Mathematical Programming 76 (1996) 95-115

Fast convergence of the simplified largest step path
following algorithm

Clovis C. Gonzaga®*, J. Frédéric Bonnans®

* Department of Mathematics, Federal University of Santa Cararina, Cx. Postal 5210, 88040-970
Floriandpolis, SC, Brazil
b INRIA-Rocquencourt, B.P. 105, 78153 Rocquencourt, France

Received 1 January 1995; revised manuscript received | November 1995

Abstract

Each master iteration of a simplified Newton algorithm for solving a system of equations starts
by computing the Jacobian matrix and then uses this matrix in the computation of p Newton
steps: the first of these steps is exact, and the other are called “simplified”.

In this paper we apply this approach to a large step path following algorithm for monotone
linear complementarity problems. The resulting method generates sequences of objective values
(duality gaps) that converge to zero with Q-order p + 1 in the number of master iterations, and
with a complexity of O(y/nL) iterations.

Keywords: Linear complementarity problem; Primal-dual interior-point algorithm; Convergence of
algorithms; Simplified Newton method

1. Introduction

The monotone horizontal linear complementarity problem is stated as follows' : Find
(x,s) € R?" such that

xs =0,
(P) Ox + Rs = b,
x,5=20

* Corresponding author. Research done while visiting the Delft Technical University, and supported in part
by CAPES - Brazil.
| The notation and the problem will be formally discussed ahead.

0025-5610 Copyright © 1996 The Mathematical Programming Society, Inc.
Published by Elsevier Science B.V.
PII1 S0025-5610(96)00035-4

96 C.C. Gonzaga, J.F. Bonnans/Mathematical Programming 76 (1996) 95-115

where b € R”, and Q, R € R"*" are such that for any u,v € R”,
if Qu+ Rv=0 then u"v > 0.

This problem is a natural extension of linear and convex quadratic programming
problems. If we add to the problem a strict complementarity hypothesis, then most
of the primal-dual interior point algorithms developed for linear programming can be
directly adapted to (P), preserving the same complexity and asymptotic convergence
properties.

Presently the best convergence properties are shown for path following algorithms,
which generate points in a neighborhood of the curve known as central path. The primal-
dual central path was initially described by Megiddo [14], and the first algorithms to
achieve the low complexity of O(y/nL) iterations following this path are due to Kojima
et al: [11] and Monteiro and Adler [20,21].

The evolution of these methods is surveyed in the papers by Gonzaga [5] and by
Kojima et al. [9]. The complexity bound of O(y/nL) iterations seems to be the lowest
obtainable by the existing techniques, and it is common to all methods that follow the
central path using an Euclidean proximity measure. The asymptotic convergence rates
of these methods has been the object of much effort in the last few years, and is also
the object of this paper.

The predictor-corrector algorithm introduced by Mizuno et al. [19] for linear pro-
gramming was the first method for which a high convergence rate was proved. Ye et
al. [29] and independently Mehrotra [15] proved Q-quadratic convergence for this al-
gorithm, when considering the predictor and corrector steps as a single iteration. Ye
and Anstreicher [28] proved the same rate for linear complementarity problems. But
since the method requires two complete Newton steps per iteration, the actual rate of
convergence is \/5, and not quadratic.

This fact motivated a vivid search for an algorithm with genuine quadratic conver-
gence. Ye [27] proposed an algorithm in which the need for corrector steps is less
frequent as the sequence approaches the optimal face, thus achieving sub-quadratic con-
vergence, i.e, convergence of order two but not quadratic. Very recently, Luo and Ye
[12] showed how corrector steps can be restrained to a finite number, thus achieving
genuine quadratic convergence. The same rate was also obtained by Gonzaga [3], for
an algorithm that follows the central path with the largest possible pure Newton steps.

The largest step path following algorithm in a formulation based on the the proximity
measure given by the primal-dual potential function was studied by McShane [13] for
linear programming and for linear complementarity. He proves superlinear convergence
under the hypothesis that the iterate sequence converges. Bonnans and Gonzaga [2]
show that the sequence always converges, thus confirming the superlinear convergence.
This algorithm will be the basis for the present paper, and will be thoroughly discussed
ahead.

An advancement to predictor corrector algorithms that proved very efficient in practice
was proposed by Mehrotra [16]: he computed the corrector step by a simplified Newton
step, based on the Jacobian matrix already factored in the predictor step. Gonzaga and

C.C. Gonzaga, J.F. Bonnans/Mathematical Programming 76 (1996) 95-115 97

Tapia [7] added a safeguard to this algorithm to guarantee the efficiency of the corrector
steps when far from the optimal face, and proved that the quadratic rate of convergence
is preserved.

In [17], Mehrotra describes a version of the predictor-corrector algorithm for linear
programming in which each iteration takes one predictor step followed by r simplified
corrections and a centering step. The algorithm follows the central path in a narrow
neighborhood, and attains a Q-order of convergence of r 4+ 2. No complexity results are
proved.

Similar asymptotic convergence results are obtained by Wright and Zhang [26] for
linear complementarity problems using a different approach, based on a different char-
acterization of proximity to the central path, and allowing infeasible iterates.

In the present paper we apply the simplified Newton approach to the feasible largest
step path following algorithm, and show that it achieves the best possible results that can
be expected from a simplified Newton algorithm with p steps per iteration: a Q-order
of convergence of p+1 (the same as for the methods in the last paragraph), with a
complexity of O(+/nL) iterations, and a single matrix factorization per master iteration.

Conventions. Vectors may be denoted with sub- or superscripts. The scalars y and u
will be denoted only with subscripts. Hence x/ denotes u to the power ;.

Given a vector x,d, the corresponding upper-case symbol denotes as usual the diag-
onal matrix X, D defined by the vector. The symbol e will represent the vector of all
ones, with dimension given by the context.

