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Abstract. This paper deals with the necessary conditions satisfied by the
optimal control of a variational inequality governed by a semilinear operator
of elliptic type and a maximal monotone operator in R x R. A nonclassical
smoothing of B allows us to formulate a perturbed problem for which the
original control is an e-solution. By considering the spike perturbations and
applying Ekeland’s principle we are able to state approximate optimality
conditions in Pontryagin’s form. Then passing to the limit we obtain some
optimality conditions for the original problem, extending those obtained for
semilinear elliptic systems and for variational inequalities.

1. Introduction

In this paper we analyze the necessary conditions satisfied by optimal controls of a
system governed by an operator which is the sum of a semilinear elliptic operator
(the control entering in the nonlinear term) and a maximal monotone operator; i.e.,
the state is a solution of a semilinear variational inequality of elliptic type.

A large part of the literature concerning the control of variational inequalities
is devoted to the case when the maximal monotone operator involved in the state
“equation” is actually the subdifferential of the indicator of a closed convex set;
then the derivation of optimality conditions is close to the problem of derivation of
ap}'oj‘ection onto a convex set and significant results have been obtained in this
direction (see [14] and [11]). However, our study is more related to the studies
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concerned with the case when the monotone operator is only supposed to be local.
We quote the pioneering work of Yvon [20] and Saguez [15], in which regulariza-
tion methods are used, i.e., a perturbed control problem is formulated with the help
of a regularization of the maximal monotone operator, then optimality conditions
are obtained for the solutions of the regularized problem, and finally passing to the
limit some optimality conditions for the original problem are obtained. Such
techniques have been widely extended in a series of papers by Barbu, synthetically
exposed in his book [2], and we quote the work of Barbu and Tiba [3] and Tiba
[19] for a recent development along this line. However, the existence of optimal
controls for the regularized problem imposes strong hypotheses on the data (see
[12] about Pontryagin’s principle in the control of ordinary differential equations).

The novelty of this paper is twofold: we obtain the optimality conditions in
Pontryagin’s form and our hypotheses are not far to be minimal. We essentially
need the state equation to be well posed and assume differentiability of data with
respect to the state. We restrict the study however to the case of an integral cost and
only local constraints on the control.

Our results use those obtained recently by Casas and the first author [4], in
which Pontryagin’s principle is derived, but without the monotone term, and we
again use regularization. However, our hypotheses do not imply the existence of a
solution to the perturbed problem. Rather we use Ekeland’s principle, and for this
purpose we have to prove that the original solution is an e-solution of the
perturbed problem.

This leads us to devise a new kind of approximation, extending the one in [13],
that we call e-uniform approximation for the maximal monotone operators in
R x R. Then the following striking property holds. If u is a control and y, and y:
are the solutions of the original and perturbed state equation, then |y, — yl|,, <e.
As we give a constructive means to obtain smooth ¢-uniform approximations, we
suspect that this property might be useful in numerical computations. However, in
this paper uniform approximations are just used to obtain the stability of the
optimal cost.

The paper is organized as follows. In Section 2 we set the problem, state the
main hypotheses, and prove the well posedness of the state equations. Section 3 is
devoted to g-uniform approximations.

Optimality conditions related to the perturbed problem are obtained in
Section 4 using Ekeland’s principle. Then in Section 5 we come back to the original
problem and analyse the special case when the monotone operator is piecewise
constant. The Appendix contains the proof of the W2 5(Q) regularity of the solution
of a variational inequality.

