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SEQUENTIAL QUADRATIC PROGRAMMING WITH
PENALIZATION OF THE DISPLACEMENT*

J. F. BONNANST AND G. LAUNAY'

Abstract. In this paper we study the convergence of a sequential quadratic programming
algorithm for the nonlinear programming problem. The Hessian of the quadratic program is the sum
of an approximation of the Lagrangian and of a multiple of the identity that allows us to penalize
the displacement. Assuming only that the direction is a stationary point of the current quadratic
program we study the local convergence properties without strict complementarity. In particular,
we use a very weak condition on the approximation of the Hessian to the Lagrangian. We obtain
some global and superlinearly convergent algorithm under weak hypotheses. As a particular case we
formulate an extension of Newton’s method that is quadratically convergent to a point satisfying a
strong sufficient second order condition.
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1. Introduction.

1.1. The family of Newton-type algorithms. In this paper we present a
new algorithm for solving the standard nonlinear programming problem

(P) min f(z) ; g(z) K0,

with f, g smooth mapping from IR" to IR and IRP, and, given a partition (I,J) of
{1,...,p}, by 2 < 0 wemean 2; <0,i € I, z; =0, j € J. Occasionally for K C I we
will denote

%<0, i€K,

<0
eV =0, jed

With (P) is associated the first-order optimality system

V(@) +g'(z)'A =0,

(1)
g9(z) €0, Ar >0, Ng(z) = 0.

If (x, \) satisfies (1), then we say that A is a multiplier associated to z. By extension
we say that z is solution of (1) if there exists A such that (z, A) satisfies (1).
We define the quadratic problem

Q(z, M) min Vf(2)'d + 5d'Md; 9(z) +9'(2)d <O,

with which is associated the optimality system

Vf(z) + Md+g'(z)'n =0,
(2)
9(z) + ¢'(z)d €0, pur >0, pt(g(z) + ¢'(z)d) = 0.
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2 J. F. BONNANS AND G. LAUNAY

Denote by L(z, \) := f(z) + Mg(x) the Lagrangian associated with (P). It has been
observed by Wilson [26] that, when no inequality is present, the computation of the
Newton step in (1) amounts to solve Q(z, M) with M = V2L(x,)), and that this
allows a natural generalization for problems with inequality constraints. In order to
deal with the case when second derivatives are not available, a larger class of interest
is the following.

ALGORITHM 0 (Newton-type algorithms).
0. Choose 2° € R"™, M° an n x n symmetric matrix ; k < 0.
1. Compute (d*, u*) solution of the optimality system of Q(z*, M*).
2. Linesearch: choose py, in [0,1].
3. bt gk 4 ppd
Choose M*k+1,
k—k+1,gotol.

1.2. Local study. Let Z be a local solution of (P) with which is associated a
unique Lagrange multiplier A\. The local analysis typically assumes that (2°, M?) is
close to (z, V2L(Z,))) and that py = 1. The question is to determine if convergence
occurs, and at which rate. It happens that in this case d* should not, in general, be
taken as the global minimum of Q(z*, M*).

Indeed, let us consider the simple example

minfn(l+z); - <0, z <10.
xz

This problem has a unique solution z = 0 associated to the unique multiplier A =
(1,0)! and the strongest regularity hypothesis and sufficient second order condition
(see (8) and (29) below) are satisfied by (Z, ). Now let us start Newton’s method at
the solution. We get the quadratic problem

mdind—d2/2; 0<d<10,

whose unique solution is d = 10, the worst possible displacement! As the Newton
step is obtained by linearizing the data, is it clear that the quadratic program is
meaningful only if the displacement is not too large. Indeed, in our example, the
“sood” displacement d = 0 is a local solution of the quadratic program.

Of course if M* > 0, which is the case for some quasi-Newton algorithms based on
positive definite updates, and also for Newton’s method when (P) is convex, i.e., has
convex cost and inequality constraints and linear equality constraints, then Q(z*, M*)
is itself convex, and local and global minima coincide. We now quote some recent
results about the speed of convergence of Newton-type algorithms. For this purpose,
we need to define the set of active inequality constraints:

I(z) :={i e I; gi(z) = 0},
the set of active constraints
I(x) U J,

the extended critical cone

I(z _
(3) Cl)={de R"; ¢(2)d € 0; gi(z)d=0if X >0, i € I}.
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Note that when x = Z we recover the usual critical cone, or cone of critical
directions:

I(z -
(4) CE)={de R"; ¢(3)d € 0; gi(@)d=0if X >0, i€ TI}.
We also define the (standard) second-order sufficient condition
(5) d'V2L(z,\)d >0 for alld € C(z),d # 0,

and the orthogonal projection onto C(z*), denoted by P*.
Note that usually the critical cone is defined as

0@) = {de B"; Vf@)'d<0; /(@) < 0).

