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Abstract

We consider a nonconvex optimal control problem for a
semilinear elliptic system with distributed control and
rather general nonlinearity in the cost and state equa-
tion. The problem includes punctual constraints in the
control and the cost. We derive for “almost all” prob-
lems of this type necessary optimality conditions in qual-
ified form involving the minimization of some Hamilto-
nian. These conditions appear as the natural exten-
sion of Pontryagin’s principle for the optimal control of
ODE’s

1 Introduction

In this paper we will state necessary optimality condi-
tions, analogous to Pontryagin’s principle for the control
of O.D.E.’s, for the following problem : the state equa-
tion is

—-Ay = f(y(x),u(z)) ae. zin§, 1
y =0 on 99, )

where § is a bounded open subset of R™, with smooth
boundary 9S2. The control u(z) is in some bounded (not
necessarily closed) subset K of R, a.e. € Q,ie. u€U
where

U := {u: Q@ — K, measurable}.

We also assume that the mapping f : R xR — R is
continuous, f, exists, is non positive and is continuous
:RxR—R.

Under this hypotheses it is not difficult to check that
the state equation has a unique solution y € Cy(2)
(space of continuous functions on £, null on 99), that
we will denote y,. Now given a continuous mapping
L : R x R — R, differentiable with respect to the first
variable with L; (y, u) continuous : Rx R — R we define

1) = [ Lina), u(a)as.
For M € Rt we consider the optimal control problem
minJ(u) ; u €U ; g(yu(z)) < M on Q. (Pm)

where g is a C! mapping.

Such a problem, but without state constraints, has
been considered in Bonnans and Casas (1991) who

CH3076-7/91/0000-1976$01.00 © 1991 |IEEE 1976

stated necessary optimality conditions involving a max-
imum principle, as in Pontryagin’s principle. In a re-
cent paper the author [3] obtained an extension of this
maximum principle including the state constraints, for
almost all values of the parameter M. However the op-
timality conditions there are obtained in an unqualified
form. This is due to the technique of quadratic penal-
ization, in which it is difficult to give an estimate of the
multiplier associated to the state constraint. Hence a
normalization procedure is used in [3] when passing to
the limit, and this gives results that are valid for almost
all M, but in unqualified form. We will obtain qualified
results by using exact penalization (this being valid for
almost all M) and approximating the exact penalized
problem by a smooth approximating. ‘

Our motivation is purely theoretical and not related
to any real-world problem. The interest of the result
presented here is that it gives a different view on Pon-
tryagin’s principle. Indeed in the control system there
is no idea of causality and the dimension is more than
one ; however, our way of proving the maximum princi-
ple appears to be at the same time general and simple.
Indeed (although some regularization processes have to
be dealt with, checking at each time the stability of the
infimal cost, in order to be able to apply Ekeland’s prin-
ciple ; also one has to obtain some estimates on the data
of the optimality system of the regularized problem in
order to be able to pass to the limit) there is no compli-
cated argument in the proof and the main tools are exact
penalization, Ekeland’s principle, and some elementary
estimates on L* norms. Hence, even in the case of the
control of ordinary differential equations our proof may
be an alternative to more complicated arguments.

We briefly compare our results to the existing litter-
ature. First order optimality conditions for a nonlin-
ear state equation are obtained in Bonnans and Casas
[1]. The case of ill-posed systems (f, nonmonotone) but
with a control entering linearly in the state equation and
quadratically in the cost in dealt with in Bonnans and
Casas [2]. A problem with a finite number of state con-
straints is considered in Raitum [8]. For optimal control
of a variational inequality without state constraints, a
maximum principle is obtained in Bonnans and Tiba [5)
(see also Tiba [9)).

2 Statement of the main result

We start by some preliminaries. Let M(Q2) be the
dual of Cy(R2) (space of bounded measures).
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The boundary condition implies inf(Pys) = +o0c when
M < 0. Asinf(Py) \, when M 7, let M be the small-
est number such that inf Py < oo, i.e. Py is feasible.
Our hypotheses imply inf(Ppy) > —oo for all M > M.

We will say that (Pp) has a stable cost at M = My,
if for some r > 0

ianM/ > ianM — 1"MI — Ml + O(M’ - M()).

As inf Pys is monotonous, M — inf Py is differentiable

a.e.

M > M, hence (Py) has a stable cost a.e. M > M.
By H(y,u,p) we denote the Hamiltonian associated

to the control problem :

H(y,u,p) = L(y,u) + pf(y,u).

