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Analysis and control of a non-linear
parabolic unstable system

Joseph Frédéric BONNANS
INRIA, Domaine de Voluceau, BP 105, Rocquencourt, 78153 Le Chesnay-Cedex, France

This paper is concerned with a non-linear evolutive system of diffusion-reaction type. This system may, for finite values of the
control, blow up in a finite time; consequently, classical methods based on a priori estimates on the solution do not seem well
suited. We restrict the study to the strong solutions, and show that the implicit function theorem can be applied. If, in addition,
the solution has to belong to some L#-space, the problem can be treated in a similar manner by choosing some new spaces which
are maximal in some sense. Previous results allow us to express the optimality conditions of control problems associated with the
system. If the criterion includes a state cost in an L norm, this implies the use of abstract duality products; these may be viewed
as an extension by continuity of integrals.

T. Setting of the problem

Let £ be a bounded open set of R?, with C* boundary I'. Let T be a strictly positive real number
and denote:

Q=0x)0,T[; X=rx]o,T].

Consider the system:

L A

57 Ay—y’=finQ,

ay .

oy uonl, (1.1)

y(x,0)=h(x), ae. xen.

Because we are interested in strong solutions of (1.1) we impose that y belongs to H>'(Q) (for the
definition of such spaces see [10]). We shall see that this implies that (f, u, k) belongs to U =
LXQ) x H"(3) x H'({2). Then the existence of solutions for time t near 0 can easily be deduced from
results of Ishii [S]. On the other hand, it is known that the non-linear term may cause a blowing up of
the solution of (1.1) in a finite time [2, 8]: this means that there exists some 7 0 such that (1.1) has a
solution for 1 € [0, ¢] and that y(¢) is unbounded as approaches 7. Consequently, the usual method of
studying parabolic equations, based on a priori estimates on the solution, does not work. We show how
the use of the implicit function theorem allows us to obtain the following results:

(1) If (1.1) has a solution for (fy, up, hy) € U, this solution is unique and, in a neighbourhood of
(fo, uo, ho) in U, (L.1) has a unique solution which depends in a smooth way on (f, u, h).
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(2) If we impose the regularity condition y € L*(Q), with o € [2, + =], the preceding result still holds
; if, when a > 10, we choose some new function spaces for y and (f, u, h).
‘ (3) With these results it is possible to express the gradient of some criteria and to deduce the
optimality conditions of control problems associated with equation €1.1).

2. Analysis of the state equation
We analyse equation (1.1) with the a priori restriction that y € H*(Q). The trace theorems (Lions

and Magenes [10, vol. 2, p. 10]) and (1.1) imply that u € H'%(3) and h € H'(€2). In addition (Lions
[9]). if the space dimension n is such that n < 3, for any A =1 the following relation holds:

Wl (O) “ESL,;(O) .

with
i;%—g,ni-§>u, (2.1)
o) g =+=,  if not.

For A =2, noticing that W>'2(Q) = H>(Q), we get:

‘;p,l(Q)"'&ij(o) _ 22) ;

‘ Consequently, if y € HZ-’(O), dy/dt— Ay = y?is in L¥Q), and so by (1.1) f is in L*Q). To sum up,
' (fw h)is in U = LY Q)x H"¥(3)x H'({2). Endowed with the norm ‘

| ICF, w Mo = (|§f||%2c01 o+ |I“|Fliﬂ-"2-“4(z) + Hh”%ﬂuz))m )
U is an Hilbert space. Define: i
i O ={(f, u, h) € U such that (1.1) has (at least) a solution in H2(Q)}. !

| We recall the implicit function theorem, which will be used in the sequel (see, for instance. Cartan [3)).

Theorem 2.1. Let A, B and C be three Banach spaces and ¢ a continuously differentiable mapping from
AX B onto C. Let (ay, b)) € A X B such that

(ﬁ(ﬂ[l. bn) =0 inC.