Given a matrix A, its null space and column range space are denoted respectively
by N(A) and R(A). The projection matrix onto N (A) is P4, and its complement is
Pyi=1—Py4.

We shall denote component-wise operations on vectors by the usual notations for
real numbers. Thus, given two vectors u,v of the same dimension, uv, u/v, etc. will
denote the vectors with components w;v;, u;/v;, etc. This notation is consistent as long
as component-wise operations always have precedence in relation to matrix operations.
Note that uv = Uv and if A is a matrix, then Auv = AUv, but in general Auv * (Au)v.

We shall frequently use the O(-) and €)(-) notation to express the relationship between
functions. Our most common usage will be associated with a sequence {x*} of vectors
and a sequence {u;} of positive real numbers. In this case x* = O(u,) means that there
is a constant K (dependent on problem data) such that for every k € N, ||.r"” < K.
Similarly, if x* > 0, x* = Q(u) means that (x*)~' = O(1/u). Finally, x* ~
means that x¥ = O(u) and x* = Q(uy).

2. The simplified largest step algorithm

Consider the monotone linear complementarity problem (P).
The feasible set for (P) and the set of interior solutions are respectively

98 C.C. Gonzaga, J.F. Bonnans/Mathematical Programming 76 (1996) 95-115

F={(x,s) eR*™|Qx+Rs=b, x,s =0},
Flz{(x,s) e F|x >0, s >0},
We say that respectively x or s is feasible if there exists s or x such that (x,s) € F.

The set of optimal solutions and the set of strictly complementary optimal solutions
are respectively

F={(x,5) € F|xs=0},
P={xn) eFle+s>0}.

Centrality. The centrality measure is a map that associates with each (x,s) € F and
€R, u> 0, the value

XS

o(x,s,u) =||— —el|.

If 6(x,s,u) =0, then (x,s) is the central point associated with the parameter value
K, and the set of such points composes the well-known central path (see for instance
Kojima et al. [9]).

Assumptions. In this paper we study only feasible problems, with the following as-
sumptions:

Assumption 1. F° # (), and initial data (x°,5°) € F°, @y > 0 are given such that
8(x°, 5%, @) <0.5.

Assumption 2. There exists a strictly complementary solution, i.e. F° # 0.

The strict complementarity hypothesis is discussed in Monteiro and Wright [23],
where it is shown to be necessary for obtaining algorithms with fast convergence rates.

With these hypotheses the central path is a well defined differentiable curve, which
ends at a strictly complementary solution (x*, s*).

The set F is a face of the polyhedral feasible set F, and F° is its relative interior.
This face is characterized by a partition {B, N} of the set of indices {1,...,n}, such
that if (x,s) € F° then xy =0, sp = 0, xg > 0, sy > 0. The variables xy, sp are
called small variables, and the variables xp, sy are the large variables. The analytic
center of the optimal face (also called the central optimal solution) is characterized by
xy =0,s5 =0 and

(xp,Sy) = argmin {— Zlogxi — Zlogs,- | (x,5) €]_-0} :
i€B iEN

and it coincides with the end point of the central path (see [9]).

C.C. Gonzaga, J.F. Bonnans/Mathematical Programming 76 (1996) 95-115 99

Notation. The symbol w will be used to denote triplets w = (x, s, &), where (x,s) €
F and g > 0. The notation will be consistent, e.g. w* = (x*,s* uz). We say that
w= (x,s,u) is feasible if (x,5) € F and u € [0, fo].

Our algorithm will work in an Euclidean norm neighborhood of the central path,

defined by
N ={w=(x,5,u) | wis feasible, 6(w) < 0.5}.

If w=(x,s,u) €N, then Monteiro and Tsuchiya [22] show that the large and small
variables satisfy respectively

(xg,sy) =1 and (xy,58) = p. (1)

They also show that the cential path does not approach (x*,s*) tangentially, with the
following result: if (x,,s,) is the central point associated with each x > 0, then

Xy —x*=0(pu) and s, —s"=0(un). (2)

The path following algorithms start each iteration from data w € NV, usually coming
from a former iteration, and then take Newton steps for solving the system below, which
corresponds to the search for a point in the central path:

Xy8; = yue, Ox+ Rs=b,

where ¥y € [0, 1].
A Newton step for solving this system computes a point

X: =X+ u, sii=5+0, (3)

where u,v are obtained by solving a linearization of the system above. The system to
be solved is

Su—+ xv=—xs5+ yue,
Qu+ Rv=0. (4)

A simplified Newton step does this linearization around a point wy, possibly different
from w. The reason for using simplified steps is that the same linearization can be used
in several steps, with great computational savings. The system to be solved is

Sy + xpv = —x5 + yue,

Qu+ Rv=0. (5)
This system can be rewritten as

ssit + x0=—(1 —y) xs + v (—xs + pe),

Qu + Rv=0. (6)
By superposition, we see that

(u,v) = y(uc,vc) + (1 —y) (Ua,va), (7)

100 C.C. Gonzaga, J.F. Bonnans/Mathematical Programming 76 (1996) 95-115

where (u.,v.) is the solution corresponding to ¥ = 1, called the centering step, and
(11, vq) is the solution corresponding to y =0, called the affine-scaling step.
Defining now

We = (Xes Ses tle) = (X + Uey S + Uy 1),
Wa = (Xg, Sas o) = (X + 14,5+ 04,0), (8)
the result of the simplified Newton step will be
wy =YW + (1 —) w,. 9)
Now we present the algorithm, beginning by a formal statement of the simplified

Newton step procedure. This procedure computes the centering and affine-scaling steps
from given w,, w.

Procedure 2.1 (Computation of centering and affine-scaling steps).
Data: w, = (X5, 85, i), W= (x,s,) such that wy,,w € N, p < .
Compute w, and w, as in (8) by solving the system below twice, for y = 0 and
vy=1
Syt + X0 = —X§ + yue,
Qu + Rv=0.