2. Setting the Problem

Let Q be a bounded open set of R* with Lipschitz boundary I'. We consider the
following control system:

Ay + o(x, y(x), u(x)) + p(¥(x))>0  ae xinQ,
{y =0 onl"

@.1)
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Here A is a differential operator of the form

n

Ay = - Z axi(aii(‘x)ax,-(y(-x)))’

i,j=1
associated to the positive bilinear form: Hy(Q) x Ho(Q) - R

s oy 0z
= (x) — — (x) dx,
ana= ¥ L"”(x) i, () 5, (0
the control uis a.e. in K = R, ¢ is a mapping: Q x R x K — R, and fis a maximal
monotone graph in R x R (see [7] and [2]) such that dom(f) 3 0. The solution y of
(2.1) is called the state. Let L be a mapping: Q x R x K — R. The criterion that we
consider is

I = LL(x, Y00, 4(x)) dx. 22)

Hence the control problem is
min J(y, u) s.t. (2.1) and u(x) e K, a.e.on Q. : (2.3)

We now make some assumptions in order to give a precise meaning to problem
(2.3). Here, for ie N, C; are strictly positive constants and #; are nondecreasing
mappings: R — R*. By M(-) we denote given elements of L5(Q), where s > 2 also
satisfies s > n/2 (hence s = 2 is convenient if n < 3). We assume the following:

a;(-),i,j = 1,n, are continuously differentiable on Q, 24)
Y a(x)¢:& = Cy Z (€)% VxeQ, (2.5)

ij=1 i=1

lo(x, 0, )| < My(x) + Clul, (2.6)

0 < @)%, y, ) < [Mp(x) + CalulIn.(IyD), @7

|L(x, 0, u)] < M3(x) + Cylul, 28)

|Ly(x, y, w)| < [M4(x) + CslulIna(1yD)- 29)

We say that ue LY(Q) is feasible (for problem (2.3)) whenever u(x)e K ae.
and the mapping (%, y) = (¢(x, y, u(x)), L(x, y, u(x))) satisfies the conditions of
Carathéodory, ie., is continuous with respect to y, a.e. xeQ, and is measur-
able as a function of x for all y. These conditions imply that the mapping x —
(@(x, y(x), u(x)), L(x, y(x), u(x))) is measurable when x — y(x) is itself measurable.
Let us define Y = W25(Q) n HL(Q). By Sobolev’s imbedding theorem W25(Q) is
compactly imbedded in C*(Q) (the space of Holderian mappings with modulus )
witht =2 —n/s > 0.

Theorem 2.1. There exists Cg > O such that, for any feasible control u, (2.1) has a
unique solution y =y, in Y and |[y|ly < C&(l + llul L@




302 J. F. Bonnans and D. Tiba

Proof. We may assume that $(0) > 0. First assume that dom(f) = R and that f is
Lipschitz and continuously differentiable. Changing ¢(-, y,u) + B(y) into
o(-, y,u) we may apply the result of [4]. We deduce that (2.1) has a (unique)
solution in H§(Q) n L™(Q). Let us define $(x), j(x) as mappings given by the mean
value theorem:

@55 PO, u(x)y(x) = @(-, y(x), u(x)) — @(-, 0, u(x)),
BFCNy(x) = B(y(x)) — BO) = B(¥(x)),
and we have max(|§(x)|, | (x)]) < | y(x)|a.e. Define

Y(x) = ¢3(-, 9(X), u(x)) + B(F(x)).

Then y(x) satisfies the following linear system:
Ay +y(x)y = —o(-,0,u)  inQ,
{y =0 onT.

From yeL*(Q) (hence § and § bounded) and (2.7) we deduce that
Y(x) e L°(Q). This and (2.6) allow us to apply Lemma 3.2 of [4]; we deduce a bound
of y in L*(Q) independent of . We deduce with (2.6), (2.7) a bound of
Ay + B(y) = — (-, y, w) in LY(Q), hence a bound of y in W*5(Q) (by the results of
the Appendix) independent on S.

When f is a general maximal monotone graphin R x Rt is a standard trick to
approximate it (via Yosida’s approximation and convolution with a smoothing
kernel: see [2]) with a Lipschitzian C! monotone function. Passing to the limit then
is now a well-known process (see [2] again). O

Remark 2.1. In [4] a;; is only assumed to be in L*(Q) (instead of (2.4)).
Hypothesis (2.4) allows us to obtain the additional W? 5(Q) regularity.

