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ABSTRACT

We study a quadratic parabolic control problem with pointwise
final state constraints. As the set of admissible states has an
empty interior, the existence of Lagrange multipiiers cannot be
proved directly. We obtain, however some optimality conditions by
expressing the fact that among a space of requiar perturbations of
the optimal control, the null perturbation is optimal. We show that
the qualification hypothesis can be effectively checked in some
examples and that the information given by the optimality counditions
is useful because it allows to get some regularity results for the
optimal control.

1. INTRODUCTION.
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Let V and W be two Banach spaces. We consider the following
abstract convex state constrained control problem

min J(u) »
(1.1)
u e K,‘yu € Zad’

where J(.)} is a smooth convex functional from V into R, u » Yy is
a tinear continucus mapping from V into W, and K, Zad are two

closed convex subsets of V and W. In &rder to apply the rules on
subdifferential calculus of convex analysis [5], 1t is necessary
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334 BONNANS AND CASAS

to choose the function spaces such that Zad has a non-emply
interior. In the contrel problems studied by the authors in {21,
the follewing hypothesis holds :

there exists a Banach space Y < W such that :
(1.2) (i} ¥y« Y, U being the solution of (1.1. )y,

{ii) the restriction of z ad to Y has a non-empty interior

in Y.
Then a natural choice for the control space is :
{1.3) U=sfueV;y, s« L

i.e. the regutarity of the state is taken into account in the
definition of the control space. An extension of the results to
nonlinear systems is also made in ral.

This paper is concerned with the case when there exists no
such space Y such that {1.2) holds. let u be a solution of {1.1)
and ¥y = Ya the associated state. Our idea is to consider a space
Y < W, that does not contain y in general, for which the closed

convex set
_ZG = (Zad - )7) n Y

has a non-empty interior in Y. Then we define U by (1.3) and
consider the new problem :

{min J{u + v),
(1.4)

ve (K-u)nl 3 Yy € Zﬁ“

We knaw that v = 0 is a solution of (1.4) and that Z;, -has 2
non empty interior in Y. Then, if the following hypothesis holds :
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[a}

(1.5) 3V0 e (K=-u}n U ,yvO € Za,
there exists some Lagrange multiplier associated to the constraint
Yy € ZD.Then, coming back to problem {1.1}, we deduce the
existence of a Lagrange multiplier associated to the state
constra1nt_ya € Zad"

This method is simple and its spirit general. However, some
doubts can raise on jts interest, for two reasons. The first is
the possibility of checking the qualification hypothesis (1.5) in
some particular examples. The second is that, because of the
abstract nature of the space U, it is not clear whether the
existence of a multiplier gives any useful information.

In this paper, the method is applied to the control of some
parabolic system and we show that the two difficulties stated
aboved are overcomed. Specifically, we prove that the qualification
hypothesis holds and we use the optimality conditions to deduce
some regularity results on the optimal control, which are not
obvious.

The paper is concerned only with some convex control problems
of Tinear systems. We mention that the ideas of this paper can be
combined with the results obtained by the authors inl 21, in
order to deal with the case of nonlinear systems. However, this
would increase too much the length of this paper.

2. SETTING OF THE MODEL PROBLEM.

Let 2 be an open bounded subset of R {n = 3) with smooth (€™
boundary T. Let T > 0 be given. We denote :

Q =¢x=x10,T[, & =1x=10,TL.
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We consider a system governed by the parabolic equation :

%{(x,t) - Ay(x,t) = u(x,t) a.e. inQ,

(2.1) (¥ (y,t)=0 oniz,

an

y{x,0) = 0 in &,

where u is a function in LZ(Q)h This equation admits (J.L. Lions,
E. Magenes [81) a unique solution Yy in the space :

2

Hz’l(Q) ={y e HI(Q) 3y e 12(0,T,H(2))) .

i 1221(Q) is included inB(L0,T1,HL(2)) the trace of ¥, at

time T is well defined. Let N = 0, y4 < LZ(Q), and K, a non-empty
closed convex subset of LZ(Q), be given ; we consider the problem

min J(u) = g Jq(u{x,t))2 dx dt + % Iﬂ(yu(x,T) - yd(X})%dx,

(2.2)
ue K, yu(x,T) =0, a.e. Xe Q.

A control ug is said admissible if u e K and y, (.,T) is
positive. We give a result of existence of solutions $0r problem

(2.2) :

Theorem 2.1 :
If an admissible control ewists and

(2.3) N> 0 ov K is bownded in L7(Q),
problem (2.2)has a solution ;if N> 0 thie solution is unique, U

This theorem is easily proved by considering a minimizing seguence.