Now we state the main algorithm. Each master iteration begins by computing an exact
Newton step, i.e, by using the procedure above with w, = w, followed by at most p — 1
simplified steps which keep w, constant.

In the beginning of the iteration there is a safeguard (to be extensively commented
below,) which decides whether a centering step should be taken: if this is the case, then
the centering step is accepted and the iteration is restarted.

Algorithm 2.2,
Data: € > 0, w = (x%,5%, @ig) e N, pe N,p > 0.
k=0
repeat (master iteration)
Exact step: Set w := wk, w, := wk and compute w,, w, by Procedure 2.1.
Safeguard: 1f §(0.1w. + 0.9w,) € [0.42,1] then set w := we,w, = w. and
compute w,, w, by Procedure 2.1.
Steplength: Compute y € (0, 1) such that §(yw, + (1 —y)w,) = 0.5, and set
wy i=ywe + (1 — ¥)Wa.
for i :=1 to p — 1 do (simplified steps)
Set w := wy and compute w,,w, by Procedure 2.1.
If 8(w.) = 0.5 then exit loop.
Steplength: Compute y € (0, 1) such that 8(yw, + (1 —y)w,) = 0.5, and
set wy i=ywe + (1 —y)w,.

C.C. Gonzaga, J.F. Bonnans/Mathematical Programming 76 (1996) 95-115 101

end for
whtl o= w,

k=k+1.
until u; < €.

Remarks. Each iteration of the algorithm computes either two or one exact Newton
steps, depending on whether the safeguard is triggered or not, followed by a maximum
of p — 1 simplified steps. The simplified steps do not reset w;, and therefore do not need
to compute a factorization.

In the case p = 1, the algorithm essentially reduces to the largest step path following
algorithm [3]. With p = 1 and no safeguard, it reduces to the algorithm described by
McShane [13].

The safeguard computes the proximity of the point resulting from the Newton step
with y = 0.1. Any smaller fixed number can be used instead of 0.1. If this proximity
is in a narrow interval, then the iteration is restarted from w, i.e, a centralization step
is performed. Note that the safeguard can only be triggered when the step y = 0.1 is
acceptable, which only occurs in the final stages of the algorithm. We will explain below
why it is reasonable to expect that the safeguard will be triggered only a very small
number of times. We shall very soon comment further on the safeguard.

In each inner iteration (simplified step) the centering step is tested. If 8(w.) = 0.5,
then it is inefficient, and cannot be used. In this case the remaining simplified steps are
aborted.

The rest of the paper will be dedicated to proving the following theorem:

Theorem 2.3. Assume that Assumptions 1 and 2 hold, and let L =log,(jxo/€). Then
(i) The algorithm finds a feasible point that satisfies xTs € € in O(+/nL) iterations.
(ii) There exists jn > O depending only on problem data such that the safeguard is

activated at most once whenever p; < fi.

(iii) For all k € N, ppy) = O((ux)”*"), and hence the sequence py converges to 0

with Q-order p + 1.

The analysis will be done by proving the following facts:

e (i) is an immediate consequence of the polynomiality of the short step algorithm,
proved by Kojima et al. [11], since the steplength here is always at least as large as
the one in that reference.

o The safeguard detects the situation in which the Newton step is very efficient
(y < 0.1) but (x,s) is far from the central solution (x*,s*), and corrects this by a
centering step. If this happens for w; small, then the iterates will stay forever near the
central optimum. Consequently, the safeguard will not be activated again.

o If (x*,s%) is near the central optimum, then the exact Newton step is very efficient,
producing y = O(u). If besides this, (x;, ;) — (x,5) =O(u,), then the simplified step
is also efficient, producing ¥ = O(u,). These conditions will be true at all iterations:

102 C.C. Gonzaga, J.F. Bonnans/Mathemarical Programming 76 (1996) 95-115

the first one because of the safeguard; the second one because large steps (steps with
small) have little influence on the large variables.

3. Analysis of the simplified Newton step

In this section we shall use general results about the linear complementarity problem,
fully described in [2]. The notation is greatly simplified if we use the following ob-
servation from that reference: some of the variable pairs (x;,s;) can be permuted for
the analysis of the algorithm, in such a way that x « (xp,s5n5) and s «— (xy,58).
Renaming the variables in this way (and rearranging the matrices in (P)) obviously
does not affect the algorithms, but simplifies the treatment: it is the same as assuming
that N = {, x is the vector of large variables, and s is the vector of small variables. So,
for the rest of the paper we use the following assumption:

Assumption 3. Assume that x is the vector of large variables and s is the vector of
small variables.

Remark. This change of variables can only be done in the analysis: it cannot be used
by algorithms, since B and N are unknown. The Newton steps are obviously not affected
by renaming the variables.

Notation. All entities related to the reference point w, will be indicated by the symbol
‘b’ the entities related to the result of a Newton step will be indicated by ‘f’. We also

define
Yo = M/ Mo
With this permutation, the optimal face is characterized simply by
F={(x,5) €R™|5=0,0x=b,x >0}. (10)

We assume for the remainder of this section that w,,w € N are given, and study the
Newton step from these data. The Newton equations remain unchanged:

Syl + X0 = —Xx§ + yue,

Qu + Rv=0. (11)

Scaled equations. Let us define the scaling vector

d:i = ,(.L-,X;/S;,

and scale the variables by

X=ux/d, it =ufd,, 5=dysy/ D= dyw/ . (12)

C.C. Gonzaga, J.F. Bonnans/Mathematical Programming 76 (1996) 95-115 103

Note that this scaling differs from the usual one by the presence of u, in the expressions.
This makes sense because x and s are now the large and small variables.
This scaling transfers the given x, and s, to the same vector

d, -
& = x,/dy= 22 = [22 (13)
253 M

We define similarly ¢ = /xs/p. The proximity measure is given by

O(x,s,u) = ||¢"" - e”. (14)

Substituting the scaled variables into (11), we obtain

Moyt + 1,0 = — 1, X5 + ype,
QD,it + u,RD"'5=0.