3. The Smoothing Process

3.1. The Approximate Operator f,

We present a way of computing approximations of f that have the properties
stated in the introduction. First we state the conditions that should be satisfied by
the approximation, and prove that under these conditions the approximate state is
well defined and is close in the L norm to the solution of the original variational
inequality. Then we give a constructive way to obtain a C*! approx1mat10n that
satisfies these conditions.

We say that, for ¢ > 0, a maximal monotone in R x R graph f, is an ¢-uniform
approximation to f if g, satisfies the following two conditions:

(i) dom(f,) > dom(p). : '
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Here in (3.1(i)) we view f and 8, as multivalued operators extended on R with value
_ o0 on the left of their domain and + co on the right of their domain, and the
inequality for sets means

Eznzv, VeePly+e) nefly) veply—e

To an e-uniform approximation f, we associate the perturbed equation
Ay, + @(x, p(x), u(x)) + B(y)30  inQ
{ya =0 onT.

(3.2)

Theorem 3.1.  Let u be feasible for problem (2.3). Then (3.2) has a unique solution y,
in Y, and ”y.e - y“oo <e

Proof. That (3.2) has a unique solution y, in Yis a consequence of (3.1(ii)) and
Theorem 2. We now prove that y,(x) < y(x) + ¢ on Q (that y(x) < y,(x) + ¢ being
proved in the same way). Define u(y + ¢) as a measurable selection of B,(y + ¢€).
We define (we drop the variable x € Q)

z:=min(0, y + ¢ — y,),

=a(y, z) + f o(, y+e&uzdx + J u(y + &)z dx.
Q Q

Indeed, z is in HY(Q) hence the two first integrals of 6 are well defined. Let us prove
that this is the case for the third one, too. To the product p(y(x) + &)z(x) we give
the value 0 if z(x) = 0. Otherwise y(x) < y(x) + ¢ < y,(x), hence, with (3.1(1)) and
using the monotonicity of f,,

B(y()) < B(y(x) + &) < Bl y(x)), (33)

and, consequently, a.e. on Q, defining
w(y(x) = —(Ay + (-, y, w),
:U‘e(‘y'c(x)) = —(Aye + (P( 5 Veo u))9

we have, using (3.3),

|1 (¥(x) + )z < (IO + | (YLD DI

The right-hand side being in L(Q) and z being in L®, d is well defined. Extracting
from § the original state equation we get

0= L[Ay + o(x, y, u) + p(y)]z dx + j [o(x, y + & u) — o(x, y, w)lz dx
Q

+ L[ug(y + &) — u()]z dx.

The first integral is null and the other two are nonpositive (by the negativity of z,
(2.7), and (3.3)), hence, é < 0. Now subtracting the integral of the product of the
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perturbed state equation by z from J (and noticing that V(y + ¢) = Vy) we get

0= d(y+ & — Ves Z) + J [(P(, y + & U)—‘ (p(s Ves u)]z dx
Q

+ | D+ 9~ 00 d.
Q
By the definition of z and (2.7), (p(-, y + & u) — @(+, y,, w))z and (p(y + &) —
uy.)z, are nonnegative a.e., hence,
0>a(y+¢e—y,z)=az 2).

As z =0 on I', we deduce that z=0 on Q, hence y, < y + ¢ ae., as was to be
proved. O

3.2. Construction of B,

The set of operators satisfying (3.1) is not empty as it contains f itself. However, we
want to obtain a C! approximation f3, in order to obtain a first-order optimality
system on the perturbed system. For this purpose we consider a regularizing kernel,
ie, a C® function p: R— R with support in [0, 1] satisfying p >0 and
j'(l, p(s) ds = 1. We construct approximations in five basic cases, then explain how to
deal with the general case.

Case 1: Dom(f) = R. In this case we simply consider
1
b= [ B+ sorp(o)
o
Obviously B, has all desired properties.