Both definitions coincide (as is easy to check using (2)) because we assume the exis-
tence of a Lagrange multiplier. We now quote two results of Bonnans [8].

THEOREM 1.1. Let T be a local solution of (1) such that the gradients of active
constraints are linearly independent, X be the unique multiplier associated with T, and
the second-order sufficient condition holds. Then if (z*, u*) computed by Algorithm 0
converge to (Z, ), then {z*} converges superlinearly if and only if (iff)

P*[(V2L(Z,X) — M*)d¥] = o(d¥).

THEOREM 1.2. Assume that Z is a local solution of (1), X is the unique Lagrange
multiplier associated to T, and the second-order sufficiency condition holds. Then
there exists € > 0 such that if |2° — z|| + |A\° — || < ¢, and (z*+1, A¥+1) is chosen
so that ||z*+1 — 2| + ||\ — XF|| < 2¢, then Algorithm 0 with M* = V2L(z*, \F)
and pr = 1, i.e., Newton’s method, is well defined and converges at a quadratic rate
to (Z,N).

We note that the existence of a unique multiplier is a qualification hypothesis
slightly weaker than the linear independence of gradients of active constraints (see
Fletcher [14]). Note also that if the following strict complementarity hypothesis holds:

Xi >0 foralliin I(2),

then, for (z*, M*) close to (z,V2L(Z,))), A¥ is close to A; hence if i € I(Z), the
corresponding inequality in Q(x*, M*) is active and everything goes as if we were
analyzing the problem

min f(z); gi(x) =0, i € I(Z) U J.

Then Theorem 1.1 reduces to a result of Boggs, Tolle, and Wang [6], whereas Theo-
rem 1.2 reduces to the application of the general result on quadratic convergence of
Newton’s method for a system of equations. The novelty in the theorems above lies
in the fact that no strict complementarity hypothesis holds and only the standard
(weak) sufficient condition is assumed.

1.3. Globalization. The local results that we just presented insure a superlinear
or quadratic convergence, provided that the data at the starting point are sufficiently
close to the optimum. When these hypotheses are not satisfied, the algorithm must
be modified, for different reasons.
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(i) Tt may happen that the optimality system of @Q(z*, M*) has no feasible so-
lution; a possible remedy is to solve a modified quadratic program. This has been
discussed by Fletcher [14]. We will not address this point.

(ii) The point z¥ + d¥ may be farther from any local solution than z*. For this
reason it is safe to introduce a linesearch on some potential function; the most popular
potential is the so-called exact penalty function (see Eremin [13], Zangwill [28], Han
[16], Pschenichny and Danilin [22])

0,(z) := f(z) +rllg()?|
with > 0 (the penalty parameter) and . defined as follows:

. i if del,
i z; i died

Here ||.|| stands for an arbitrary norm in IR?, although we note that most often the
2! norm is chosen for practical reasons. The dual norm ||.||, is defined as

lplls = max{z'n; |l]| < 1}.

Usually r is chosen so that 7 > ||u¥||., where pF is the multiplier associated to d*.
However this potential suffers from the Maratos effect (Maratos [19], Mayne and
Polak [20]). Even when z is close to Z and 2 +d—2% = O(z — Z)?, and r close to [|A[|x,
it may happen that 6,.(z + d) > 6,.(z), and in the context of composite optimization
it has been shown that this may occur an infinite number of times. See Yuan [27].
Various remedies have been proposed, the first of them being to make an ad-
ditional restoration step (Mayne and Polak [20], Gabay [15]), i.e., denoting ||.|| an

arbitrary norm in IR", different from the one in IR?, to compute v* solution of

min [[o]| ; gi(z* + d*) + ¢'(z*)v = 0, i € I,

where I} is some prediction of the set of active constraints, obtained as a byproduct
of the computation of d*, and to perform a linesearch along the arc

p — ¥ + pd* + p*o*.