?

Dividing the first equation by w,¢,, we get

i+0=—¢ ' T5+yyd .
QD,ii=—u,RD; '3, (15)

where v, := w/u,.
We note that #'5 > 0 whenever ii, § satisfy the second relation in (15).

Sizes. The following size limitations hold: if w,, w € A/, then

Xzl s u, b =1, d=1;
X =, Sy =y, ¢:z]- d—,ﬂ“-li
] Sy, t=0(y,). (16)

——

That x ~ 1 follows from (1). That ¢ =~ 1 is a consequence of the definition of
N, as ||qa§'l - e|| < 0.5. It follows that s = u¢?/x ~ u, and hence d = Viuux/s = 1.
Similar relations hold for x,, x,, ¢,, d, and ¥. The size of § stems from § = dys/ps =
¥,d,O() /. Finally, from @'o = «"v > 0, we deduce that # and & are of the order of
the right hand side of (15), i.e. of order v,.

Solution of the scaled equations. To derive the most useful properties of the scaled
equations, we shall use Lemma 5.3 of reference [2], which proves the following result:
Consider a system with the format

u+v=f,
Au=g,

with v L N/(A). Then u is the orthogonal projection of f into the affine space given
by Au=g.

104 C.C. Gonzaga, J.F. Bonnans/Mathematical Programming 76 (1996) 95-115
If g = O(), then the lemma proves that
u=Psf+0(u).
If follows that v = f — P4 f + O(u), or
v=Pyf +O0(n).
Now we apply this result to the scaled system (15), for the case in which x is near x,.

Lemma 3.1. Assume that w,w, € N are such that u = y,p, < p», and x—x, = O().
Then the solution of the simplified Newton step (11) gives

;;:y'y,d,P,(ﬁ:l + O(#)v
v=—5+yyud, ' B +O(up,).

Proof. Using the assumption that x = x, + O(u,) and remembering that ¥, = ¢, and
d, =~ |, we deduce that ¥ = ¢, + O(,), and it follows from (16) that

¢ ' T=e+0(u).

2

It also follows from (16) that & = O(y,). Applying these two results to (15),

i+o=—5+0(yu) + '}”}’:'&f’,—]-
0D,i=0(y,u,).

Following [2], we know that with the monotonicity condition, any dual feasible direction
0 for the scaled LCP problem (15) satisfies

i LN(QD,).

Since d, = | and u = y,u,, it follows from the result on projections described above
that

ii=—P3§+ ;vy,P,é,_' +O0(w).

But s is the vector of small variables, and the following interesting fact holds: since
any optimal solution (x*, s*) satisfies s* = 0, any feasible vector of small variables s is
also a feasible direction s — s*. In particular for the scaled problem, § is a dual feasible
direction, and thus

510D, P,5=0, P5=35.
It follows that

i=yy,P,; ' +O(n),

0=5+yyPd; +0(n).

The results for the original coordinates are obtained by multiplying the first and second
equations respectively by d, =~ 1 and ,u.,d;' & u,, completing the proof. [J

C.C. Gonzaga, J.F. Bonnans/Mathematical Programming 76 (1996) 95-115 105

This lemma shows a very interesting fact: if both w, and w are in the region NV
and the large variables have a small variation between w, and w, then the result of the
simplified Newton step suffers very little influence from the actual values of the small
variables s. In fact, the only contribution of the data from w in the expressions in the
lemma is the value of y,: the influence of x,s are hidden in the residuals O(ux) and
O(uu,) in the formulae. This will become clearer in the lemma below.

Let we = (xc»Sc,) and w, = (X4, 54,0) be defined as usual, as the result of
the simplified Newton step from w, with (x¢,s.) = (x,8) + (uc,v:) and (xg4,84) =
(x.5) + (uq,vq). Define the exact Newton centering and affine-scaling steps from w,
respectively as X2 = (X3, 52, #5) and), = (x5, 53, 0), with (x2,52) = (%5,) + (3, 00).

Lemma 3.2. Let w, and w be as in Lemma 3.1. Then
ue = Yoty + O(p5) s se =, (s +0(ud)).
and
te=0(n), Sa=%0(m)

Proof. The centering step from w;, is obtained from Lemma 3.1 with w = w,, y =, = Ik
and gives with s, = s, + v,

W

Z =d7P7¢b_l e O(,U'b),
5= pod; Bt + 0(4).

The simplified centering step from w is obtained with y = 1:

lc =77d7Pb¢b—l +O(w),
se =Yooy BT+ 7,0(pf).

The results for the centering step follow immediately from the comparison of these two
systems. The results for u, and s, follow from Lemma 3.1 with y = 0, completing the
proof. O ;

This is then the behaviour of a centering step when x — x, = O(u,) and p is small:
the large variables approach the center by a step u. approximately equal to ybuz. Noting
that i) approximates the exact centering step from x, we see that the simplified centering
step looses efficiency. If v, is small (we will show that y, = O(u;)), then we conclude
that the simplified centering step does not affect the large variables significantly.

The effect of simplified centering on the small variables for small w;, independs on
the actual value of s, and results in s, proportional to sz. If the central path approaches a
straight line, than the simplified centering step becomes as efficient as the exact centering
step from w.

106 C.C. Gonzaga, J.F. Bonnans/Mathematical Programming 76 (1996) 95-115

4. Proximity measures

In this section we describe some results relating proximity measures and Euclidean
distances between points.

We start by describing the effect of an exact centering step on the proximity measure.
This is a well known result, but we shall specialize it for our case. We use the following
lemma due to Mizuno [18]:

Lemma 4.1. Let y,z € R" be such that y'z > 0. Then

lyzll < lly + 2.

