Number of Equalities and Inequalltles -

T F Bonnans' anp G. Launay?

Communicated by A V Fiacco

Abstract. Let a set be defined by a finite number of equalities and
inequalities For smooth data, the condition of Mangasarian and Fro-
movitz is known to be equivalent to the local stability—in a strong
sense—of the set We study here weaker forms of stability. Namely, we
state a condition generalizing the one of Mangasarian and Fromovitz
that, for some weak form of stability, is necessary. If the gradients of
the equality constraints are linearly independent or if there is no equality
constraint, this condition is also sufficient.
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1. Introduction

We consider a subset of R™ (n being a positive integer) defined in the
following way:

D={xeR"; g(x)=0 and h(x) <0},

where g and A are smooth mappings from R” into R” and RY, respectively;
the vector order relation is taken componentwise. Let ¥ bein D. Out problem
is to study the stability of D (near ¥) when g and A are subject to smail
perturbations As we are interested in a local analysis, we will suppose
throughout the paper that 4(%) =0. Specifically, we consider perturbations
of the form

={xeR"; g°(x)=0 and A%(x) <0},
with eeR™, g®=g, i°=h, and the mapping (€, x) — (g%(x), 1(x)) smooth
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enough, and we call them smooth perturbations. The probiem 1s to give an
estimate of dist(%, D) defined by

dist(¥, D) =min{ | x— x°||; x"€ D%}

(here, | || is an arbitrary norm on R"} with the help of the successive deriva-
tives of g and h at %

Such problems have already been studied, mainly in connection with
optimization problems. Linear systems of equalities and inequalities have
been studied in Daniel (Refs. 1-2), Robinson (Ref’ 3), and Mangasarian and
Shiau (Ref. 4). The behavior of linear systems seems rather well understood
Nonlinear systems are studied in Robinson (Ref 5). In particulai, the
main result of Ref. 5 is that the condition of Mangasarian and Fromovitz
(Ref 6), namely,

Vg(z) is surjective, (la)
there exists  in R” such that Vg(£)'d=0 and VA(X)'d<0, (lb)

is necessary and sufficient for some strong form of stability Our aim is to
study a weak form of stability, for which it is necessary to consider the second
derivatives of the data, We state a new condition, which is a generalization of
(1), necessary for weak stability. If Vg(%)' is surjective, this condition is also
sufficient.

The paper is organized as follows In Section 2, we study a new concept
of stability, the k-stability, and we characterize it on some simple examples.
In Section 3, we prove that the k-stability for k<2 implies the 1-stability
In Section 4, we establish a fechnical result concerning linear systems of
equalities and inequalities. In Section 5, we give a necessary condition for
2-stability; we prove that, if the gradients of the equality consiraints are
linearly independent, this condition is also sufficient for 2-stability.

2. Concept of k-Stability

We define the k-stability, relate it to the result of Robinson (Ref 3),
and give a study of simple examples

Definition 2.1. The family of perturbations D® is i-smooth {/ positive
integer) if the mapping (€ x) — (g%(x), A(x)) is [-times continuously
differentiable

Definition 2.2, Let % be in . We say that D is k-stable at % (k> 0, real)
if g and A are C' (I-times continuously differentiable), with />, and for any
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[-smooth perturbation D¥, there exists K > 0 such that, for all € small enough,
dist(x, D)< Ke'*,

The simplest form of stability is obviously when k=1; in this case, a
complete characterization is known See the following theorem

Theorem 2.1. See Ref 5, Theorems 1 and 2. The set D is 1-stable at
% iff condition (1) holds.

It remains, however, to study the k-stability for k>1. In order to get
some intuition of the kind of result we might prove, let us consider two
simple cases As the results are easily obtained, we state them without proof.

(a) Thedimensionsaren=p=1,¢=0,and gis C* Then, ifall deriva-
tives of g are null at x, there is no k-stability of D at x Otherwise, let kg be
the index of the first nonnull derivative of g If ko is even, there is no k-
stability of D at % If ko is odd, then D is & stable

(b) The dimensions are n=1, p=0, g=1, and & is C* Then, if all
derivatives of % are null, there is no k-stability of D at & Otherwise, let ko
be the index of the first nonnull derivative of & at ¥ If ko is odd, or if & is
even and d*h/dx*(%) <0, D is k-stable; otherwise, there is no k-stability
of Datx

In view of these results, we may think that the integer values of & are

of special importance and that, for integer values of k, the k-stability is
strongly related to the derivatives of g and k at X, up to the order &

3. k-Stabilicy for 1<k <2

The study of this case reduces to the following theorem, showing again
that integer values of k are of special importance.