Other possible remedies are to modify the potential, specifically to use a nondiffer-
entiable augmented Lagrangian [7], and to compare the value of 8,.(z%*1) to the value
of 6, not only at z*, but also at ¥, 2¥=2 ... (see, Chamberlain et al. [12], Panier
and Tits [21], Bonnans et al. [9]). To our knowledge, all published papers concerning

the Maratos effect assume that the strict complementarity hypothesis holds.

1.4. Our contribution. In this paper we present an algorithm that has global
and local properties under weak hypotheses on the sequence {M*} of approximations
of the Hessian of the Lagrangian. At step k of the algorithm, a parameter oy > 0
is set and a direction d* is computed as a stationary point (if any) of the quadratic
problem

. 1
Quu(@*,M¥)  minVf(ah)'d+ 5d'M*d+ SE|dllf 5 g(a*) +¢'(a*)d < 0,

where ||.||2 is the Euclidean norm. This technique was first introduced by Bell [2].
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We note for future reference that the first order optimality system of Qq, (z*, M*)
is, denoting by u* the Lagrange multiplier,

Vf(z*) + M*d* + apd* + ¢'(z*)tu* = 0,
(6)
g(zF) + g'(a%)d* < 0; ph >0; (p*)t(g(z*) + g'(z*)dk) = 0.

The parameter r = 7 of the exact penalty function 6,.(z) is adapted at each
iteration in order to allow a linesearch; however, null steps may happen and in this
case ay, is increased. We prove that {r;} and {a;} are bounded and that any limit
point of {z*} satisfies (1). Our hypotheses are as follows. First we assume

(7) {M*}, {z*}, and {d*} are bounded.

Note that if upper and lower bounds on x are present, then {z*} and {d*} are
necessarily bounded. Second, we assume that

(8)  the linearized constraints g(z) + ¢'(z)d < 0 are feasible and qualified,

which means that for any z, (8) is satisfied for at least one d, and for all (z,d) such
that g(z) + ¢'(z)d < 0, the gradients of active constraints of this system are linearly
independent.

Hypothesis (8) may seem excessively strong. If a nonlinear optimization problem
is solved with a random starting point, it might not be satisfied in the neighborhood
of the starting point. We have in mind large-scale real-world applications where,
in order to solve the problem in a reasonable time, the initial point is the result of
some heuristics so that in the region in which the sequence {z*} lies, (8) is satisfied,
although a linesearch may be useful. This is, in particular, the case in the optimal
load flow problem (see [5]).

We show also how to avoid the Maratos effect using a second order correction;
there we use a very weak hypothesis on the approximation of the Hessian of the
Lagrangian. We show also how to combine this result with Theorem 1.1 in order to
obtain a superlinearly convergent algorithm.

If second-order derivatives are available we show how to formulate a globally con-
vergent algorithm that reduces locally to Newton’s method, and this seems to be the
first globally convergent extension of Newton’s method for nonconvex constrained op-
timization. Other globally convergent algorithms have been published, e.g., Han [16]
and Fletcher [14], but they assume the approximation to the Hessian to be bounded.
The difficulty is that there is no a priori bound for the estimate of the multiplier.
We give a device that overcomes this difficulty. We note that Bell [2] has a global
convergence result comparable to ours, but he assumes the penalization coeflicient 7y,
to be fixed. By contrast, we deal with the more difficult question of adapting this
parameter.

It may seem surprising that the algorithm includes a penalization of the displace-
ment as well as a linesearch; this is due to the presence of constraints. For fixed z,
when a — oo, d solution of Q. (x, M) converges to w(z) solution of

min | ; g(x) +¢'(2)d <0,

and (if 7(z) is nonzero) it may happen that f(z +7(z)) > f(z) and ||g(z + 7 (2))¥|| >
llg(x)¥|| ; in this case the step pr = 1 cannot be accepted whenever ay is large enough.
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2. A globally convergent algorithm with fixed penalty parameter. In
this section we will present some properties of the exact penalty function that allow
the design of a linesearch that extends the one due to Armijo [1] for unconstrained
minimization. The ideas that we present here are classical (see [16]) and this section
must be considered mainly as a way to prepare the more sophisticated algorithms of
883 and 4. We note however two specific features. The first is that our hypothesis on
the norm is as follows:

9) 2z — ||z%|| is a convex mapping.