Theorem 1 If (Pup) has a stable cost for some M >
M, for all solution @ of (Par), denoting § = ya, there

ezist A € M(Q), § € W' (Q) for all s <
that

n
, such
n-—1

/ (z = 9(@))dA < 0 for all z € Co(Q) ; =(z) < M, (2)
(e}

—Ap = f(g(x), w(x))p + Ly (§(z), @(2)) + Ag' (yu(2))

in M(Q),
p=0o0ndQ,
(3)
H(y(z), u(2), p(z)) = min H(y(2), v, p(2)), a.e. on Q.
(4)

Remark 1 Actually equation (4) uniquely defines p in

1,8 n
Wy () for s < T

3  Exact penalization and regularization

We establish the link between stability of the cost
and exact penalization. This kind of argument, due to
Clarke [6], essentially derives from the perturbation the-
ory presented in connection with duality theory.
Proposition 1 If (Pyy) is stable, i.e. for some r > 0
and
IM' — M| < e we have

inf(Ppg:) > inf Ppy — v[M’ — A, (5)
then the so-called exact penalty function
Tr(u) == J(u) + 7{l(9(yu) = M) |loo
is such that 4 is a solution of

min J,(u) ; w € U, g(yu) < M +c. (6)

1977

Proof Relation (5) says that M’ — inf Py +r|M' —
M| has a minimum at M, in [M — e, M + €] ie.

inf Py = inf{inf Pygr + r|M’ — M|, M' € (M — e, M +¢]},

=inf{J(u)+r[M - M|;uel; g(y.) < M ;
M'e[M—¢e,M+el}.

Minimizing first with respect to M’ for fixed v € U
we find

inf Pyy = inf{J (u) + 7]i(9(%) = M)*lwo ; w €U,
9(y) S M + e},
=inf{J.(v); ue U, glys) <M +¢}0

Proposition 1 reduces the proof of Theorem 1 to the
derivation of optimality conditions for the problem

minJ,(u); v €U, g(yu) < M +e¢. (P)

As the state constraint above is not binding at i is
essentially reduces to the study of a problem without
state constraint. Pick u solution of P, and define the
distance for u,v in U as

d(u,v) := mes {z € Q; u(z) # v(z)}.

As K is bounded, (U,d) is a complete metric space.
Define now for o > 0

Uy :={veU; duv) <al}

For a > 0 small enough we have g(yy) < M + ¢ for all
u € Uy hence 1 is a local solution of
min J,(u) ; u € Uq. (@)

We now define for ¢ > 1 and £ > 0 the following costs
and control problems :

Trg(w) = J(u)+ ril(g(pu(z) = M)*|lq,
Iracl) = I+ rle+ [ [otun(a) - MY
min Jy 4(u) ; u € Ug (Qrg)
min Jy ge(u) ; v € Usq. (@rqe)

Note that Q, 4 has a differentiable cost. We check the
continuity of the infimal cost through this regularization
procedure.

Lemma 1 For all7 >0 and ¢ > 1 one has
;li\l,%{inf Qrqe} =inf Q.

Proof As Jrge(u) 2 have

liminf @, 4. > inf Q, ,. But from
) 45 ,

Jrq(u) we

inf Qr g < Jrglu) = !1\1‘1}) Jrq.e(u), for all u € Uy, we de-

duce the converse inequality. O
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Lemma 2 For allr > 0 one has
infQ, = lim infQ,,.
g—00

Proof From ||z|l; — ||z]|o for a given z in L™ ()we
deduce that J,(u) = qlirgo Jr.q(u), for all u in Uy, hence

infQ, > lim inf{inf Q,,}.
g—00

Pick u in U,. The hypotheses made on f give a uni-
form bound of Ay, in L®(§), hence {g(y,)} is uni-
formly Lipschitz with constant C. Let zy be a point
where y, attains its maximum. Then

1= (9(yu(x)) — M)* = li(9(yu(2)) — M)*||co.

For ¢ > 0, define B, := {x € Q; ||z — zo]| < €}. One
has

1/q
o((2) - M)*, > [/B [(g(yum)—M)*r] ,
> mes(B.)"/9(n - Ce)*,
> mes(B,)Y 9~ mes(B.)/1Ck.

The set Q being smooth, there exists a(¢) > 0 such that
mes(B,) > a(e) with a(¢) not depending on u. Also
we may assume that mes(B.) < 1. For ¢ large enough,
a(g)}/1 > 1 — ¢ hence

Ig(y) = MY, > (1-€)n-Ce,

= (1-9)ll(g(vu(2)) = M)*||eo = Ce.