Theorem 3.1. If g and / are C?, the k-stability of D at ¥ for k<2
implies the I-stability.

Before giving the proof, let us state some definitions and notations that
will be useful in the sequel of this paper.
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Definition 3.1. A perturbation D of D is said to be clementary if it is
of the form

g9(x) =glx)— e,
h(x)=h(x)— e,

with (¢, ¢’} given in R? x R?
Let {x°} be a sequence in R” converging to ¥ when € — 0. We notice
that we may always write

x*=x+od",
with
o=l x"— x|, =1
Proof of Theorem 3.1. Let D be k-stable at X with £ <2 We consider

an elementary perturbation of the above form Then, there exist K> 0 and
{x%}, with x*€ D, such that

hx"— x| <Ke’*
This is equivalent, with the above notation, to
ot < Ke'/ k;
hence, (¢°)2=0(€) As x*=%+ad is in D* and (g, h) are C°, we obtain
g(x%)=aVg(x)'d*+o(e) = ec,
A(x5Y = Vh(R)'d*+ole) < ed.

The relation on g and the fact that ¢ is arbitrary imply that the range of
Vg(%) is dense in R7; hence, as any vector space of R” is closed, Ve(x)' is
surjective. Now, suppose that ¢ =0 and ¢’ <0 (componentwisc) Let r® be the
minimum (7 2) norm solution of

V(D) (e5d+1) =0
As Vg(x)' is surjective,

1°=0(aVg(%)'d") = o(e);
hence,

ye=€ Yad++°)
satisfies

Vg(D)'y=0,

V(D) Y < +o(e)/e
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The right-hand side of the above inequality is strictly negative for € small
enough This proves that (1) holds; hence, by Theorem 2 1, D is 1-stable
at ¥. O

4. Some Results Concerning Linear Systems

Before going on with the study of the 2-stability, we have to state some
technical results concerning linear systems of equalities and inequalities
Consider the system

Az=e, Bz<{, (2)

with A, B being matrices and z, e, f vectors of convenient (finite) dimensions
Denote by B; the ith tow of B, and J being a set of indexes,

B,={B;.iel}, fr="1{fsieJ}

We will have to consider the associated homogeneous system,

Az=0, Bz <0, 3
Define

I={i; there exists ' satisfying (3) and Bz'<0},

T={i; there exists no z satisfying (3) and Biz<0}
We denote

f*=max(f,0) and f”=min(f,0),
where the max and min are taken componentwise. The aim of this section
is to prove the following result

Theorem 4.1. There exists M >0 such that, for any (e, f ) such that (2)
has a solution, (2) has a solation z satisfying

Izl <M(le] + /7 1+1£71)

For clarity we state two preliminary lemmas. Our Lemma 4 2 is a corol-
lary of Lemma 3.5 of Daniel (Ref. 1); we give a proof, different from the
one of Ref. 1, for the convenience of the reader.

Lemma 4.1. If z satisfies

Az=0, Brz <0,
then Brz=0
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Proof, If I=¢J, then z satisfies (3); hence, from the definition of I,
Byz=0. Otherwise, let 2’ be as in the definition of /. Define

=37

iel
Then obviously,
42°=0,  BZ°<0, Bi<0.
If Lemma 4.1 does not hold, there exist jeI and w such that
Aw=0, Brw =<0, Bw<0.
Then, for a>0 large enough,
z=w+az’
satisfies {3) and Bz <0; hence, jel, in contradiction with the definition
of I a
Lemma 4.2. There exists M, >0 such that any solution (z, ¢, f ) of
Az=e, Brz<fy (4
satisfies
I Brzll < Mi(llell + 117 1)
Proof. If the conclusion is false, there exists {(Z", &%, /*)} satisfying (4)
and
| B2 > k(e + 1D 1Y

Normalizing the sequence if necessary, we may suppose that |Brz“|=1;
hence & — 0 and ( f"})+ - 0. As Az"=¢" and Bz are bounded, using a left
pseudo-inverse of (A, Br) we deduce the existence of a bounded sequence ",
with