See for instance J.L. Lions [61.
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3. FIRST ORDER OPTIMALITY CONDITIONS.
We first notice that, in general, a solution u of
problem (2.2) has no reason to be in a space of functions
smoother than LZ(Q). In fact, let u; be a positive element of
L2(Q). If N = 0, K > {u} and y, =‘§u1(H,T), then u, is a solution

of (2.2).

The Tinear mapping u ~+ yu(“,T) is continuous from LZ(Q) into

Hl(ﬁ)u However, the set :

{z ¢ HI(Q) ;3 2(x) 20, a.e. xe @},

has an empty interior in Hl(n) iff n > 1, Hence, for n =1, &
gualification hypothesis associated to the usual spaces for U
and y allow to express the optimality conditions. From now on,
we restrict our attention to the case n = 2,3. Then we have no
direct mean to apply the classical rules on subdifferential
calculus {I. Ekeland, R. Temam [51).

We consider the spaces :

fy e Holg) 5 y(..0) =0 ; o) =00nz

-
n

y(.,T) « L ().
U= {ue L2(0)
={uel (Q} ’ Yu € Y}'

Endowed with the norm of the graph, Y and Y are Banach spaces.
We prove that the space U is rather large

Lemma 3.1 :
(i) The space LE(Q) 48 imbedded in U for B » (n+2)/2

(ii) The space U is denge in L2(Q) . 0
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Proof :

Assertion (1) is a consequence of (i) and of the density of !
the imbedding LB(Q) S LE(Q) for f > 2. Hence is it sufficient to |
prove {i). We use some resuits on the heat eguation in LB(Q), |
coliected in J.L. Lions [71, ch. 1. If u « Lg(Q), for ;
B e 11,4=[, equation (2.1) admits a solution Yy in : 'E

W) = 1y e uPe) 5y < LT B )

An element of w2,1;5(q) has a trace at time T in the Besov )|
space 32(1-1/8),8(9)_ The Sobolev imbedding theorem (R.A. Adams
£11) implies that Bz(l_l/SLB(Q) < C(Q) if 8> {n+2)/2, where n is
the space dimension. This proves the lemma. 0

The lemna implies that if K < LB(Q), for some g > {n+2)/2,

then LB(Q) is & convenient space for the control. This includes,
for instance, the case

K= {ue Q) :

u(x,t}] =1 a.e. on Q3.

In order to deal with the general case, we define, given a
solution u of (2.2) :

Zo =1z« L7(R) 5 z(x) 2= y;(x,T) a.e. on g} .

We notice that Zj is a closed convex subset of L (Q) with a
non-empty interjor. Now consider the problem :

min 3{u + v),
(3.1)
ve (K-1u)nl, vl sT) e Zp.

Obviously, u = 0 is a solution of (3.1}. The key point is that
the function space involved in (3.1) a]low us to express the
optimality conditions. We define Z = L (QF.
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Thegrem 3.1 :
We do the following qualification hypothesis :

(3.2) Iy e (K-U)nys y"o e Iy

2 1

Then there ewists D e i , q ¢ L°(0,TLH (), 1 ¢ 2' such that

- -AQ =0 inqQ,
(3.3}

1=
1§
o
E
=~

s q(.,T) =y »T) - yqin Q.

(3.4) <ﬁ’Z>Z'Z‘5 0, ¥z e 7o,

- a !
(35) <p=5% = A'y>U'U = <Uay(“ sT):’Z:Zs Vy e Y,

and :

=0, ¥v e K,

(3.8) J (Nu + g){v - u)dx dt + <p,v-u>,,
e ¥v-u elU. O

Uy

Remark 3.1 :

As in [2], if 4 is internal to K n U in U, the density of the
imbedding U < 12(Q) and (3.6) allow to identify p with an element
of L2(Qy. N

Proof of Theorem 3.1 :
We know that {3.3) has a unique solution g in LZ{O,T,H

Lay).

It is not difficult to see that the linear mapping :

U-+R,

v %~J (Nu + g)v dx dt,
Q

is the G-derivative of the function v + J{u + v) inl at v = 0.
Define L eﬁZiU,Z) by Lv =y (.,T). The qualification hypothesis
{3.2) and the rules on sub-differential c§1cu1us (I. Ekeland,

R. Temam [5]1) imply the existence of i ¢ Z* such that (3.4) holds
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and, as v = 0 is a solution of problem (3.1) :

>0, ¥ e (K-0)nl.