This hypothesis is easy to check for the £, norms, 1 < p < oo, and in that
case ||.}|| coincides with the distance to the cone generating the partial order z < .
(The property is not true for all norms, e.g., in IR? consider ||z|| = |z1| + |za — 1]-
If J = 0 then ||z*|| = ||zt|| = 2 + |zf — z|. We compute [|(1,0)F]] = 2 >
LI, —1)H] + (L1 = ),

The second hypothesis is the choice of directions of sufficient descent. For this we
use relation (10) below.

We define the directional derivative of 8, at z in direction d as 6.(z,d). This
is well defined, even if (9) does not hold, because p — g(x + pd)* has a directional
derivative w(z, d) (that can easily be computed explicitly) and z — ||z is convex and
Lipschitz, hence

6,(z + pd) = (z) + pf' (@)d +rllg(@) + pw(z, d)]| + o(p)
= 0,(a) + plf' (@)d + rn‘w(z, )] + o(p),

where y is some element of the subdifferential of ||.|| at g(x)*.
We define the “linearized” (at point z*) exact penalty function as follows:

0 (d) = f(z*) + f'(z")d + rell(g(2®) + ¢’ (&®)d)F|.

For any d feasible for Q,, (z¥, M*), we note that the decrease of the linearized
exact penalty function when step pp = 1 is accepted is equal to A,, (z*,d), where

Ar(z,d) = rllg(@)*|| - f'(z)d.
We say that A,(z,d) is feasible if
(10) Ap(z,d) > [|d]]°.
By Ay we denote A,., (z*,dF).
LEMMA 2.1. Let d be a stationary point of Qu(x, M) and u the associated La-

grange multiplier. Then
(i) if (9) holds, then

(ii) The following relations hold:

(12)  Ap(z,d) 2 (r = [lull)lg@) Il + alldll3 + d*Md + p*(g(z)* — g(2)),

(13) Ar(z,d) 2 (r = [lpll)llg(@) | + elld]; + d' Md.
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Proof. (i) From (9) we deduce that
0,(z,d) = f'(z)d +rn'g'(z)d,
where 7 is some subgradient of ||.¥|| at g(z), i.e.,
1281l > llg(2)*l + n*(2 — g(2)) V2 € RP.

Choosing z = g(x) + ¢'(z)d, and noting that 2* = 0, we deduce that n'g'(z)d <
—|lg(z)¥|, from which (11) follows.
(ii) From (6) we deduce

0= f'(z)d+ d'Md+ a||d||? + p'g' (z)d.
;From the complementarity condition we get that utg'(z)d = —putg(z), hence
—f'(z)d = d'Md + a||d|; - u'g(=),
and so

Ar(z,d) = alld|l; + d'Md + rllg(2)*|| — u'g(x),
= alld|l; +d'Md +rl|g(@)*]| - p'g(2) + u'(9(2) — g())
> alld|l +d*Md + (r — [|pll)llg(@) || + p'(9(2)* — g(x))-

Thus (12) is proved. Now, as pr > 0, we get from the definition of g(z)* that
pt(g(z)* — g(z)) > 0, and so (13) holds. n|

Let z* be the current point of the algorithm and d* a stationary point of Qq, (z*, M*).J]
From (13) it follows that, at least if 7, > ||u*||« and oy is large enough, then Ay is
feasible (note that for oy, sufficiently large, ||d*|| ~ ||w(z*)]||, hence (10) is satisfied).

(From (11) it follows that d* is a descent direction of 8, if Ay > 0. This allows
us to define a linesearch in the following way.

Linesearch rule. LS1. Parameters v € (0,1/2),8 € (0,1). If Ay is feasible then
compute p = (B)¢, with £ smallest integer such that

07‘k (mk + (ﬂ)édk) < 07‘k: (xk) - (IB)LYAk;
(14) ohl gk 4 o gk
Pra=.
We note that (11) and the relation v < 3 imply that (14) is satisfied for £ large
enough. Hence the linesearch is well defined. In order to analyse the global properties
associated with this linesearch we deal in this section with the simple case when 7y, is
equal to some constant 7.
We can now formulate a conceptual algorithm.

ALGORITHM 1
Data: ap >0, M® an n x n symmetric matrix, 2° € R™ ; k — 0.
Computation of (d*, u*) satisfying the optimality system of Q, (z¥, M*).
If Ay is not feasible, i.e., (10) not satisfied for Ay, stop.
Perform the linesearch LS1.
Choose ayyq and M+,

k—k+1,

go to 1.

