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Abs t rac t  

We consider a nonconvex optimal control problem for a 
semilinear elliptic system with distributed control and 
rather general nonlinearity in the cost and state equa- 
tion. The problem includes punctual constraints in the 
control and the cost. We derive for “almost all” prob- 
lems of this type necessary optimality conditions in qual- 
ified form involving the minimization of some Hamilto- 
nian. These conditions appear as the natural exten- 
sion of Pontryagin’s principle for the optimal control of 
0.D.E.k 

1 Introduction 

In this paper we will state necessary optimality condi- 
tions, analogous to Pontryagin’s principle for the control 
of O.D.E.’s, for the following problem : the state equa- 
tion is 

(1) 
-Ay = f(y(+), U(.)) a.e. z in R,  { y = 0 on dR, 

where R is a bounded open subset of R”, with smooth 
boundary 80. The control U(+) is in some bounded (not 
necessarily closed) subset IC of Iw, a.e. 2 E R, i.e. U E U 
where 

U := {U : R -, K ,  measurable}. 

We also assume that the mapping f : R x R -+ R is 
continuous, fi exists, is non positive and is continuous 
: R x W - + W .  

Under this hypotheses it is not difficult to check that 
the state equation has a unique solution y E Co(R) 
(space of continuous functions on R, null on dR), that 
we will denote y,,. Now given a continuous mapping 
L : W x W -, W, differentiable with respect to the first 
variable with L&(y, U) continuous : W x R -+ Iw we define 

For M E W+ we consider the optimal control problem 

(PM) minJ(u) ; U E U ; g(y,,(z)) 5 M on R. 

where g is a C’ mapping. 

Such a problem, but without state constraints, has 
been considered in Bonnans and Casas (1991) who 

stated necessary optimality conditions involving a max- 
imum principle, as in Pontryagin’s principle. In a re- 
cent paper the author 131 obtained an extension of this 
maximum principle including the state constraints, for 
almost all values of the parameter M. However the o p  
timality conditions there are obtained in an unqualified 
form. This is due to the technique of quadratic penal- 
ization, in which it is difficult to give an estimate of the 
multiplier associated to the state constraint. Hence a 
normalization procedure is used in [3] when passing to 
the limit, and this gives results that are valid for almost 
all M, but in unqualified form. We will obtain qualified 
results by using exact penalization (this being valid for 
almost all M) and approximating the exact penalized 
problem by a smooth approximating. 

Our motivation is purely theoretical and not related 
to any real-world problem. The interest of the result 
presented here is that it gives a different view on Pon- 
tryagin’s principle. Indeed in the control system there 
is no idea of causality and the dimension is more than 
one ; however, our way of proving the maximum princi- 
ple appears to be at the same time general and simple. 
Indeed (although some regularization processes have to 
be dealt with, checking at each time the stability of the 
infimal cost, in order to be able to apply Ekeland’s prin- 
ciple ; also one has to obtain some estimates on the data 
of the optimality system of the regularized problem in 
order to be able to pass to the limit) there is no compli- 
cated argument in the proof and the main tools are exact 
penalization, Ekeland’s principle, and some elementary 
estimates on La norms. Hence, even in the case of the 
control of ordinary differential equations our proof may 
be an alternative to more complicated arguments. 

We briefly compare our results to the existing litter- 
ature. First order optimality conditions for a nonlin- 
ear state equation are obtained in Bonnans and Cas= 
[l]. The case of ill-posed systems (fi nonmonotone) but 
with a control entering linearly in the state equation and 
quadratically in the cost in dealt with in Bonnans and 
Casas [2]. A problem with a finite number of state con- 
straints is considered in Raitum [8]. For optimal control 
of a variational inequality without state constraints, a 
maximum principle is obtained in Bonnans and Tiba [5] 
(see also Tiba [9]). 

2 Statement of the main result 

We start by some preliminaries. Let M ( Q )  be the 
dual of Co(R) (space of bounded measures). 
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The boundary condition implies inf(PM) = $00 when 
M < 0. As inf(PM) \ when A4 /, let A? be the small- 
est number such that inf Pfi < 00, i.e. Pfi is feasible. 
Our hypotheses imply i n f ( P ~ )  > -a for a.11 M 2 it?. 