Then. if (¢ da) (ay, by) is an isom orphism from A onto C, there exists a neighbourhood % of by in B and a
continuously differentiable mapping g from & onto A such that g(bo) = ay and

d(g(b).b)=0, YBe®. O f

Then: ;
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Theorem 2.2. U'is an open, convex, non-empty subset of U. The mapping from O onto H*'(Q), associating
1o (f, u, h) the solution of (1.1) is univocal and C'. []

We first state and prove a lemma, then prove the theorem.

Lemma 2.1. For any q € L*(0, T, LX42)) and (f. u, h) € U, the equation

dz . o
a Az+gz=fin Q,

0z ‘

= h

Gn uon, (2.3)

z(x, 0y = h(x), a.e. xE {2,

has a unique solution in H*'(Q). [

Proof of Lemma 2.1. For the sake of simplicity we denote by || and (-, -) the norm and scalar product
of L*(f2), and C, some positive constants, We multiply the first equation (2.3) by z and integrate on 2 at
a given ( € [0, T]. After integration by parts, we get

£
i

a7 0P 2 J (5 n) ax=- [ ats 06ex, oy ax

+ f il D2ty Bidy+ j £t B)2(5 D dx.

r

We notice that 1 = 3+ {+3; then, using Holder’s inequality:

=llg(-, Olezallz (-, O esanllz( -, Ol 2y

I f q(x, t)(z(x, £)y* dx

< lglle=o.rzanlz(- . Ollesallz(- » Ol -

The Sobolev imbedding theorems [1] imply that H'(1) E Lo{2), so that for some C, >0 depending on

gl =, T.LY(0y):
; 2 -y 5 Cl 2
q(x, )(z(x, )Y dx| = 4lz(-, Dl + ‘2'|Z(' B
0

We deduce that

“1d e 2
sqz 120 DF+ f (f (x, f)) dx < yllz(-, 3@
- =1p [
(..‘] |3 = ¥ | | 1 |
5 120 0P+ ClluC- OlfnllzC Ollseay + [2(, D) IFC, 1)

<allz(-, D+ Cilz(-, P + Cillu( -, ez +3lFC L OP,

_

4
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so that, with

- 3 aw 2 _
Wl = > j (_ax- (x, t)) dx +|wf?, |
i=1 i -

b

and by multiplying the preceding inequality by 2, we get:

d PR 9z T 2 T 2
C_If |Z( " lr)| T E (gl_ (x! t‘)) dx = ("5 Z( s I[)| + Cﬁ””’( T !)”I}(ﬂ) ! |f( T t)| #
i=1 0 ¥

From Gronwall’s inequality we deduce the unicity of the solution of (2.3) and get a priori estimates of z
in L0, T, L3(2)) N L0, T, H'(£2)). To deduce an estimate of gz in L*Q), we notice that

T
ozl = [ laC:, 02, oy .
]
L2
Using Hélder’s inequality with 3= }+} we get:
i
& T ?

lazlizer= [ laC:, Misllz(-. s de,

0

<llq |Ei%.°°(0. T tyayl|Z |Jiz(o, T, L5(02)) 5

=S SN

Then we write (2.3) as:

9z e .

—a—ﬂz—f qz in Q,

0z _

o, - HonX, (2.4)

z2(x,0)= h(x), ae. xE.

Since we obtained an estimate of gz in L*(0), the right-hand side of (2.4) is estimated in U. Then,
. considering z as a solution of (2.4) with a given right-hand side, we deduce from [10] an a priori
. estimate of z in H>'(Q).
' We now prove the existence of a solution by considering

gn(x, 1) = inf(N, sup(—=N, q(x, 1)) .

Obviously, gy = g in L*(0, T, L*(2)) as N = +. Since gn € L*(Q), it is known that equation (2.3), with
qn instead of g, has a solution z. But we estimated zy in H?*!(0Q) independently of N. So zx has at least
one weak limit point z in H*'(Q). Passing to the limit in the equation we deduce that z is the solution
of 23). O
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Proof of Theorem 2.2. The set € is the range of H*(Q) through the mapping:
H*(Q)- U,

o (Y s WY
y (3: Ay Yoo g ¥ ,0))-

Because of (2.2) and the trace theorems [9], this mapping is continuous, Hence, € is connex and
non-empty. Let us prove the unicity of the solution of (L.1). Let y and z be two solutions. Their
difference, w = y — 2, is the solution of:

(:':‘ Aw=(y*tyz+2)w=0 in Q,
aw :
= 0on X, o

w(x,0)=0, ae xen.