W= o
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THEOREM 2.1. Assume that (7) and (8) hold. Let z* be computed by Algorithm
1 in which Ay, is assumed to be feasible at each step. Assume that (ay, M*,d*) are
bounded, ri, = 7 > 0. Then d* — 0 and the set of limit points of (z*, u*) is a connected
subset of the set of solutions of the first-order optimality system (1).

Proof. We prove that d* — 0. We note that 6,.(z*) decreases, hence converges, so
that by (14) prAg — 0. Assume that for some subsequence k', we have (2, o, M,
d¥') = (&,é, M, d) with d # 0. We observe that Ay — A := A.(&,d) > 0 by (10) and
that d satlsﬁes the first-order optimality system of Q4 (&, M); hence .(z,d) < —A
by (11), which implies for p small enough

hence for k' large enough by continuity (as Ay — A > 0)
b, +pd") < 0,(a") = LA (M, d),

which proves that pjr cannot converge to 0, hence we get A = lim Ay = 0, from
prAr — 0, contradicting A > 0 obtained from our assumption d # 0.

Now as d* — 0 for any converging subsequence of (z*, ay, M*,d*), we can pass
to the limit in (6), deducing the boundedness of {y*} from (7) and (8), and so that
any limit point of (z*, u*) is solution of (1). Now as d¥ — 0, the set of limit points
of {z*} is connected; by (8) the Lagrange multiplier of (1) (whenever it exists) must
depend continuously on z; the conclusion follows. a

In the next section we relax the restrictive hypothesis on r* and on the a priori
feasibility of Ay.

3. A general globally convergent algorithm. This section is devoted to the
statement and analysis of a globally convergent algorithm, more precisely an algorithm
computing a sequence {z¥, u¥} such that any of its limit-points satisfy the first-order
optimality conditions (1). In this algorithm we must update the two parameters 7y
and ay.

For 7, the idea is the following: take 7 = r;_1 whenever it is possible, i.e., if
A, _, (x%,d¥) is feasible and py = 1 is accepted by the linesearch; otherwise choose
ri, satisfying rr > ||u*|l«. In order to make the sequence rj constant after a finite
number of steps we choose r;, = max(ry_y,int(||x*||« + 2)). Finally the update rule
for rj, is as follows:

Te—1 if A, _, (2%, d") is feasible and
(15) =19 On_y(@F +d") <On (aF) —vA, (a5, db),
max(rg_1,int(||g*||« + 2)) if not.

For oy, the idea is the following. If Ay is not feasible or py is close to 0, then
choose agi1 > ap, + &1, with &1 > 0 (because of Lemma 2.1 this will eventually yield
the feasibility of Ag). On the other hand, if Ay, is feasible and pp = 1, then ayq; will
be taken smaller than ay.

Finally we mention the possibility of null steps, i.e., when Ay is not feasible then
P+ is taken equal to z* (or equivalently pr, = 0) and «y is increased. We now state
the algorithm.
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ALGORITHM 2
0. Data: ap > 0, M° n x n symmetric matrix, z° € IR". Parameters 0 < &1 < €a,
0<e3<1; k0.
1. Computation of (d*, u*), satisfying the optimality system of Qq, (z*, M*).

2. Ifk=0,set 71 « |[u®« + 1.
3. Choice of rj using the rule (15).
4. If Ay, is not feasible (null step):

Pk 07

gkl gk

go to 6.

5. If Ay, is feasible: perform the linesearch LS1.
6. Update of ay:
If pr, = 1, choose g1 < ay/2.
If pr € (e3,1), choose apy1 < ap + éa.
If p, < ez choose apt1 € [ag + €1, ar + €2].
Choose M*+1,
7. k—k+1,
go to 1.

Remark 3.1. We observe that {ry} increases, and {ry} is bounded iff there exists
r > 0 such that r, = r for k > k.

THEOREM 3.1. Let z* be computed by Algorithm 2. We assume that (7) and (8)
hold. Then (i) the sequences {ry}, {ar}, and {u*} are bounded;

(i) the set of limit-points of {z*} is connected, and with each limit point is asso-
ciated o Lagrange multiplier.

We give a proof that makes use of some lemmas below.