We will say that ( P M )  has a stable cost at A4 = M O ,  
if for some r > 0 

inf PM, 2 inf P M  - rjM' - MI + o(M' - MO). 

As inf PM is monotonous, Arl 4 inf PA, is differentiable 
a.e. 
M > it?, hence ( P M )  has a. stable cost a.e. A4 2 A?. 

to the control problem : 
By H(y, U, p )  we denote the Ha.miltonian associated 

Theorem 1 If ( P M )  has a stable cost for some Ad 2 
A?, for  all solution U of ( P M ) ,  den.oting 3 = yc, there 
exist x E M(R), p E w,"~((R) f o r  all s < 12 such 
that 

n - 1 '  

Reinark 1 Actually equation ( 4 )  uniquely defines 1, in 
w,',~(R) for s < R 

n.- 1 '  

3 Exact Deiializatioii aiid reeularizatioii 

We establish the link bet.ween stability of the cost 
and exact pena.lization. This kind of argument, due t.0 
Clarke [GI, essentially derives from the perturbation the- 
ory presented in connection with dualit,y theory. 
Proposition 1 If (PM) zs siable, i.e. for some 1% > 0 
( ~ n  d 
IM' - MI I E we have 

i s  such that 21 as a solution of 

Proof  Relation ( 5 )  says that M' + inf P M i  + rlM' - 
MI has a minimum at M ,  in [A4 - E ,  M + E ]  i.e. 

inf P M  = inf{inf P M J  + rlM' - MI,  M' E [M - e , M  + E ] } ,  

= inf{J(u) + rlM' - M (  ; U E U ; g(y,) I M' ; 
M' E [ M  - E ,  M + E ] } .  

Minimizing first with respect to M' for fixed U E U 
we find 

inf P M  = inf{J(u) + rll(g(yu) - M)+llm ; U E U, 
g(Yu) I M + E } ,  

= inf{J,(u) ; U E U ,  g(yu) < M+&}.O 

Proposition 1 reduces the proof of Theorem 1 to  the 
derivation of optimality conditions for the problem 

As the state constraint above is not binding at U is 
essentially reduces to the study of a problem without 
state constraint. Pick U solution of P, and define the 
dista.nce for U .  w in U as 

d(u ,  v) := m e s  {x E R ; U(.)  # v ( x ) } .  

As Ii' is bounded, ( U , d )  is a complete metric space. 
Define now for a. > 0 

U, := {w E U ; d(U,  w) 5 a}. 

For a > 0 small enough we have g(yu) 5 M + E for all 
U E U, hence ii is a local solution of 

ininJ,(u) ; u E U,. (Qp 1 
We now define for q > 1 and E > 0 the following costs 
and control problems : 

Jr ,q(u)  := J ( U )  + rJJ(g(Yu(Z)) - M)+IIqi 

Jr ,q , s (U)  := J ( u )  + T [ E  + jn[(S(Y,(")) - M)+]Q]"Q,  

inin J r , q ( ~ )  ; U E U ,  (Qr ,q)  

minJr,q,E(u) ; U E U,. (Qr,q,c 1 
Note that Qr,q,c has a differentiable cost. We check the 
continuity of the iiifimal cost through this regularization 
procedure. 

Leiiima 1 For all r > 0 and q > 1 one has 

E L 0  lim{inf Q f , q , E }  = inf Qr,q. 

Proof  As J P , q , E ( ~ )  2 Jr,,(u) we have 
liin inf Qr,q,r 2 inf &r,q.  But from 

inf Qr,q 5 J r , q ( U )  = !&,Jr,q,c(U), for all U E U,, we de- 
- % -  

duce the converse inequality. Cl 
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Lemma 2 For all r > 0 one has 

inf Qr = lim inf Qr,q 
9-00 

Proof From llzllq - 1 1 ~ 1 1 ~  for a given z in Lm(R)we 
deduce that Jr(u)  = lim Jr,q(u), for all U in U,, hence 

inf Qr 1 lim inf{inf Qr,q}. 

q-00 

9-00 

Pick U in U,. The hypotheses made on f give a uni- 
form bound of Ayu in Lm(R), hence {g(yu)} is uni- 
formly Lipschitz with constant C. Let IO be a point 
where yu attains its maximum. Then 