Lemma 4.2. Consider w € N and let w, be the result of an exact centering step from
w. Then

1 &% (w)
V81 —8(w)’

Proof. The exact centering step corresponds to w; = w, ¥ = ¥, = 1. Using scaled
variables, ¥ = § = ¢, and the first equation of (15) becomes
i+o=¢"" (¢ —e). (17)

The proximity at w is given by 8(w) = H¢2 - e” by (14). The proximity after centering
is (we) = |[(¢ + @) (¢ + D) — el|. Developing this and using (17), we get 8(w,) =
|l7g||. Using Lemma 4.1,

8(we) <

S(we) |a+o)%.

|
g T
‘/gl
From (17), ||ii + 5>
@ > 1 —8(w) for i
together these results,

1 8w
V81 —8(w)’

completing the proof. [

167182~)" < [[¢7'[[2, B w). As [[¢2 —e]| = 8(w),
l,...,n It follows that ||¢S_'||; < 1/(1 — 8(w)). Putting

8(we) <

The primal scaled distance from x to x,

Remark. In this paragraph we do not assume that x and s were reordered according
to the optimal partition. We are arbitrarily calling x ‘primal variables’, and this abuse
of language will be often used ahead, but all the results in this paragraph are true if we
switch x and s.

Consider problem (P), and denote the central point associated with each x > 0 by

Wi = (X S).

C.C. Gonzaga, J.F. Bonnans/Mathematical Programming 76 (1 996) 95-115 107

For any feasible (x,s) we define the scaled distance from x to x, by

X — Xu

dist(x, p) = (18)
Xp
As we remarked above, dist(s, u) is defined similarly.
By definition, x5, = we. Substituting this into (18), we obtain
dist(x,) = || 2 — e (19)

The scaled Euclidean distance between x and x, has been studied by Renegar and
Shub [25] for LP problems, using scaling about x rather than about x,. Our result
below is valid for the monotone LCP, and is sharper than theirs when applied to linear
programming.

Lemma 4.3. Consider a feasible w = (x, s,) such that 6(w) < \/5/2 Then

dist(x,) < V2 (1 — /1= V28(w)).

Proof. Without loss of generality, assume that x, = e and s, = ue. This can be achieved
by a change of scale, since x,s, = pe. Denote

x=e+dx, s=pu(e+ds), 8=056(w).
The primal scaled distance is given by
dist(x, 1) = ||ldx|| < ||dx + ds] ,
because dx'ds = 0. The primal-dual proximity is given by

xs
——e

M

5= = ||dx + ds + dxds]|| .

Using Lemma 4.1, ||dxds| < |[dx + ds||* /+/8, and hence
8 > ||dx + ds|| — ||dx + ds||* / V8.

Denoting z = ||dx + ds||, we have the inequality
22— V82 +V8520

Solving the equation, the roots are z = V2 (l =Ea/eli= \/56) Since 8 < V2/2, the
roots are real. The inequality is satisfied for

z=ﬁ(1-\/1—ﬁ5)gv’i or z=\/i(1+\/1—\/55]>ﬁ. (20)

Since dist(x, u) = ||dx|| < z, all we need is to prove that the second case cannot happen,
i.e. that whenever 8(w) < V/2/2, we have |dx + ds|| < V2. Assume by contradiction
that for some feasible W, 8(Ww) < v/2/2 and ||Jx+&'s|| = /2.

108 C.C. Gonzaga. J.F. Bonnans/Mathematical Programming 76 (1996) 95-115

The map x,s € F®— 8%(x,s, i) is smooth and has a unique minimizer at (xz,5z).
Hence there exists a continuous curve a — (x(a),s(a)) in F° that joins (%,5) and
(xz.5z), along which 8(x(a),s(a), &) decreases strictly. Since ||dx + ds|| > v/2 and
|ldxz + dsgz|| =0, there must be a point (£, 5) on the curve such that 8(%, §, 2) < V2/2
and z = ||dx + ds|| = V2. This contradicts (20), completing the proof. [J

The following lemma does not make much sense at this point, but it will soon be very
useful. The lemma relates the primal distance given by |.xs,/x — e|| to an approximation
[|xs./pe — e|| which will often appear.

Lemma 4.4. Consider w € N and let w,. be the result of an exact Newton centering

step from w. Then
XSe
Al

M

< dist(sq,) + (1 + dist(s,))dist(x,).

Proof. As in the proof of the previous lemma, let x, = e, 5, = pe, x = ¢ + dx and
sc = (e +ds.). Then

x5

= ||dx + ds. + dxds.| < ||dsc|| + (1 + ||dsc]|) ||ldx|| .

—r

The result follows from dist(x,) = ||dx|| and dist(s., n) = ||ds.||, completing the
proof. [

Numerical values. The useful features of the lemmas in this section can be summarized
by applying them in sequence to compute some numerical bounds. The facts below do
this. Their proofs are trivial.
The first fact applies to any w € N,
Fact 4.5. If 8(w) < 0.5 then
dist(x, 1) < 0.65, é(w,) < 0.177,
dist(sc,) < 0.1895, [lxs./p — e]| < 0.97.
The second one applies to a point w resulting from an exact centering (note that from
the fact above such points have é(x) < 0.177).
Fact 4.6. [f 6(w) < 0.177 then
dist(x, u) < 0.1897, 8(w,) < 0.014,
dist(sc, 1) < 0.014, [[xsc/p — e]| < 0.206.

The last fact applies to a point in A for which we know that the primal (large)
variables are near their center.

Fact 4.7. If 8(w) < 0.5 and dist(x,) < 0.2 then ||xs./p — e|| < 0.206.