Since H*'(Q) = L0, T, L%(02)) (see [10]) the function g=y*+yz+2z*is in L0, T, L(£2)). Then
Lemma 2.1 implies that the unique solution of (2.5) is w = 0. This means that the solution of (2.1) is
unique.

To prove that € is an open set and that y depends in a smooth way on (f, u, k) we apply the implicit
function theorem to

FiHY @) x U= U,

d dy
ot )= (G = dy =y~ P 5,00~ 1)

It is clear that F is C!. The operator dF/dy is defined by:

aF ) i
o »):H*(Q)» U,

az a9z )
&—>(3I—Jz 3yz,an.z( ,U))‘

As before, we see that y? € L0, T, L£°(02)) so that Lemma 2.1 mplics that (aF/dy)(y) is an isomorphism
from H*'(Q) onto U. This allows us to use the implicit function theorem which gives the result. []

We now take into account a constraint on the state of type y € L“(0), a € [2, +]. Because of (2.2)
the constraint is automatically satisfied if @ =< 10, To deal with the case & > 10, we use some new spaces,

For y, a natural space is Y, = H>(Q) N L*(Q). When endowed with the norm

s Ylve = Iylleeoy + ¥l ,

it is easily checked that Y, is a Banach space: a Cauchy sequence {y,} in Y, converges toward some y in
H*'(Q) and some z in L*(Q). But the convergence in L=(Q) implies the convergence a.e. on Q, hence
y=zand y,»vyin Y,

In order to define a new space for (f. u, h), let us call z = z(f, u, h) the solution of the linear equation
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az e
E—Az—fm &,

Lo uonlX, (2.6)
on

2(x, )= h(x) p.p. xEN.

: ' If (f, u. h) € U, then (2.6) has a unique solution z in H*'(Q). Define:

U, ={(f. u, h) € U such that z(f, u, h) € L*(Q)}.
Because (2.6) is linear, U, is a vector space; we endow it with the norm:

||(f'l U, h)ﬂf_-'-ﬂ - ||(f! u, h)]?u + ||!2(f- u, k)HL“(Q] J
Then, as for Y, it can be checked that U, is a Banach space. An interesting particular case is when
fELMNQ), 2= <+=, u=0 and h =0. Then, from the results in [10], z(f,0,0) is in W2'(Q). With
(2.1) we see that z is in Y, if l/a = (1/A)— (2/5), so that

fE L0 (£.0,0)e U,, Va€]10,+x], 2.7)

®Relation (2.7) allows us to prove the following lemma:

Lemma 2.2. Let (f,u, h) be in 0, i.e. (1.1) has a solution y in H>(Q). Then for any a € ]10, +=):

ye L (Qyezif.wh)el(Q). O

Proof. The function w = y — z is the solution of:

ow e

5 Aw = y*in Q,
d

¥ _—0on3,

dn

w(x,0)=0, ae x€8.

By (2.2) y? is in L'¥Q). Because of (2.7) this implies that w is in L*(Q). This proves the lemma. []

Remark 2.1. Lemma 2.2 shows that U, is a ‘good structure’ for (f, u, h). The idea to consider only the
linear part of the system equation to define a convenient space is from Lions (8], where it is applied to
some other systems. Note that once we state that y € H*(Q) and (f, u, h)€ U, the space U, is the
largest space for (f, u, h), and hence is optimal in this way. [

Define:
Ce = {(f,u, h) € U,; (1.1) has a solution in Y,}.

Here is the analogue of Theorem 2.2.