Case 2: B(s)20 on dom(B) = (— 0, 5o]. We take

0 if s<sg,
B.(s) = 4 tan? ;e (s —so) if se[se, S0+ 8,

1%} if s=>s5+e

Then as B, is increasing and B (s) # + co when s 75, +¢, B, is maximal
monotone. Obviously B, is C* and satisfies (3.1).

Case 3: B(s)>0 on dom(B) = [so, +0). Similarly to Case 2 we take

30 if s<sq—ce,

ps) =1 —tan® T (s—s9)  if se(s0— 50,

0 if s> s,
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Case 4: dom(B) = (— 0, s,). Necessarily f(s) # + o0 ass / 5, otherwise f would
not be maximal monotone. Then we approximate f as follows:

fﬂ(s — e0)p(0) do if s<so—¢
0

P 1
Pls): J‘ B(s — e0)p(c) do + tan? % (s—so+& if so—&<5<so,
0

1G] if 5> s,

(34)
This is a well-defined C! and monotone function in (— 00, so) and f,(s) / co when
s 7 So. Hence f, is maximal monotone, and (3.1) is satisfied.
Case 5: dom(p) = (so, +o0). Similarly to Case 4 we define
16 if s<sg,

1
f ﬂ(s+sa)p(a)do—tan2%(s—so—s) if sqg<s<sg+s
4]

Bu(s) =1

1
j B(s + eo)p(o) do if so+e<s.
0

In order to deal with the general case we can take advantage of the easy-to-prove
following property:

sum B:=p* + B and B!, B2 are uniform approximations of §*, f?,

If B! and B? are maximal monotone graphs in R x R as well as their
then B! + B2 is a uniform approximation of . 3.5

Now if  is any maximal monotone graph in R x R, taking s, in the interior of
dom(B) with fi(s,) single-valued (we exclude the trivial case dom(g) = {0})it is easy
to decompose f as B!+ B? with B, f* maximal monotone and dom(B,) =
(=0, 5,1, dom(B,) o [s;, ). If dom(B*) is of the form (~ oo, 5,) we saw in Case 4
how to approximate . If dom(f') is of the form (— o0, 5], then put

| B(s) if s<sg,
| BU9) =1 tim gi(s) i s> o, (3.6)
and
(0 if s<sp,
BUi(s) =4 [0,0) if s=s,, 3.7
16} if s> 5.

Then B = B¢ + B%?; the approximation of B!:“ and B*-® is discussed in Cases 1
and 2. Using the decomposition property (3.7) we obtain the desired approxima-
tion of B, and similarly for B2
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4. Study of the Regularized Problem

4.1.  Stability of the Infimal Cost

We consider the optimization problem when f is approximated by a smooth ¢-
uniform approximation f,:

min J(y, u) s.t. (3.2) and u(x) e K, a.c.on Q. 4.1)

Assuming that K is bounded, we will prove that any solution of the original
problem (2.3) is a suboptimal solution of the perturbed problem (4.1). Then using
Ekeland’s principle we will obtain some necessary optimality conditions.

Theorem 4.1. When ¢ s 0, then the following holds:

(i) For any feasible control u, the solution y:, of the perturbed state equation (2.3)
is well defined and

J(yfia u) = J(yua u) + 0(8)

with |O(e)| < Ce¢, and we may take C, independent of u if K is bounded.
(i) If K is bounded, then |inf (4.1) — inf (2.3)| < C,e.

Proof.  Let u be a feasible control. That y? is well defined has already been proved
in Section 3, and we know that |y — y,|, <e. Using (2.9) we deduce that, for
e<l1,

i ) = Iy W < & L[M4(X) + Cslu (vl + 1) dx,

Le, [J(¥i, w) — J(y,, u)| < C,¢ for some C, > 0. Also if K is bounded, then |ul|,,
and | y,||,, are also bounded. In this case, we may assume that C, does not depend
on u. This proves (i). Taking a sequence u* such that J(3*, u*) - inf (2.3) (resp.
J(¥, u') - inf (4.1)) we obtain inf (4.1) < inf (2.3) + C,é (resp. > inf (2.3) — C,¢).
This proves (ii). [

For any o > 0 we say that a feasible control u is an a-solution of (2.3) (resp.
(4.1)if J(y,, u) < inf(2.3) + o (resp. J(y%, u) < inf (4.1) + a). Then statement (ii) of
Theorem 4.1 implies the following: for any « > 0, any a-solution of (2.3) is an
(o + C5¢)-solution of (4.1).