C.C. Gonzaga, J.F. Bonnans/Mathematical Programming 76 (1996) 95-115

109

Primal distance to the central optimum. Now assume that x is the vector of large
variables. The central path approaches the central optimum (x*,s*) = (x*,0) when u

decreases, and we extend (18) by defining

dist(x,0) = - ;*x
Using (2),
dist(x,0) = . ; xi-(;(ou(;t) ”
I

and since x, =~ 1,

dist(x,0) =dist(x, u) + O(u).

5. Acceptation of very large steps

(21)

(22)

In this section we prove Theorem 2.3. We start by deriving properties of the proximity

at the point w- resulting from an exact or simplified Newton step from w € N.

Lemma 5.1. Consider w,,w e N, y € (0,11, v, = p/p, € (0,1] and the result w. of

the simplified Newton step from w. Then

,,()H] 9 (ﬂ_0)+_°f%>_
yn M Y

Y

If x —x,=0(w,) and y, = 0(u,) then
57 (0]
A_'q..'._e=1_ +.ﬂ_
YR M Y

Proof. Using Lemma 3.2, x, = x +O(u,), 5 = 0(pp,). It follows that

Xe=yxe+ (1 = p)xg=vyx.+ (1 —y)x+0(w,) =0(1),
s:=¥Se + (1 —y)sa =7ySc + O(pp).

Multiplying these expressions and remembering that s. = O(x),
ﬁ=yf"’_§"+(] - }ﬂ+0{‘u’)‘
YH M M Y

The first result follows by subtracting e = ye + (1 —y)e.
If x=x,+O(u,) and v, = O(w,), then by Lemma 3.2 u. = O(p,) and s,

From (25),
E e ﬂ 5 O(w) . _yst'o(au:u))
YH M 2 M

The last term equals 'y-y-,O(;Lf}/,u, = O(u,), completing the proof. [J

(23)

(24)

(25)

=0(m).

110 C.C. Gonzaga, J.F. Bonnans/Mathematical Programming 76 (1996) 95-115

The expression in the lemma will appear several times ahead. The safeguard in
particular computes &(w;) for ¥ = 0.1 and w = w;, an exact Newton step. Let us give
numerical values for this case. The values follow directly from the application of Facts
4.5 to 4.7 and (22) to the norm of the expression (23),

X

S(w:) <0.98(w.) +0.1 ”; —efl +O(w).

Fact 5.2. Assume that w = w,, v = 0.1. Then the result w of the (exact) Newton step
satisfies:
(i) If 8(w) < 0.5 then 8(w) < 0.89 + O().
(i) If 6(w) < 0.177 then 6(w) < 0.21 +O(u,).
(iii) If 8(w) < 0.5 and dist(x,0) < 0.2 then (W) < 0.403 + O(u,).

The exact Newton step and safeguard. Each iteration of Algorithm 2.2 starts by an exact
Newton step and an application of the safeguard, and then proceeds to the simplified
steps. We shall begin the study of the algorithm by describing the effect of the exact
step and safeguard on a generic point w.

Assume then that a point w € A is given. We shall study the following procedures
extracted from Algorithm 2.2:

Exact step: Set w, := w and compute w,, w, by Procedure 2.1.

Safeguard: If 5(0.1w. 4+ 0.9w,) € [0.42, 1] then set w := w,, w, = w, and compute
w,, w, by Procedure 2.1,

Steplength: Compute y € (0,1) such that (yw, + (1 — ¥)w,) = 0.5, and set
we = ywe + (1 — y)w,.

Remark. In the next lemmas we shall introduce several bounds for u, e.g. s
These numbers are constants that depend only on the problem data, and not on the
initial point.

Lemma 5.3. Consider the procedure above applied to w € N. There exists ji; < jig
such that for p < jiy,
(a) At the safeguard step, 6(0.1w, + 0.9w,) < 1.
(b) After the safeguard (whether or not it was triggered), 6(0.1w. +0.9w,) < 0.42
and ||xs./u — e|| < 0.49 +0(p).
(c) At the end of the computation, x; — x = O(u) and y = O(p).

Proof. Let w=0.1w, + 0.9w,.

(a) follows from Fact 5.2(i) for u sufficiently small (say < f1y).

If the safeguard is not triggered, then (W) < 0.42 by construction; otherwise a
centering step produces 8(w) < 0.177 by Fact 4.5 and then 8(w) < 0.21 + O(w)

C.C. Gonzaga, J.F. Bonnans/Mathematical Programming 76 (1996) 95-115 111

by Fact 5.3. In any case, (W) < 0.42 for p sufficiently small (say u < fi2 < fu1).
Applying this to (23) for u < f2,

0.42 > —0.1 8(we) +0.9 H% —ell + O(n).

Since 8(w,) < 0.177 by Fact 4.5, it follows that ||xs./u — e|| < 0.487+O(u), proving
(b). Now we prove (c). At the steplength computation, using (b),

0.5 = 8(ws) < ydwe + (1 —y)‘ ﬁ_e‘+M
e Y
<0.177y+0.49(1 —y) + O(w) [y
<049+ 0(u) /7y

This implies that y = O(u), completing the proof. [

The simplified Newton steps. Now we extend these results to the simplified Newton
steps. Since the safeguard is already well understood, we shall study the behaviour of
the algorithmic step at a generic point w satisfying the conditions (b) in the last lemma,
i.e. a point as the Algorithm 2.2 would generate after the safeguard. To do this, we
extract from the algorithm the internal iteration, composed of one exact Newton step
followed by p — 1 simplified steps:

Algorithm 5.4.
Data: w, =w? € N, p > 1.
for j:=0te p—1do
Set w :=w/, 7, = u/p» and compute we, w, by Procedure 2.1.
If 8(w.) = 0.5 then exit loop.
Steplength: Compute ¥ € (0,1) such that 5(yw, + (1 —y)wa) = 0.5, and set
with = wy 1= ywe + (1 — Y)W
end for

Lemma 5.5. Consider an application of Algorithm 5.4 to a point w, = w e N
satisfying the conditions in Lemma 4.3(b). There exists iy < ju) such that for w, < fia,
j=0,1,...,p =1

(i) 8(wi) < 0.5, and hence the ‘exit loop’ is not triggered.