Proof. (a) We prove that {rj} is bounded. If not, then there exists a subsequence
k' with 74 > 71, and by (15) ||u* ||« — co. This, and (6)—(8) imply that oy ||d¥ || —
00. Now by Lemma 3.1, we obtain ||g(z*)*|| — 0 and Lemma 3.2 ensures that for &’
large enough, r = rj_1, contrary to the definition of {k'}.

(b) We prove that {a4} is bounded. As {7} is bounded, we know from Remark
3.1 that 7 is constant, say equal to r for k > ky. Lemma 3.3 says that there exists
& > 0 such that Ay is feasible if o, > & and k > kq.

(From step 6 of Algorithm 2, it follows that ary1 < ap + e for all k. By
Lemma 3.3, if a > & and k > ko, then p, = 1 and a1 < ap/2; hence apy1 <
max(&, ag, /2) + €2 whenever k > ky.

(c) We now prove (ii). Let & be given by Lemma 3.3. By step 6 of Algorithm 2,
after at most &/e1 successive null steps, one has aj, > &; by Lemma 3.3 the next step
is not a null step. This means that IK := {k € IN; p, > 0} is not finite. The sequence
{2*}rem, can be viewed as generated by Algorithm 1, and we deduce from Theorem
2.1 that {d*}rex — 0 and that with each limit-point of {z*} is associated a Lagrange
multiplier. As {z*},ew and {z¥} e obviously have the same limit-points, point (ii)
follows. O

We now state and prove the three lemmas used in the proof of Theorem 3.1.

LEMMA 3.1. Let {z*} be computed by Algorithm 2. Under hypotheses (7) and
(8), if rie /" oo then [|g(z*)|| — 0.

Proof. (a) Let us verify that ||g(z*)?|| converges. Let m := inf{f(z*),k € IN}.
Note that m > —oo as {z*} is bounded. Then, as {ry} increases 0, (z"*1) < 0, (z*)
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and so we deduce

— _ kY _
loae+ )+ LEZD 2T gy ¢ LD gy L) o
k Tk Tk—1

7

hence {||g(z*)*|| + (f(z*) —m)/rr_1} is a decreasing sequence, and so converges since
it is bounded. As r, / oo and {f(z*)} is bounded since {z*} is bounded, it follows
that ||g(z*)*|| converges.

(b) It suffices now to get a contradiction when assuming that lim ||g(z*)*|| is
positive. Let us note that by (6)—(8), if {ax} is bounded, so is {u*} hence {r;}
cannot go to co. Hence we may extract a subsequence k' such that oy — oo and
z* — Z. Tt is easily checked that d* — d := n(Z). Now since ||.}|| is a Lipschitz
mapping:

Or (&) = Oy, (2 + pd*') = il g(a® )2 || = v llg (=™ + pd*" )| + O(1)
=1 |lg@)*|| — e |9(Z + pd)* || + o(rae),

with o(ry)/rg — 0 uniformly on p € [0,1].
As g(z*) + ¢'(z* )d* < 0 and (7) holds, it follows that

lg(@ + pd)*|l < (1 = p)llg(@)*|| + aop®  for some ag > 0,
hence since ||.|| is a Lipschitz mapping and (7) holds:
Or, (z*) = Or,, (2¥ + pd*') > priv||g()*]| — i a0p® + o(71s),

> privllg(a* )| = rwaop® + o(rwr),
= pAy —rragp® + o(rpr).

We note that Ay /rr — ||g(Z)*|| which is assumed to be positive. Using this we
get for some a; > 0

Or, (') = Oy, (2 + pd*') > Ap[p— a1p® + o(1)]
and it follows that pp > p for some p > 0. Then this implies that for some as > 0
Tim|lg(@* )/ llg(z* )| < 1 - asp,

in contradiction with our hypothesis. O
LEMMA 3.2. Let 2% be computed by Algorithm 2. Under the hypotheses (7) and
(8), if a subsequence {alskl} satisfies ||g(z* )| — 0 and ap ||d*' || — oo, then
(i) (12 la/ ()l — 1.
(ii) For k' large enough, 1 = rgr 1.
Proof. Denote by

1 1
ai(d) := Vf(z*)ld + §dthd+ Eakdtd,
the cost function of Qq, (z¥, M*). As ||d¥|| is bounded it follows from the unbounded-
ness of ay ||d*' || that g — oo. So we see that for k' > kb, g (d) is convex, hence d*

is a global solution of Q,, (z* , M*). In particular, denoting 7" := 7(z*), we have

(16) g (d*') < quo (7).