Jr,q(U) 2 Jr(u) - 1.(C + Y ) E ,  

hence inf Qr,q 2 inf Qr - (C + y ) ~ .  This proves the 
converse inequality. 0 

4 ADDroximate oDtimalitv conditions for the 
regularized problem 

Let 8 > 0 be given. From Lemma 1 and 2, if ii is 
solution of (Qr),  then for q > 0 large enough it is a 
8/2-solution of Qr,q. Pick such a q ; for E > 0 small 
enough, U is a &solution of Qr ,q ,E .  This is a smooth 
problem without state constraints. As it is not of the 
form considered in Bonnans a.nd Casas [4] we have to 
extend their result to our case in order to obtain the 
optiinality system. We define the costate equation as 

-AP = fi(Y, U ) P  + q Y ,  U) 
+?[E + Jn[(S(Yu) - M)+lq]'/q-' 
[ M Y U )  - w+lq-'s'(Yu) 

in R, 

p = 0 on dR 

Let U, v be in U, and yu , yu their associated state. We 
need to define an interpolated costate as in [4]. Using 
the mean value theorem we get 0, Y with fi(x),Y (x) in 

U I 

is C' with derivative 

@'(d = [ E + /  n [(s(Yu)-~)+lqll'~-l [(s(Yu)-~)+lg-'s'(Yu) 

we get 3 in {ayu + (1 - a)yu, a E [0,1]} solution of 

@(Yu) = @(Yu) + @'(O)(YU - vu). 

- A P ~ , ~  = f;(i,  v)pU,,, + L$, v) + ~ ( 3 )  in 0, 

Define now pU+ as the solution of 

{ pu,u = 0 011 8R.  

Simple computation as in [4] give the following result. 
Lemma 3 (Hamiltonian formulation of the variation 
of ihe cost) For all u , v  i n  U, 0n.e has 

Jr,q,c(v) = Jr,q,c ( U > +  J,[ H ( y u , v , ~ u , u ) - H ( ~ u , u , ~ u , u ) l .  

Now U - J r , q , c ( ~ )  is continuous for the distance d define 
above and (U,, d )  is a complete metric space. Applying 
Ekeland's principle to the 8-solution ii we deduce 

Proposition 2 There exists uq,< E U ,  with d(ii ,  uq+) 5 
Je and 

Jr,q,c(ug,c) I Jr,q,c(u) + f id(uq,c,u)> VU E ua. 

For 8 < a2 the constraint d(ii,v) 5 Q is not binding at 
'Uq,<. Combining this result with Lemma 3, and consid- 
ering spike perturbations we obtain (with yq,< := yu,,,) 

where 
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5 Proof of the main result  

We have to pass to the limit in the optiinality con- 
ditions of Theorem 2 .  We easily obta.in when 0 \ 0, 
9 /" a, E \ 0, that d(u,,,, 6 )  - 0, Yq,E - Y in 
Co(sZ) and, assuming bounded in M ( Q )  that p q , ,  
is bounded in Wi9'(sZ) for s < n/(n,  - 1) a.nd has f i  solu- 
tion of (4) as weak limit. Also if x is a weak-cc, limit of 
{ A q , , }  in M ( Q ) ,  relation (2) is a simple consequence of 
the definition of Finally (4) can be deduced from 
the corresponding relation in Theorem 2 .  

Hence the only delicate point is to obtain a.n 
estimate of JJX,,,)IM(n) = I I A q , , l l l .  It is suffi- 
cient to deal with the case E = 0. Indeed 
if z := - U)+ then I I X y , E J ) l  5 l lX l l1  wit,li 
X := (snzq)l/q-lz'J-l. Now J J X J J 1  = 11~11:-'J11~11:1: = 
~ ~ ~ ~ ~ ~ q - ~ / ~ ~ z ~ ~ q ) q - l ,  hence we look for a. relation like 

11~11q-1 I C*l141q. 

Apply Holder's inequa.lity : Ilfgll,. 5 llfllpllglld with $ = 
and here f = t , g  = 1 , p  = y , i '  = y - 1 hence 

- -  - 1. - 1. - - 1 We obt.ain 
1' P d q - 1 ) '  

+ 

I lz l lq- l  I mes(Q)* l lzl lo = cq* ~ l - l l ~  

with C, := mes(!2) l /Q.  For y large enough. Cq 5 2, 
hence the desired ineqmlity is oht,ained. 0 
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