Theorem 2.3. (, is an open, connex, non-empty subset of U,. The application from 0, onto Y,, associating
1o (f, u, h) the solution of (1.1), is univalued and C'. O
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Proof. The set @, is convex and non-empty because it is the range in U, of the continuous application:
Y, =L,

yﬂ(%); dy—.v"-%| y(',U))-
Let us check that the range of this mapping is in U,. Since y 1s in Y,, the definition of U, implies that
(dy/dt — Ay, dy/an, y(-,0)) is in U,. On the other hand, Y, C H>(Q), so by (2.2) y*€ L'"(Q) and so,
by (2.7), (=y%,0,0) is in U,. So the sum of these two terms is also in U,. The continuity of the
application can be checked by similar arguments.

The unicity of y is a consequence of Theorem 2.2, We prove that €, is open and that (f, u, h)—y is
C" with the implicit function theorem applied to

F:Y,. xU,-U,,

7 Y
Oufotom)> (G = 2y =y~ 2 y(-, 00~ 1),

It is easily checked that F is C'. Lemma 2.1 says that the linear equation (3F/ay)(y)z = (f. 4, h) has a
unique solution z in H>(Q). But we can write z as Z1+ z,, solution of:

- 621 o
E Az, =fin Q,

az

an
zi(x,0)= h(x), ae.x€n,

'=uon3,

and
9% hzi=3% i Q
(}: 2 s y 1
a 3
,"Z— =0on 3
an

2(x,0)=0, ae.xen.

Since (f. u, h) and, by (2.7), 3y*2,0,0) are in U,, z; and z, are in Y. and so is z. The result follows. []

3. Application to optimal control problems

We now consider (f, u, h) as control parameters and apply the preceding results to the study of some
open-loop optimal control problems. Let « be in [2, +o0 and

%J' Iy(f, 1w, h)— yal* dx dt, if (f, u, nedao,,

J(fuh)=1% 5

+oe | if not ;




. ; ; : o s Bl s GV
©2007 INIST CNRS . Tous droits de propricté intellectuelle réservés. Reproduction; représentation et diffusion interdites. Loi du 01/07/92. Articles 5,6 et 7 des

256 J.E. Bonnans | Non-linear parabolic system

in this expression y(f, u, h) is the solution of (L.1), yq is an element of L°(Q) and 6, = € if o € [2, 10].
We now compute the gradient of J, and first study the case o = 10,

Proposition 3.1. If « €[2,10] the mapping (f, u, k)= J(f, u, h) is of class C* from © onto K. There exists
an adjoint state p € W'=Y solution of:

_9p _
at

P _ ;
= =0on%, (.1)

px, T)=0, aexef,

Ap =3y’ p =y = ya|* Ay - ya) in O,

such that

W uh), (60, 8 o= f px, De(x, 1) dx dt + (ps, v)s
(o]
- [ pe 030y v, (3.2)
o

where pis is the trace of p on 3 and (P, *)s is the extension by continuity in H'2V(3) of the linear
mapping v [ s psv d3, defined on a dense subset of HY%3N

Proof. J is C' as being the composition of two mappings of class ;

(f. u, h)—+y—->(~1;f ly — yal* dx dt,
o

and

T, ), (e v @) ww = J 1 = al*H - ya)z dx dr,
o]

where z € H*!(Q) is the solution of the linearized state equation:

%—Az—ByZZ-—-einQ,

dz

— =y B 3.3
gn-vonX, (3.3)

z2(x, ) =g(x), ae x€n.

Because the space L¥(Q) is being identified to its dual, U" is identical to L3(Q)x HY-W8EY x HY(2Y,
and hence J'(f, u, h)=(p, g, r), elements of the preceding spaces. With (3.3) we get:

a a
j p(é%— 4z — 3y22) dx dt + (q, (3%) ‘+ (J”, Z(' p’ Z))Hl(m-ul(m
2 2

= f V= yal*(y-y)zdxdt, Vze H*(Q). (3.4)
o
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In (3.4), (-, )s means the duality product between HY2U%(3) and its dual. We now interpret (3.4). Put

F=1y=ya" %y - ya)+ 3y%.
We easily check that f is, at least, in L™(Q) (p being in LY(Q)) and
dz i iy oy
j p( 5 Az) dx dt = J‘ fz dx dr, (3.5)
0 0
for any z in

L= {ZE H>(Q); 2—250 on XY and z(-,O)E(l}.