4.2.  Approximate Optimality Conditions

We first recall Ekeland’s principle, then use it on the regularized problem in order
to derive some optimality conditions (depending on &) for a-solutions of the
original problem.
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Theorem 4.2 (Ekeland’s principle: see [9] and [10]). Let (E,d) be a complete
metric space and let F be a lower semicontinuous mapping: E — R U {+ co} and, for
¢ >0 given, let e E be such that F(¢°) < inf F + ¢*. Then there exists ek

satisfying

F(e') < F(é%),
d(ef, ¢') <,
F(e') < F(e) + e d(e, €), VYeeE.

We define the Hamiltonian
H(X, yv u, p) = L(-xa y7 u) - P(P(xa ya U).

We use Theorem 4.2 with the space and the metric
E={uel®Q);ux)eK, ae xeQ,u feasible for (2.3)},
d(u, v) = mes{x € Q; u(x) # v(x)}.

That d is actually a metric is well known (see [10]). We define the costate
associated to a control u for problem (4.1) as the solution of

A*p* + @+, vo Wp° + BYOD = Ly(s Vi, w) 0 Q,
4.2)
pP=0 onT,

where A* is the formal adjoint operator of A. This linear equation has a unique
“solution in Y (this is a consequence of Theorem 2.1, (2.7), (2.9), and y€ Y).

Theorem 4.3. We assume that K is bounded. Let u be an a-solution of (2.3). Put
o i= o + C,& where C is given by Theorem 4.1. Then for each ¢ > 0 there exists a w’,
at-solution of (4.1), satisfying d(u, u°) < (®)/ and such that, for all v e K, denoting by
¥, p° the state and costate associated to u® for problem (4.1), the following relation is
satisfied:

H(-, ¥, u, p°) < H(-, Y, v, p°) + (a®)Y?, a.e.on Q. 4.3)

Proof. By Theorem 4.1 u is an «-solution of (4.1). We prove that the mappings
u — &, u— J(y2, u) (here y; is the solution of the perturbed state equation (3.2)) are
continuous (E, d) » Y weak and (E, d) > R, respectively. If {u*} is a sequence of
feasible controls and d(u¥, u) — 0, denoting by y* the solution of (3.2), we have that
{J*} is bounded in Y. For some subsequence again denoted {y*} we have y* — y in
Y for some y in Y. Hence y* — y in L*(Q). With (2.6), (2.7), and Lebesgue’s theorem
we deduce that ¢(-, Y%, u*) = @(-, y,u) in L(Q) and B ) = B(y) in L*().
Passing to the limit in (3.2) we deduce that all the sequence { y*} weakly converges
in Y toward )3, ie., u — )% is continuous (E, d) - Y weak. With (2.8), (29), and
Lebesgue’s theorem we deduce that u — J(yg, u) is continuous (E, d) - R.
We are now in position to apply Ekeland’s principle. Using spike perturba-
_ tions (ie,a perturbed control v* equal to u a.e. except on a ball of radius ¢ around a
given x° e Q) and applying Proposition 4.3 of [4] we deduce the result. O
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5. Returning to the Original Problem

Let # be a solution of the original problem (2.3). Put j = y,.