A=A =¢ and B =Bif<(fH"

Extracting a subsequence if necessary, we may suppose that Z* — Z Passing
to the limit, we obtain

1Bzl =1,  Az=0,  Bpz<0,

in contradiction with Lemma 4 1 [



JOTA: VOL. 70. NO 3, SEPTEMBER 1991 423

Proof of Theorem 4.1. Let (z, e, f) satisfy (2). From Lemma 4 2, we
deduce that

IAdzfi+ || Brzll < (M + D)(llell + 1 /71)

Hence, applying a left pseudo-inverse of (4, By) to the pair (4z, Bjz), we
deduce the existence of M- >0 independent of (z, e, f ) such that there exists
z satisfying

AZ=Az, Brz= Byz,
and
izl < Mo(llel + /7 1)

If I= #, the result is obtained. Otherwise, let 2% be as in the proof of Lemma
4.1, Then,

=zi+a
satisfies, for any =0,
Az%=e, Bz < f7,
and the inequality Biz®<f; will be satisfied iff (as Bz’ <0, for any i in )
aBz"<f,— Bz,  Viel,
and a fortiori if
aB"<f; —Bz,  Viel,
ie,
a> (/7 —BZ/B,  Viel
Denote
B=min{|Bz", iel}:
the above inequality will be satisfied if
a=p'(|1B2+f),  Viel,
and this with the above estimate on Z proves the result [l

Remark 4.1.  To our knowledge, Theorem 4.1 is new; in particular, it
is not a consequence of the results in Refs 1-4
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5. Study of 2-Stability

The reduction of k-stability to the 1-stability for k£ <2 does not hold for
k=2 Take, for instance, n=2, p=1, g=0 and g(x)=(x,)"— (x2)".

For any element y of R", we denote by Vg(%) the Hessian of g; at %
and by V'Vg(%)y the vector of R” whose ith component is ¥V %)y. Let
us state the following condition: For any (¢, ¢’} in R? x RR?, there exists (y, z)
in R"x R" satisfying

i) Vg(®)y=0, VA(x)y=<0, (5a)

(i) Ve(xYz+3y'Vg(Fy=c, (5b)

(tii) for anyiin (L,. . ,4q),

either VA,(x) y <0
or Vh(%)'z+(1/2)y'Vh(X)y <c; (3¢)

This new condition is a relaxation of (1) because, if in (5) we take y=
0, then the above relations reduce to

Ve(x)z=c¢, Vh(x)z<¢',

for any (c, ¢'), which is easily seen to be equivalent to (1) We will prove the
following result

Theorem 5.1. If D is 2-stable at %, then condition (5) holds

However, we will obtain it as a particular case of a more general result,
involving uniform estimates with 1espect to a set of constants (¢, ¢').

Definition 5.1. Let E be a subset of B” x R We say that D is uniformly
k-stable at x with respect to E if there exists K> 0 such that, for any (¢, ')
in E, there exists for €>0 small enough a mapping € — x* with x®eD*
felementary perturbation associated to (¢, ¢)] and

Ix=xN <Ke' (el + ey
As an example, take
E={{ac, o), aeR}.

If D is k-stable at %, the constant associated to (¢, ¢) being K, then D is
uniformly k-stable at ¥ with respect to E, with the same constant K [this is
a justification of the power 1/k associated to |c|| + |¢']] in Definition 5.1]
We will prove the following result.
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Theorem 5.2. Let D be uniformly 2-stable at X with respect to £ Then,
there exists K;>0 such that, to each (¢, ¢’) in E, there is associated (y, z)
satisfying (5) and

izl + Iy > < Killiel + '],
Proof. We consider the elementary perturbation associated to an ele-
ment (¢, ¢’y of E. Let x° be an element of D€ satisfying
Ix— 2f < Ke'*(fiell + lle[)'*
Writing, as in Section 3,
x*=x+dd,
we obtain
2(x) = aVg(x)'d* + () /2y Vg(R)d" +o(e) = ec,
h(xF) = o VA(Z) d*+ [(«° /2 YV R(R) +ole) < ec’
Case 1. An extracted sequence of «°/€ has a limit point ¥ Dividing

the above system by € and passing to the limit for the extracted sequence,
we obtain, d being a limit-point of {d"},