Consider f as given. Then (3-5) defines p in a unique way. This is because for any e € L*(Q), there
exists z = z(e) € H*(Q), the solution of:

dz .,
ar—dz-em().
d ;

i —z=00n2.
an

z(-,0)=0, ae. xen.
As z € H*(Q) C L'%(Q), the application L: e - J'o fz(e) dx dt is linear continuous from L* Q) onto R.
Then (3.5) is equivalent to:

j plx. Ne(x, )dx dr= L(e), Vee L}Q).

Q

L*(O) being identified to its dual, this cquation admits a unique solution in L*(Q). Now consider p. the
solution of;

ap e

i Ap=fin Q,

ap — -
T o 3‘

o = on 3, (3.6)

px, T)=0, ae xe(2.

As f € L'(Q), equation (3.6) has a unique solution p in W2L09(Q) (see [11]); hence, by (2.1), p is also
in L*(Q). Multiplying the first equation (3.6) by z € Y and integrating by parts, we check that p is the
solution of (3.5) and so p = p. From (3.6) and the definition of f we deduce that p is the solution of (3.1).

Let us show that p isin W2E-1(Q) Since y is in L(Q) and pisin LX(Q), y*p is in L'7(Q). On the
other hand, |y — yu[*2(y - y,) is in L%*"(Q); hence, fis in LA(Q) with 8 = inf(aja — 1, 10/7). Since p is
the solution of (3.6), p is in W21#(Q). We get the result if e/ — 1 = 10/7. Since a € [2,10], @/ — 1 is in
[10/9, 2], so the case w/a — 1 € [10/7, 2] remains open. In that case the preceding analysis shows that p is
in W2HY7(Q); hence, by (2.1) in L*(Q). Then y?p is in LYQ), and so fis in L**Y(Q). Since p is the
solution of (3.6), it is in W2heia-1((),

P
.
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We now clarify the relations between p, g and r, to obtain (3.2). Put 8 = a/(e —1). Since pe
W2LE(Q), we know [4] that

p(-,0)€ B>=26(0) ; ps € B VRIUBB(()Y
!; i | where B*'(£2) is a Besov space (see [1]) and
B*'(Q) = B**(0, T; LA(Q)) N LA, T; B*#(12)).

Since @ €[2; 10], B is in [10/9, 2]. Since : =2~ 2x {}, p(-,0) is at least in BY>°°(02). Because the first
index of this Besov space is not an integer, it is equal to WS9%() ([1]). We know [1] that:

o

W US199(3) = LA(Q), % = 1

/
3

She

ie. A=6/5 So p(+,0) is in L%(2). Since ge H(2) and n=3, g is in L) too and so
Jap(x, 0)g(x)dx is meaningful. Concerning p;s, we know that it is in LA(X) and so in L'%°(3). Now
suppose that v € H'"*'"(X) N L'%Z). From (3.1) and (3.4), integrating by parts, we obtain:

- J- p(x, Mg (x) dx + j psv dX = {r, &) uvayiran+ (g, U)s .
o Ey

Because this is true for any g € H'(£2), it follows that:

- J plx 0)g(x) dx = (r, &) iy @)
1
and so
o j psvd2 =(q v)y, Yv€HY¥3)N L1Y3),
’ . 2-
|

This is true in particular if v € @(23) which is a dense subset of H V2143, So the continuous mapping
Hl_-"l].-'d(i‘)_) R, s (q‘ IF);_' '

is the extension by continuity to HY>Y4(3) of the mapping v [ypv d3. This proves the pro- |
position, [

Remark 3.1. If a =2, p belongs to H>(Q) and p; € HY¥%(3) so that (ps, v)5 is actually, for any
¥ € H'214(X), equal to [y pe d3. This remains probably true for some values of a greater than 2 to
prove it we would need an extension of (2.1) to spaces W2sN(Q) with 0 <s<1. []

We now extend the results to the case a > 10. Since U, is no longer, like U, a product space, we can
no longer split the gradient into three terms.