(3.7) Iq(Nﬁ +8)v dx dt + <Ly

let us call p = L. It is easily seen that (3.7) is equivalent
to {3.6). Now, the definition of p implies :

<p,v>UIU = <u,yv(F,T)>, Yv ¢ Y,

As system (2.1) makes an isomorphism between Y and Y, this is
equivalent to (3.5). This proves the theorem. 0

The preceding result may seem difficult to handle because of
the abstract nature of the space U.. However, we will restrict the
information given by (3.3)-{3.6) to someperturbations of the optimal
control in LB(Q), and we will see later that this allows to get some
usable result. We define :

O;Q-Y

an DonzZ} .

V.= 1y« Wol3B0) 5 y(..0)

1L
11

We call M(D) the space of regular bounded additive measures
on {3, which is the dual of C(R). For all 8 > 1, we denote

B' = 8/(8 - 1).

Let q, P» W be such that (3.3)-(36) hold. Then there extsts
50 in LB'(Q) Jfor all 8 > (n+2)/2, vhich coincidee with the
restriction of p to LB(Q) , and such that the restriction 1-10 of
1 o C(Q) satisfies

{3.8) JQZ(X)duO =0, ¥ze Zﬁ’

o.y(x,T)duD s ¥y < ¥p s

(3.9) JQ by(Y - ay)dx dt = J

—
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(3.10) [ (Nu+g+p)(v-wdxdt =0, ¥vek
Q

Proof :

v-tel}). o

As i is the restriction of uto C(R), (3.8) is a direct

consequence of (3.4).

Take B8 > {n+2)/2. As LB(Q) is continuously embedded inU, the

mapping

L3q) + R

v o+ <p,v> .

is a continuous Tinear form on LB(Q)“ As the dual of LB(Q) is
1 - 1
LB {Q), this means that there exists Pg € LB (Q) such that, with

(3.5)(3.6) :

- .3 -
IQ ps(§{ - Ayydx dt = <UO’Y(“’T)>M(Q),C(Q)’ ¥y € YB’

J (Nu + q + BB)(V - Wdx dt = 0, ¥v « K, v-U ¢ LB(Q}“
Q

To get the conclusion, we have to show that all the

B2

L “(Q) < LBl(Q) if 52 > 31, we have

<psV>U|U = (QPBZV = fQ Psle
hence :

IQ(psz - pBl)V =0,

which implies that 562 = 561“

restrictions EB of p are equal to some ﬁo a.e. on Q. But as

8
¥y e L 2(0Q),

¥v ¢« L “(Q),
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We will now show, that the above analysis can be effectively
applied ; i.e., for some special choices of the convex K, the
qualification hypothesis can be checked and the analysis of the
optimality conditions gives some effective resulis,

4, THE CASE OF LOCAL CONSTRAINTS ON THE CONTROL.
We suppose that for some aeR, we have :

{4.1) K=1{ue LZ(Q) ; U= o a.e. on Ql.

Obviously, if o is non negative, the state constraint plays
no role, but it is not so if a < 0. In order to apply Theorem 3.2,
we check the qualification hypothesis {3.2). Let ¢ be a solution
of problem {2.2}.

3 Lemma 4.1 :
w If K is given by (4.1), hypothesis (3.2)holds.

Proof :
We take v = 1 on Q. Obviously v is in (K - u) n U. We have
0 o
yv(“,T) = T. This implies that Yy € Zﬁ and proves the Tefma. ad

3

F

Lemma 4.1 and Theorem 3.2 imply that (3.8)-(3.10) hold in this
case. From {3.10) we deduce the usual complementarity conditions :

Proposition 4.1 :
If (4. ) holds, the following complementarity conditions are
checked

tzo ,Nu+gt+ 50 20
(4.2) a.e on Q.

(NG + 3+ ) (0-a)=0 0

4
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We then deduce, if N > 0, a vegularity result on u which is not
a priori obviocus. Given € 10,70, we define :

QE =0 x]J0,T - e[ .

Theorem 4.1 :
If K > 0 and (4.1) holde, problem (2.2) has a wnique solution

U whose restriction to f)g is in C(GE) nH (Qe)‘ N}

Proof :

The existence and unicity of U is a consequence of Theorem 2.1.
It is a classical trick in optimal control to prove that if N > C,
then (4.2) is equivalent to :

(3 +p,)]1 ae. ont

pe={ ]

U = max [o, -

From (3.9) we deduce that :

ar
=2l
[
1

- = - APO =0 in Q,

Q2
ot

(4.3)
8]

gﬁ—EU on I .
Hence, by the regularizing properties of the heat equation applied
to g and 50, we deduce that - % (q + 50) is 1in C(Qe) n Hl{QE), and
so is U {for the fact that the maximum of two functions in H (QE)
is in H(Q ), see e g. G. Stampacchia [101).

