)
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in the optimal face, since it is related to the (primal-dual) proximity 8(x, s) by the
following lemma:

LEMMA 6.3. Given (x,s5) € F. andy = y(x), 8(y) < 8(x,5) + O(p).

ProOOF. (i) 8(y) = |Pyyell = [IPyxell + OCp).
(i) [I1Pyxell < lle — wll = 8(x, ). By definition of projection,

IP,yell = min{lle + YQzll| z € R™} = min{lle — zI|| z € 2(YQ")}.

But s € #(Q7) by Lemma 5.1, and thus ys/u € Z(YQT). Hence, from the relation
above,

I Pyyell < lle — ys/ul

< lle = xs/pll +[|(x = y)s/nl.

But (x —y) = O(p) by Lemma 6.2, and s = O(p) by Lemma 5.6. Hence the last
term is bounded by O( w), completing the proof.

We are now ready to state conditions allowing us to apply Lemma 4.3.

LEMMA 6.4. Consider the algorithmic map L(*) that associates with each y € 2, the
set

L(y) ={l=dPypdy™'|d = d(x,s),(x,s) €F}.
Then L is a map of descent directions, i.e., for anyy € Z,, | € L(y),

(22) Il =[lg ()]

and there exists A, > 0 such that

(23) g(»)71 < —Allg(y) Il

In addition, there exists A such that, if one of the two following conditions holds at each
step k of Algorithm 3.1:

@) 6,y <2,

(ii) (x*, s*) e, with a < 0.25, and 6,7, < (0,1],
then (21) is a descent algorithm with perturbation, i.e., there exists A > 0 such that

p(y**1) < p(y*) = Bemetl*il g (),

where I* = d*P, . d*(y*)~1.

PROOF. (a) We first check that L is a map of descent directions. In F,, we have
d= .1. From Lemma 5.3, ldPyp dy~'ll = |Poy =1l = | = g(p)ll, proving (22).

Given d, by definition of projection, .

d-'l—dy™' e2(DQ").

Hence d~21 — y=1 e g(QT), Similarly, g(y) + y~! € %£(Q7), and it follows that

a7l +g(y) e£(Q").
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But | €.#(Q), and multiplying the expression above by /7,
-1ITD"21 =g(y)"L

Since d = 1 and ||I|| = llg(»)ll, there exists A, > 0 such that I"D™21 > A,[lZ]| llg(y)ll
This fact and the expression above establish (23).

(b) The condition of decrease is, in case (i), an immediate consequence of Lemma
4.5. It remains to study case (ii). We may drop the indices k. As p(y) is a convex
mapping it suffices to establish Lemma 6.4 when 6,7, = 1. The method of proof
consists in comparing / and the Newton direction / for the minimization of p(") in Z.
We have

[=yPoyyy™, I=dPppdy™.
To use Lemma 5.4 on shifted scalings, let us define
h=y'\[=Pye, h=yl=dy"'Pypdy™’,

and analyze the values of |ldy~" — ell.. Since d = yux/s =x/ Yw and [Ix™' =yl
= 0(p), )

+ O(n).

=

ldy= — elln = llde™ — ell. + O( 1) =|H_v_ g

But (x,s) €4, means that [w —ell <025 and consequently w; > 0.75, and
1L/y/w; — 1] < 0.1548. It follows that for  sufficiently small, [ldy~" — ell. < 0.155.
From Lemma 5.4, we conclude that & = h + p, with || pll < 0.39]kl. We can now
compute the variation of p(-) along /:

p(y +1) = p(y) =p(e +y~'1) = p(e) =p(e +y'1) = p(e + h).

The quadratic approximation of the barrier function gives us the following prop-
erty, shown for instance in Gonzaga (1989): if & €.#(Q) and ||A]l < 1 then

lIAl?
1 — |[All"

h 2
p(e +h) < —eTh + I 2" + %

We know that [l = 8(y) < 8(x,s) + O(p) < 0.25 + O(w), so that [lAll < Al +
ll pll < 1.40l4ll < 0.35 + O(w). In particular, for k large enough [lAll <1 and the
formula above applies. X

Setting h = i + p, e"h = e"Pyye = |IAI%,

Cure oz o DRI+ pll® + 28 1 QAP
p(e+h) < —lAl" —ep + 2 T ITom

Let us check that p €#(QY). As h € #(QY) we have

QY, = QY(h — h) = QYh = QYdy™'Pyp, dy™" = QDPop dy™" = 0.
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Using h = Pyye, it follows that h'p = e’p. We deduce

Wz lel> 1 lalP
= T3 tEEm

ple +h)

1A

1 016 1 &l lal?
-k + 5 a
2 ), 31— &l a3

T
1771

1A

Using again [|ll < 0.25 + O( ) and |4l < 1.4]l4 < 0.35 + O( ), we obtain for p
sufficiently small,

p(e + h) < —0.06]Al%

From (22) and y = 1 we deduce that ||A|| = Allg|l for some positive A. With the above
relation we get the conclusion.

Proof of main result. We now prove Theorem 3.2.

Proor. Let {(x*,s¥)} be a sequence generated by Algorithm 3.1. Under our
hypotheses, w, — 0, and consequently s¥ = 0. It remains to study the convergence of
(x*).

For k sufficiently large, we have p, <  as in Lemma 6.1, and then y* = y(x*) €
2 c 2 as in (18). It also follows that (y*) and (x*) have the same limit points.

By Lemma 6.4, there exists A > 0 such that under the conditions of the main
theorem, (21) defines a descent algorithm with perturbations for the barrier function
in the optimal face. The perturbations are 7, == O( ), which satisfy T}, lIn*ll < =
as a consequence of the R-linear convergence of (). The sequence (y*) is compact
because it is in ¢l 22 € 2 by (19).

Hence we can apply Lemma 4.3. The analytic center of the primal optimal face x*
is the unique stationary point of the barrier function p(:). We conclude that under
the hypotheses of the main theorem, either Ij.,8;y, = +% and y* —x*, or
Tiwo Oy, < + and (y*) converges to a point ¥ € 2, possibly X # x*. Since (y¥)
and (x*) have the same limit points, this completes the proof.

Concluding remarks. We essentially proved that algorithms that either operate in
Fhe neighborhood .#, or use moderate centering, generate convergent sequences of
iterates.

In all cases, centering results in directions of descent for the barrier function in the

optimal face. Note that the primal-dual direction results in a centering direction in 2
that generally differs from the Newton centering direction by an amount determined
by the vector w. As a result, one can only expect linear convergence of the iterates,
even when they converge to the central optimum. :
: .If the convergence is fast, i.c., the series of centering steplengths is bounded, then
It Is expected that x* — ¥ # x*, due to Lemma 4.2. Even if the series is unbounded
but 6,7y, becomes very small, one should expect a slow convergence of the iterates to
the cent_ral optimum, while the gap converges to zero very fast.

Algonthms,. that generate nonconvergent sequences of iterates must be methods
Ehat operate in large neighborhoods of the central path, and take medium sized steps
l'[?;;’kb::o\indt:d ﬁ:imfay from zero in some subsequence). This includes algorithms that
el xgr efficient in praf:tlce (see Gonzaga 1991), such as predictor-corrector

gorithms based on other neighborhoods of the central path.
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