Proposition 3.2. If « €110, +=[, the application (f, u, h)=> J(f, u, h) is of class C' from €, onto R. There




'1t';£Z(){J?' INIST CNRS . Tous droits de propri¢t¢ intellectuelle réservés. Reproduction, représentation ct diffusion interdites. Loi du 01/07/92. Adicles 5,6 et 7 des CGV

e

e

.

i

J.F. Bonnans | Non-linear parabolic system 259

exists an adjoint state p € W*'=*"Y(Q), the solution of:

9 . - ;
- g{z— Ap =3y’p =y~ yal* (y —ya) in Q,

i?H—('}on'}.',

B 37
o (3.7)
px, T)=0, ae x&12,

and (J'(f, u, h), (e, v, g))v.u, is the extension by continuity to U, of
f plx, tye(x, t)dx di + fp("y, Hu(y, r)dy dr— J- plx, 0)g(x) dx, (3.8)
o} 3 a

which is defined on a dense subset of U,. []

Proof. J is still C' as the composition of two (! mappings. To get an explicit expression of the gradient,
let us show that (3.7) has a solution for any « € J10, +oof, Let g€ Walale=1((Q) be the solution of:

3 : i
"G A4 =1y =yl Uy -y in ©,

o Oen X,
qx, T)=0, ae x€n.
If p exists, w = p — g is the solution of:

= 67?’ —Aw=3y’w=3y% in Q,
C

aw
% =0 on 2,
w(x, T)=0, ae xc.
Because of (2.1), y? belongs to LY(Q) and q is at least in L*(Q), so that 3y%q is in L¥(Q). Define:
Ya=y—[3y%q|"s(q),

where s(-) is the sign function R =R defined by

-1, ifa<o0,
™ s(a)=1{ ‘0, ita=o,
+1, ifa>0.

It is easily checked that ¥, is in L>(£2) and that

3y*q = |y — yal*(y- ¥4), ae. in Q.

tha‘;-
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.;i Consequently, the equation on w appears as the co-state equation associated with the criterion
! iJoly— g dxde.
By Proposition 3.1, it admits a solution in W254(Q). This proves the existence of p= g+ w, the
solution of (3.7) in W>'“"}(Q). Expressing J as a product of derivatives and using (3.7) we get:

. i
S'(fu h), (e v @)y, = J (— %— Ap - Jyzp)z dx dr,
2 A

z being the solution in Y, of the linearized state equation (3.3). We can choose arbitrarily z in Y,,
J - (e. v, g) being the functions of z through (3.3). We suppose that z € @(Q). From the trace theorems
1 used in the proof of Proposition 3.1, we deduce that p has a trace on 2 (resp. 12 x {0}) which is at least
in LY(Y) (resp. L'(£2)). Integrating by parts, this allows us to write:

J'(f, u, h), (e, v, g v, = f pe dx dr+ I prv dx de— J’ plx, 0)g(x) dx,
o 5 2

wand this is true for any (e, v, g) € U, becoming to the range of P(Q) by the application

dz a2, 9z ]
Z__)(E_‘lz 3yiz, aM,z( ,0))‘

L)

| Since this application is surjective from Y, on U,, and @(Q) is dense in Y,, we deduce that the range of
2(0) is dense in U,. This proves the proposition. [

Remark 3.2. If one of the elements (e, v, g) is regular enough to give a meaning to the corresponding
integral in (3.8), then the gradient of J in the direction (e, v, g) splits into the sum of an integral and an
abstract bilinear form. In the general case we cannot split the gradient because (e, v, g) are related by
the condition z(e, v, g)€ L*(Q). O

We now apply the preceding results to the study of an open-loop control problem. We consider a = 0,
three positive constants Ny, N; and N, and K, a closed convex set in U. Define:

1 N 5 N ; N.
W J‘ |y - yd|cr dx de + 71 ||f|!12tu) + 22 ]|”Hiﬂ"3-1-"‘(2} k 7% ||hl|%1r‘(m .
Q
if (f,u, h)ed,,
+oo if not .