We(R)d=c,  Wh(x)d<c

Then, statements (5) are satisfled with z= yd, y=10. Applying Theorem 4 1
to the linear system

Ve(%)z=c, Vh(z)Yz<c,
we see that (5) may be satisfied with
y=0 and |z <M(|cl{+]|c[),
the constant M depending only on Vg{x) and VA(%) [not on (c, ¢')]
Case 2. As € - 0, ¢°/€ = + oo Dividing the above quadratic system
by &° and passing to the limit, d being again a limit point of &%, we obtain
Ve(x)d=0, VA(X)d<0
Put
df=d+ 75 with f°=|d"—d|

We expand here d° in the same way we did for x° For an extracted sequence,
d° — d, hence § — 0 and (&)’ =o0(e€) because of the uniform 2-stability
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Hence, for this extracted sequence, and using the relations on d, we have
a*FVg(%) v+ [(a)?/21d 'V g(%)d= ec +o(e),
and if VA{%)'d=0, then
A FVRR) 05+ [(0)/2]d 'V h(R)d < eci+ o(€).
Dividing the above relations by € and defining
ye=¢€ %04, = o f",
we get
Ve(2)z+ (1/2)(3)Vg(x)y =c+o(e)/€
and if VA(%¥)'y°=0, then
Vh{(x)'z+ (/)Y Vh{R)y <ci+o(e)/€
As
€ e < K(feli+ 1e'1)
v* is bounded and converges for some subsequence to some
y=vd, with 0O<y<K(|c}+Ici)"
hence,
vl 2 < (K (lel + el

and y satisfies (5a).

As ¢ is bounded, we may, using Theorem 4 1, suppose that z© is also
bounded and (extracting if necessary a new subsequence) converges toward
some z; (v, z) satisfy (5b, ¢} and, applying Theorem 4 1 as in Case 1, we get
[K, depending on V’g(%) and V*h(X)]

Izl < M(|lc]l + ll¢ 1|+ Kally) ) < ML+ (KK leli+ 1D,
which proves the theorem (]

We wonder whether condition (5), or pethaps the strengthened condi-
tion obtained by supposing that (y, z) satisfies the estimate of the conclusion
of Theotem 3 2, with E=R* x RY, is sufficient for 2-stability This seems not
easy to prove; the main difficulty is due to the lack of knowledge about the
behavior of the solution of quadratic systems. Nevertheless, we can state the
following partial converse result

Theorem 5.3. Let X be a point of D at which condition (5) holds If
in addition g and 4 are C* and Vg(¥)' is surjective {(or no equality constraint
is present), then D is 2-stable at ¥
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Proof. Let D be a smooth perturbation of D associated to mappings
g% and % We shall construct a point x® in D sufficiently close to ¥ Let us
denote

¢ =—(d/dE)g(®)je—0,
and define ¢’ by
ci=min(0, —(d/deWhi(¥)e=0) — L.

Let (v, z) be associated to (c, ¢’} by condition (5) We shall choose x° of the
form

X*=x+ely+e+r(e)

As g is C? and (g x) — g(x) is C?, we find, using (5). that

1/2

g(x+eyte)

=g(¥+e€'Py+e)—e+ 0(€)

=Vg(%)'(e"?y+e) +(e/y'Vig(x)y— ec+ O(e™)
=0(e*?).

As Vg(%)' is sutjective, we have the l-stability for {x; g(x)=0} (this is a
corollary of Theorem 2 1). Consequently, for € small enough, we may find
r(€) such that 7(€) = O(e**) and

f=F+ep+etr(e
satisfies, for € small enough,
g(x)=0,  |x"—x|<2|y|e””
Now, consider the inequality constraints. We have
hE(x°) = VA(ZY (€' 7y + &)+ (e/2)V'V h(Z)y
+ €ld/dEh (X e+ O(e™7).
1t
Vhi{x)'v <0, for some i,

this implies that Af(x“) <0, for some € small enough Otherwise, (5) implies
that

Vh(%)'y=0;
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our choice of ¢’ implies that
E(x) < —e+ O(e),

which implies that the constraints are satisfied for € small enough L]

Remark 5.1. Our Theorem 5 I seems to be connected to some results
of Frankowska (Ref 7) involving inverse theorems for multifunctions. In
particular, there seems to be a connection between our condition (5) and
the surjectivity of the second-order contingent variations defined in Ref 7
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