(i1) Mjs1 =O(,u,£+2} , or equivalently, yoy) ...Vj = 0(;:,{“)
(i) 2+ = x, + O(wy).

Proof. For j =0 we have the exact Newton step studied in Lemma 4.3. The results are
immediate for w, < jfip = i1, since by that lemma S(w?) < 0.177, x!' =20 4+ 0(w),
Y0 = O(w).

2 Remember that a superscript on a scalar always means power.

112 C.C. Gonzaga. J.F. Bonnans/Mathematical Programming 76 (1996) 95-115

Consider now j € {l,...,p — 1} and assume that the results are true for i €
{0.1....,j — 1} for p, < fij—;. We shall prove them for iteration j.

Note initially that x/ = x, 15 O() because (ii) holds at the former iterations, and
that ¥, = ¥o¥1 ... ¥j—1 = O(x) by (iii). Also, by Lemma 3.2, x/ = ¥/ +7,12+0(u,) =
X +0(w) and sl =y (s} +O(,u.,)) Since 57 & p,, s/ =y,0(w,). Using these results
we can calculate the following:

sl v (x,+0(w)) (5. +0(ul)) x,8 ;
O = =< + 5,0(u) + 520().
My Yokt b

Since x, = | and 5] = u,,

sl xsd
—= = —= 4 0(w). (26)
i e

Using the facts established above that x/ = x/ + O(u,) and 5! = y,0(u,),
xish xisk e ¥,0(u?) _xlsl
M Hj M M j
Merging this with (26),

—< +0(w).

xisl x,8?
2 o D% L o). (27)
M M

Now we use the condition in Lemma 5.3(b), ||.r,s;/;u,, - e” < 0.49 to conclude from
(26) and (27) that

x/si [| xLsZ

—L e

Hj
For u, sufficiently small, say p < fi; < jz;~;, the second relation above proves (i). To
prove the other relations, we use (24): in the steplength computation,

Jof 0
= —e] 0Ub) o9 L),
Hj Yi Yi

<049+ 0(w). (28)

< 0.49 + O(w,),

M

xj+l ‘,j-i-l

Yikj

0.5= —e

This leads directly into ¥; = O(u,) and hence pj.y = O(u)O(w/) = O(p.;m), proving
(ii).
To prove (iii), we use Lemma 3.1 and the assumption that x/ = x, + O(u,) to get

X =+ yi7,0(1) + O(u) = x, + O().

This proves the relations in the lemma for j € {1,...,p — 1} with u < z,_;. Setting
ft2 = fi, - completes the proof. [J

The application of the lemma above to the sequences generated by Algorithm 2.2 is
summarized in the corollary below:

C.C. Gonzaga, J.F. Bonnans/Mathematical Programming 76 (1996) 95-115 113

Corollary 5.6. Consider an iteration k of Algorithm 2.2, starting at w* € N, and
assume that p; < fip. Let w;" be the point obtained after the safeguard. Then all p — 1

simplified steps are completed, piy = O(ub™") and x**' — xF = O(uy).

Proof. Immediate from Lemma 5.5 for j=p —1. [

This proves that in Algorithm 2.2, u; converges to zero with Q-order p + 1. To
complete the proof of the main theorem, we must still prove that the safeguard must
stop being triggered beyond a value of w that depends only on problem data.

Triggering of the safeguard

Lemma 5.7. Consider a sequence (x*) generated by Algorithm 2.2. There exists 1 > 0
dependent only on problem data such that the safeguard can only be triggered once for

i S

Proof. The proof will be done by showing that after triggering the safeguard for u
small, the condition in Fact 5.2(iii) will be forever satisfied. The statement of that
condition will be reworded as follows: If g is sufficiently small, say ux < fi;, then
S(w¥) < 0.5 and dist(x¥,0) < 0.2 imply 8(0.1wk 4+ 0.9w%) < 0.42 (the safeguard is
not triggered).

By Corollary 5.6, x**! = xf 4+ O(u) and hence

xf + O(mk) H ‘x*
e i) S | R

2 —e|| + O(m) =dist(x},0) +O(p).

dist(x**',0) = -

X

Thus there exists K > 0 dependent on problem data such that
dist(x**1,0) < dist(x¥,0) + Ku. (29)

Consider now an iteration k in which the safeguard is triggered, and let k > k be
the first iteration in which it is triggered again. By Fact 4.5 and (22), we have after
centering

dist(x¥,0) < 0.19 + O().
Merging this and (29), we get
k—1

dist(x%,0) < 0.19+0(m) +K D ;.

=k

But the sequence (uj) converges to zero at least linearly because the algorithm is
polynomial, and hence

KZM =0(px),

J=k

114 C.C. Gonzaga, J.F. Bonnans/Mathematical Programming 76 (1996) 95-115

and we arrive at
dist(x*,0) < 0.19 + O(ui).

If uy is sufficiently small, say u < @ < 1y, then dist(x%,0) < 0.2. As we saw above,
the safeguard cannot be triggered in iteration k. This prevents the safeguard from being
triggered twice for u¢ < i, completing the proof. [

This completes the proof of Theorem 2.3.

Acknowledgement

Gonzaga thanks Kees Roos and Tamas Terlaky, his hosts in Delft Technical University,
for the fruitful discussions and for the opportunity of working in their dynamical research

group.