I(f,u, h)=

The control problem is:

minimize I(f, u, h),

(fuh)EK. (3.9)

Our result is:

Theorem 3.1. We suppose a > 10 and
(1) 0, NK =0,
(1)) N;=0,i=1, 2, 3, or K is bounded in U.
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Then (3.9) has at least one solution. Any solution of (3.9) checks the necessary optimality conditions

ay

3 dy—=gi=f _

' in Q, (3.10)
4 o

~ B Ap -3y =y — vy - ya)

‘;"X:u; —,ag-r()(mz',
an dan

y(x,0)= h(x) ; p(x, T)=0, ae xE N,

B i

. and
.
:
:‘%‘ (.)F(f. u, h). (8 _f, b=t 8= }1))(}[;[;" K N] j f(e ) f} dx dt
o
. + No(u, v — u)Hl-"z-“‘*(};) + N3(h,, = h)HI(ﬂ) =), V(e, U, g) EK, . (3.1 1)
\é{f J'(f. u, h) being related to p through Proposition 3.2. []
Remark 3.3. Here is a formulation equivalent to (3.11) using no abstract linear form: V(e, v, g)EK, for
any sequence (€, Un, g8,)— (e, v, g) in U, in such a way that (e, — e, v,— v, g, — g) is ‘smooth’. we get:
lich U (p + Nif)e, — f) dx dr + f (P + Naut)(0y — ) A5
S z
_ - [ (P 0)+ Nah )83 )~ ) dx|=0. O
. 2

Proof of Theorem 3.1. The infimum of I on @, NK is bounded because of (i). Let (f U, hy) be a
minimizing sequence of T on €, N K and ¥» the associated state, Because of (ii) and the definition of [
; we get:

f» is bounded in LY Q),

U, is bounded in H'24(3)

h, is bounded in H(12),

¥ is bounded in L*(Q).

T —

Consequently,
N dya = ot (W)
a: n n H

is bounded in L*Q). We deduce of that an estimate of {y=} in H*'(Q) hence in Y,. So there exists
(f u b, y)in Z = LA(Q)x H'»V4(3) x HY(2)X Y, such that:

(fos Uy By yu)— (f, 4, h, y) in Z.
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Since the inclusion of H>'(Q) into L¥(Q) is compact, y, =y in L*Q), and hence a.e. in Q. From a
lemma of Lions [7, p. 12] we deduce that (y«)— y» in L}(Q). This allows us to pass to the himit in the
state equation. On the other hand, we can consider I as a convex function of (f, u, h, y) in U x Y,, and
hence weakly Ls.c., so that

I(f u, h)=liminf I(f,, u,, h,).

This implies that (f, u, k) is a solution of (3.9).

The necessary optimality conditions, (3.10) and (3.11), are an easy consequence of Proposition
32, [
Remark 3.4. A problem similar to (3.9) has been studied by Lions [9] who obtained the expression for
the necessary optimality conditions in the case o = 10; he uses a penalization-type method and so avoids
analysis of the state equation. [

Remark 3.5. One can find in [2] an application of the same type of methods to other examples of
parabolic systems, and in particular to a (L.1)-type system with a non-linearity in y*? only, associated
“with boundary Neumann conditions in L*(2) and an initial condition in L*(£2). Also considered are a
problem of control by coefficients and a problem of control of a sccond-order hyperbolic system. [

e

4. Conclusion

The analysis of an unstable parabolic equation of diffusion-reaction type, apt to explode in a finite
time, led to the following conclusions: if the system equation admits a solution y on [0, T for a given
value of the parameters, in some neighbourhood of these parameters, the system equation has a unique
solution depending in a smooth way on the parameters. If y is imposed to be in some [” space, the
results are still true if, for p > 10, we choose new spaces for y and the parameters, depending on p.
These spaces are related to the linear part of the equation. The preceding results allow us to study some
control problems associated with the system. []
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