Theorem 5.1. We assume that K is bounded. Let {u*} be given by Theorem 4.3
applied to i (solution of (2.3)). Then when & ~ 0 we have

d(?, 1) 0, 6.0
Y-y in Y weak and L*(Q) strong, (5.2)

and there exists p, limit-point in Hy(Q) weak and L*(Q) weak star of {p°}, and p,
limit-point in H™(Q) weak of B.(y*)p® such that

A*p+ @) WP+ p=Ly(-, 5,8 inQ,
{ W ¥ p=L (5.3)
p=0 onT,
and, for allve K,
H(-,y,4,p) < H(-, y,v, p) a.e. on Q. (5.4)

Proof. We have, by Theorem 4.3, d(w’, 1) < (Ce)'/* - 0; this proves (5.1). By
Theorem 2.1 we deduce that {y*} is bounded hence has a weak limit point y, in ¥,
hence y** — y in L°(Q) for a sequence & — 0. Let Y be the solution of the original
state equation associated to u®. Then, as u — y, is continuous, (E, d) - L®(Q) (see
the proof of Theorem 4.3), we have, using Theorem 3.1,

”.)7 - y“oo < “.17_ yuﬂnoo + ”qu —yanoo -

hence y = y. This proves (5.2).

The boundedness of {y*} and {u°} in L and (2.9) imply that L(-, )%, u°) is
bounded in L¥(Q). This and Lemma 3.2 of [4] imply that {p’} is bounded in
HY(Q) n L™(Q); then BAy)p® = Li(-, Y', u®) — @i(+, ¥, w’)p* — Ap® is bounded in
L(©Q)+ H ()= H Q) (as s > 2).

Let (p, p) be a limit point of {(p°, B,(y*)p°)} in HH(Q) (weak) n L*(Q) (weak) x
H™1(Q) weak. Using (2.7), (2.9), and Lebesgue’s theorem we obtain (5.3). Now
Hy(Q) is compactly embedded in L*(Q); hence p™ — p a.e. on Q. Using (2.7) and
(2.9) we deduce that, for any sequence & — 0,

H( ‘s yEk’ ue"’ Pek) g H( s .)_77 ﬁa p_)
H( ) yEk’ v, pak) g H( s }_}9 U, ﬁ)
As o 0 this allows us to pass to the limit in (4.3). This proves (5.4). O

a.e. on Q.

We now give some illustrations of our result, considering particular cases for p.
Here we get some more properties comparable with those found in [16]-[18]. First
let us assume that f is the maximal monotone extension of a monotone simple
function defined on some real interval. That is, the graph of § is composed only of
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segments parallel to the axes. We denote
D = {reR; ris a discontinuity point of §},
Qo = {xeQ; j(x) ¢ D},
which is an open subset in Q since y is continuous.

Corollary 5.1. Under the above assumptions, the distribution p satisfies
supp p €\ Q.

Proof. We take y € 2(Q) arbitrary with supp Y = Q, and supp ¥ connected such
that

inf dist(§(x), D) > 2¢ > 0.

xesupp ¥
It follows that
inf dist(y*(x), D)= ¢ >0

xesuppy

by the uniform convergence of y* and for ¢ sufficiently small.
Condition (3.1(1)) shows that f*(r) is constant when dist(r, D) > ¢ and ¢ is
small. Then B%(y*(x)) = 0 for x e supp ¥ and ¢ sufficiently small. It yields

$p, ¥ = lim f B*(y)p.¥ dx =0,
e0 JVvQ
which finishes the proof. 0

Remark 5.1. From [1] and our hypothesis it follows that the restriction of p to Q,
isin WZ5(Q,). If the Hamiltonian is a smooth and uniformly convex function of the

loc

control this may give some smoothness results on the control itself. For instance, if
K is a bounded interval of R and

o(x, y, u) = @1(x, y) + u,
L(-, yow) = Ly(+, y) + 3w,

then Pontryagin’s principle can be restated as
u(x) = Projg(p(x)) a.e. on Q,

~ where Projg denotes the projection onto K. In this case the restriction of # to Q, is
in Wk(Q,) and in W in regions of Q, where p(x) is in K.

loc

We now consider a generalization of the obstacle problem corresponding to
given by

0, r>0,
B(V) = ] — 0, 0]5 r= 05 (55)
Qa r<0.