5. CONSTRAINT ON THE NORM OF THE CONTROL IN LZ{Q!.

We define :

B=fuetQ;s jull, <1,
L)

and suppose that
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(5.1) K = B.

¥
H
i
;
.
z

Lemma 5.1 :
dypothesis (5.1) imply that the qualification hypothesis (3.2}
holds. ]

Proof :
If U = 0, the result is obvious. If not, we separate two

cases .

a) If U is non negative, there exists M > 0 such that the set

gy = {{x,t) € Q3 u(x,t) = M}

has a strictly positive measure. For o = 0, define

| a- Mt {x,t) ¢ By
. vu(x,t)=
o if not.

Obviously, u + v, is positive for all o.> 0, and
lu + v_|| <1 if o is less than some o > 0. But :
o L2 Q o
Yisy (.sT) = ol + ¥joy {..T) = aT,
a 0
by the maximum principie. Hence for a < a . v, = (U+vy) - u
- 0
is in (K - u) n U and Yy is in Z7, and so v checks (3.2).
" .

b) If T is not non negative, there exists M > 0 such that :

By = {(%:t) € Q5 u(x,t) < -M}

M

has a strictly positive measure. For o 20 define :
a+ M A (x,t) € 6y,

va(x,t) =
o if not.

e oo Mo N e i s, e Meimmmi b U S N N0 A b




|
|
}
|
J
J
|
|
|
|
|
|
]
y
:-l
|

STATE~-CONSTRAINED CONTROL PROBLEMS 345
For o small enough, v is in (K -1) nlU and :

Yiay (.,T) = Yy (..T) = aT.
o o

Hence, vy checks (3.2) for o small enough. 0
We now prove some regularity results :

Theorem 5.1 :
The muitipiier 50 defined in Theorvem 3.2 is in L2(Q)h |

Theorem 5.1 is a consequence of (3.10) and of the foliowing

Temma :

Fet u be in B and p in Ll(Q) be such that i

A

(5.2) JQ p(v - u)dx dt = 0, ¥v e B, v -uel(Q).

au for some o = 0. 0

1l

Then p e L(Q) and p

Proof :
Let 4 > 0 be given and define :

Gy = (x€Q s [p(x)] = M.
Let v ¢ LZ(Q) be such that :

(5.3) v=u onQ- QM’

(5.4) vl <1
|L2(Q)

Let o > 0 be given and define :

uin Q- QM,

u + max (-o, min{o, v-u}}) in Qy.
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Then, v - U is in L°(Q). When o + =, Ve TV in LZ(Q},

hence ||v, H < 1 for o superior to some 0. Hence
(Q)
[ by - = el w0 a g |
Q Qu g
0 i
But as the integral is in Qy and p}Q is in L (QM) we ¢an pass :
to the Timit when a -+ += ; hence M 3ﬁ
| p(v - u) < 0. |
for any v such that (5.3) (5.4) hold. This remains true when (5.3)
holds and |{vi| = 1. Hence p;, is an out ward normal at u
2 |0 lq f
L7(Q) M M
to the convex set : i
Gy = (v e L5(Q) 5 uvnzg s1-llulfy o5
12(0-0,) |
|
i
?

This implies that for some oy = 0 we have :
p(x) = aMu{x) a.e. on Qy.

Hence, if u =0 onQ, p=0onQ and 1f u # 0 on Q, ay is :
equal to some o = 0 jndependent of M, for M great enough, As '
mes (Q - v QM) = 0, this proves the Temma. fl

M

We deduce from the optimality conditions a reqularity result

for u if N > 0O,

Theorem 5.1 :

If N> 0 and (5.1) kholds, problem (2.2) has a unique solution
T whose vesiriction to & % 10,TLis of class ¢ O
Proof :

The existence and unicity of U is a consequence of Theorem 2.1.

i
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We have for B>(n+2)/2 :

J (Nu + q + f}o)(v-ﬁ)dx dt 2 0, ¥v ¢ B, v-u eLB(Q),
Q

v

hence there exists o = 0 such that :

-au on 0,

=
=1
+
L0
4
=
i}

£
+

Py) on Q.

From (3.3), (4.3) and the regularizing properties of the heat

equation, we deduce the desired result. i
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