Let v = sup{}|(g(yu(z)) — M)*||lc ; v € U} ; we obtain
forg>goandall uwin U

Jrq() 2 Jo(u) = #(C + 7)e,

hence infQ,, > infQ, — (C + ¥)e. This proves the

converse inequality. 00

4 Approximate optimality conditions for the
regularized problem

Let # > 0 be given. From Lemma 1 and 2, if @ is
solution of (Q,), then for ¢ > 0 large enough it is a
8/2-solution of @, 4. Pick such a ¢ ; for ¢ > 0 small
enough, 4 is a #-solution of Q4. This is a smooth
problem without state constraints. As it is not of the
form considered in Bonnans and Casas [4] we have to
extend their result to our case in order to obtain the
optimality system. We define the costate equation as

-Ap= f;(y’u)p + L/y(y! u)
+rle + [ol(g9(yu) — M)T]9) /et
((9(yu) = M)*]"1g' (yu)

in O

p = 0on Q.

Let u,v be in U, and y,,y, their associated state. We
need to define an interpolated costate as in [4]. Using

the mean value theorem we get ¢, ¥ with ﬁ(z),? (z) in
[yu(z), yu(2)] for all z € Q, such that

f(%,v) F(Yu,v) + £ (3, 0) (%0 — wu)s
L(yy,v) L(yu,v) + L, (¥, v) (30 — v)-

Similarly, as

i

B LIQ) =R, y—[e+ /n (o(g) — MY*]]s,

is C! with derivative
¥(y) = [e+ /n (9 ()~ M) 19 (g ()~ M)* 19’ (3)

we get § in {ayy + (1 - o)y, a € [0,1}]} solution of
B(yy) = B(yu) + ' (9) (%0 — %u)-
Define now p, , as the solution of

—Bpuy = £3(§,v)pu + Ly (¥,0) + ¥(§) in Q,
Puwy = 0on 9Q.

Simple computation as in [4] give the following result.
Lemma 3 (Hamiltonian formulation of the variation
of the cost) For all u,v in Uy one has

Jf,q,e(”) = Jr,q,s (u)+L[H(yuy"7Pu,u) - H(yu,u,p..,.,)].

Now u — J; 4 .(u) is continuous for the distance d define
above and (U,,d) is a complete metric space. Applying
Ekeland’s principle to the §-solution # we deduce

Proposition 2 There ezists uy . € Uy with d(,uq,) <

\/5 and

Jrgeltige) < Jrge() + VOd(uge,u), Yue€ U,
For 6 < o the constraint d(#,v) < a is not binding at
ug,c. Combining this result with Lemma 3, and consid-
ering spike perturbations we obtain (with y, . = g, )
Theorem 2 One has, when 6 < o :

H(yq,s, Uge,Pge) < uiél;f{ H(yq,e,v,Pq,e)+\/5, a.e. on Q,

with p, . solution of

—Apge = f;,(yq,ty Uge)Pge + Lg(yq,e: Uge)
+/\q,sg,(yq,s) in €,
Pq.e =0 on 09,

where

Ao = rlet / [(9(v0.e)— M) I (g g )~ M)

1978
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5 Proof of the main result

We have to pass to the limit in the optimality con-
ditions of Theorem 2. We easily obtain when 6 | 0,
q / o0, € \, 0, that d(ug.,2) — 0, ¥ — ¥ in
Co(Q) and, assuming {) .} bounded in M(Q) that p, .
is bounded in W}* () for s < n/(n— 1) and has p solu-
tion of (4) as weak limit. Also if X is a weak-co limit of
{Ac} in M(Q), relation (2) is a simple consequence of
the definition of A, .. Finally (4) can be deduced from
the corresponding relation in Theorem 2.

Hence the only delicate point is to obtain an
estimate of ||A,cllm@y = IAgelli. It is suffi-

cient to deal with the case ¢ = 0. Indeed
if z = (yqe — a)t then || Mgl < AL with
A= (fpz)1m1297 0 Now |l = |zl ~ll:li21 =

(l1z]lg=1/11zll4)?~ 2, hence we look for a relation like
llzllg-1 < C"—&Il:“q'

Apply Holder’s inequality : ||fg|l. < [Ifllpllglls with L =
+ % and here f = 2,9 = 1,p = ¢,» = ¢ — 1 hence

[ (D S i
T We obtain

|7
)

1

lellgot < mes(@)TD||2ll, = CF7|Iz]l,

with Cy := mes(Q)/9. For ¢ large enough, C, < 2,
hence the desired inequality is obtained. O
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