In this special case we are able to refine the result of Theorem 5.1.
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Theorem 5.2. We assume that K is bounded and that (5.5) holds. Then the
conclusion of Theorem 5.1 holds with supp(p) = {xeQ; j(x) =0} and

[Ay + o(-, 7, 4)]pdx =0 a.e. on Q. (5.6)

Proof. We construct B, as follows:

o if s< —¢
B(s) = mnis—%s if se(—e,0),
0 if s>0.

In this case f,(s) is C! and we have
a2 Foo T LIAY _
Bis) = 126 tan % 5= % (Bs(s) + 2% s) on (—g, 0),
0 on [0, o),

hence
FU) 2 5 (B on dom(p) (57

Multiplying (4.2) by p, and integrating over Q we deduce that B.(yOPp® is
bounded in L*(Q), hence, with (5.7), that ¢~ !/ 2B,(y)p* is bounded in L*(Q) and in
particular

B(y)p*~0  in L¥(Q). (5.83)
As Hy(Q) is compactly embedded in L3(Q), p° — p in L*(Q). On the other hand,
B(y*) = Ay* — (-, y%, u®) is bounded in LXQ). As y*—=7 in Y, ¢(-, % u’) -

(-, 3, @) in LY(Q) and as B(5) = Aj — ¢(-, 5, i) we have B(3*) — A(J) in LN(Q).
Hence, as s > 2, f°(y*)p® — B(7)p. This with (5.8) amounts to (5.6). 0

Remark 5.2. This result can be compared with the one on p. 83 of [2] in which ¢
is not present.

Appendix

The following result is stated, but without proof, on p. 17 of [7]. Hence, although it
is well known by specialists of the field we find it convenient to give a proof.

Theorem A.1. The equation 1
{Ay + B f(x)  inQ, |
y=0 onT, %
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where A is a differential operator satisfying (2.4)-(2.5), B is a maximal monotone
graph in R x R with (0)>0, and feL(Q) with s > 2, has a unique solution
ye W*5(Q) n Hy(Q) and there exists C > 0 depending only on Q and A (not on p and

) such that [¥llw2 sy < CILSf s

Proof. (a) A priori estimate. Let us assume that g is Lipschitzian. Define, for o R,
F(o)=| B(o)*~2f(a). Then F(o) is Lipschitzian and F'(¢) = (s — 1)| B(o)IF %' (0)
ae. on R. Also F(y(x)) is in HXQ) and its gradient is F'( y(x))Vy(x) a.e. on Q.
Multiplying the equation by F( y(x)) and integrating by parts we obtain, using the
fact that f(0)20,

“ 0 0
=1 | 8OO0 % af X B gt [ 1peoconr ax
Q i,j=1 i j Q

e

= Lf | By P~ 2B(¥(x)) dx.

From the positivity of the first term and Hélder’s inequality we get

1B L@ < “f“LS(S'!)H Iﬂ(}’)ls_luu’(np (A1)
with 1/s + 1/s' = 1. But using s = (s — 1)s' =1+ s/s’ we get

1/s
B  ov@ = (Llﬁ(y(X)ls dx) = 1B e = 1B Z-

This with (A.1) implies | BV < 1S/ s which in turn implies [|Ay| L@ <
201 f |- Using the classical results of Agmon et al. [1] we get the desired a priori

estimate.
(b) Construction of the solution. To B is associated its Yosida approximate f,

(here ¢ > 0 is a small parameter (see [2])). Now jB, has a Lipschitzian constant 1/¢
and B,(0) = 0. The perturbed equation
{Aye + By ()2 f(x) iInQ
y. =0 onTl,
has by the first part of the proof a solution y, in W#5(Q) such that ||y, llw2 s <
Cll flls- Itis a standard process to pass to the limit in the state equation when
e 0: let y be a weak limit-point in W25(Q) of {y,}, then [yllwz. s < Cllf s
and y is a solution of the state equation. The uniqueness of the solution is a
consequence of the strict monotonicity of the operator. il
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