References

[1] E.R. Bames, S. Chopra and D.J. Jensen, “The affine scaling method with centering,” Technical Report,
Dept. of Mathematical Sciences, IBM T.J. Watson Research Center, PO. Box 218, Yorktown Heights,
NY 10598, 1988.
[2] JL.F. Bonnans and C.C. Gonzaga, “Convergence of interior point algorithms for the monotone linear
complementarity problem.” Mathematics of Operations Research 21 (1996) 1-25.
[3] C.C. Gonzaga, “The largest step path following algorithm for monotone linear complementarity
problems,” Mathematical Programming, to appear.
|4] C.C. Gonzaga, “Large steps path-following methods for linear programming, Part I: Barrier function
method.” SIAM Journal on Optimization 1 (1991) 268-279.
| 5] C.C. Gonzaga, “Path following methods for linear programming,” SIAM Review 34 (1992) 167-227.
|6] C.C. Gonzaga and R.A. Tapia, “On the convergence of the Mizuno-Todd-Ye algorithm to the analytic
center of the solution set,” SIAM Journal on Optimization, to appear.
[7] C.C. Gonzaga and R.A. Tapia, “On the quadratic convergence of the simplified Mizuno-Todd-Ye
algorithm for linear programming,” SIAM Journal on Optimization, to appear.
|8] O. Giiler, “Generalized linear complementarity problems and interior point algorithms for their solutions,”
Internal Report, Dept. of Industrial Engineering and Operations Research, University of California, 1993.
[9] M. Kojima, N. Megiddo, T. Noma and A. Yoshise, A unified approach to interior point algorithms
for linear complementarity problems, Lecture Notes in Computer Science, Vol. 538 (Springer, Berlin,
1991).
[10] M. Kojima, S. Mizuno and A. Yoshise, “A polynomial-time algorithm for a class of linear
complementarity problems,” Mathematical Programming 44 (1989) 1-26.
[11] M. Kojima, S. Mizuno and A. Yoshise, “A primal-dual interior point algorithm for linear programming,”
in: N. Megiddo, ed., Progress in Mathematical Programming: Interior Point and Related Methods
(Springer, New York, 1989) pp. 29-47.
[12] ZQ. Luo and Y. Ye, “A genuine quadratically convergent polynomial interior point algorithm for
linear programming,” Technical Report, Dept. of Management Science, University of lowa, lowa City,
A 52242, 1993.
[13] K. McShane, “Superlinearly convergent O(+/nL)-iteration interior-point algorithms for LP and the
monotone LCP”" SIAM Journal on Optimization 4 (1994) 247-261.
| 14] N. Megiddo, “Pathways to the optimal set in linear programming,” in: N. Megiddo, ed., Progress in
Mathematical Programming: Interior Point and Related Methods (Springer, New York, 1989) pp. 131-
158.

C.C. Gonzaga, J.F. Bonnans/Mathematical Programming 76 (1996) 95-115 115

[15] S. Mehrotra, “Quadratic convergence in a primal-dual method,” Technical Report 91-15, Dept. of
Industrial Engineering and Management Science, Northwestern University, Evanston, IL 60208, 1991.

[16] S. Mehrotra, “On the implementation of a primal-dual interior point method." SIAM Journal on
Optimization 2 (1992) 575-601.

| 17] S. Mehrotra, “Asymptotic convergence in a generalized predictor-corrector method,” Mathematical
Programming, to appear.

[18] S. Mizuno, “A new polynomial time method for a linear complementarity problem.” Mathematical
Programming 56 (1992) 31-43.

[19] S. Mizuno, M.J. Todd and Y. Ye, “On adaptive step primal-dual interior-point algorithms for linear
programming,” Marthematics of Operations Research, to appear.

[20] R.D.C. Monteiro and 1. Adler, “Interior path following primal-dual algorithms: Part I: Linear
programming,” Marhematical Programming 44 (1989) 27-41.

[21] R.D.C. Monteiro and I. Adler, “Interior path following primal-dual algorithms: Part 11: Convex quadratic
programming,” Marhematical Programming 44 (1989) 43-66.

[22] R.D.C. Monteiro and T. Tsuchiya, “Limiting behavior of the derivatives of certain trajectories associated
with a monotone horizontal linear complementarity problem,” Working Paper 92-28, Dept. of Systems
and Industrial Engineering, University of Arizona. Tucson, AZ 85721, Dec. 1992,

23] R.D.C. Monteiro and S. Wright, “‘Local convergence of interior-point algorithms for degenerate monotone
LCP." Preprint MSC-P357-0493, Mathematics and Computer Science Division, Argonne National
Laboratory, Argonne, IL 60439, April 1993.

[24] C. Roos and J.P. Vial, “A polynomial method of approximate centers for linear programming,”
Mathematical Programming 54 (1992) 295-305.

[25] J. Renegar and M. Shub, “Unified complexity analysis for Newton LP methods,” Mathematical
Programming 53 (1992) 1-16.

[26] S. Wright and Y. Zhang, “*A superquadratic infeasible-interior-point algorithm for linear complementarity
problems,” Preprint MSC-P418-0294, Mathematics and Computer Science Division, Argonne National
Laboratory, Argonne, IL 60439, 1994,

[27] Y. Ye. “Improving the asymptotic convergence of interior-point algorithms for linear programming,”
Working Paper 91-15, Dept. of Management Science, University of lowa, lowa City, 1A 52242, 1991.

[28] Y. Ye and K.M. Anstreicher, “On quadratic and O(/nL) convergence of a predictor-corrector algorithm
for the linear complementary problem,” Mathematical Programming 62 (1993) 537-551.

[29] Y. Ye, O. Giiler, R.A. Tapia and Y. Zhang. “A quadratically convergent O(/nL)-iteration algorithm for
linear programming,” Marl ical Progr ing 59 (1993) 151-162.

	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf
	8.pdf
	9.pdf
	10.pdf
	11.pdf
	12.pdf
	13.pdf
	14.pdf
	15.pdf
	16.pdf
	17.pdf
	18.pdf
	19.pdf
	20.pdf
	21.pdf