SEQUENTIAL QUADRATIC PROGRAMMING DISPLACEMENT 11

From the definition of 7% we have ||7*||» < ||d*|l2. On the other hand, dividing
(16) by ay ||d¥'||2, remembering that ag — oo we obtain 1 < lim||7* ||»/||d* ||, and
point (i) follows.

We now prove (ii). We may assume that rp oo, for otherwise 7, is constant for
k large enough (see Remark 3.1) and then the conclusion holds trivially. The idea of
the proof is that the penalization term dominates in the linesearch. Indeed,

’

Ark1_1(wk Jdk’) = Tk’*l”.g(xk,)ﬂ” - fl(xkl)dkla

, 1 1 k' dk’ k'
— o allg@at ey (1 - L@ 7 e
o1 1l oG )

We claim that the term between parentheses converges to 1. By point (i),
f'(z¥)d¥ J||z*'||5 is bounded. As rr_; / oo it suffices to prove that ||7* [|o/|lg(z* )|
is bounded. If this is not the case, extracting if necessary a subsequence we may
assume that zF' — &. As ||g(z* )| — 0, & is feasible.

Let D(z) be the set {d € R" ; g(z) + ¢'(z)d < 0}. As (8) holds we may apply
to the feasible sets of Qq(z, M) a theorem of Robinson [23] that asserts that for z in
a neighborhood of #, d = 0 is at a distance of D(z) of order ||g(x)*||. Tt follows that
the element of minimum norm 7 (z) satisfies ||7(x)|| = 0(||g(z)*||), and this proves our
claim.

Now let us prove that if A, ,  (z*',d*) is feasible by (i) and the boundedness
of |7 ||2/|lg(z*")¥|| proved above it follows that ld¥" || /llg(z*¥ )| is bounded. Using
(7) and rp_; / 0o we deduce that rp_ 1||g( YN/Ild* ||> — oo. This and our claim
above imply (10), i.e., feasibility of A,,_, (z* ,d*")

On the other hand

Ory_ (2" )=0r, (@ +d") = rio_1 (9@ || = g +d*)H )+ f(z*) — f( +d¥)
and so

(17)
O (@) = Or_ (@ +d¥) = A, (@Y, dY) = a]lg@™ + dF)H| + O@dY)2.

But ||.F|| isa LlpSChItZ mapplng, and from (6) (g(z ’)—i—g (z ')dkl)li =0, hence ||g(z*
d* )| = O(d*)2. Also d¥ = O(g(z*")) hence, with (17),

Orp_y () = Op_ @ +d¥) = A, (@7, d¥) +0(A,, (27, dY)).

Tr! —1

As the rule (15) is used in Algorithm 2, the two previous results imply 71 = 7p
for any k' > kj, in contradiction with the hypothesis 7 * co. O

LEMMA 3.3. Let 2% be computed by Algorithm 2. Under hypotheses (7) and (8),
if {ri} is bounded, then there exists & > 0 and ko such that p;, = 1 whenever ay > &
and k > k.

Proof. Since ry, is bounded, there exists r such that r, = r for k > ko (cf. Remark
3.1). Using (13) we know that

Ag > (r = u* 1) llg(z*)F Il + axlld®||3 + a* M*d*,
and so, as from (7) {M*} is bounded, we obtain for some az > 0

Ak > (r = I 1)llg(z* )l + (o — as)lld® |13,
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for k large enough. If pj, # 1 then 7 = 7 > ||u*||+; hence

(18) Ag > (o —as)||d¥ |3
As {d*} is bounded, we deduce that for a; large enough, A, is feasible. Now
0, (%) = 0, (2" +d*) = r(llg(® || = llg(z® + d*)F||) + f(*) - f(a® +d¥),
so since (7) holds and f, g are smooth, we get for some ay > 0
(19) 0,(z*) = 0:(a* +d*) > Ay — ag||d¥|I3,

hence using (18), for ay, large enough
1
6,(z*) — 0, (zF+d*) > 8%

As v < %, the rule (15) ensures that the two previous results imply p, = 1, in
contradiction with the hypothesis pj # 1. O

4. A globally and superlinearly convergent algorithm. Let Z be a local
solution of (P) and ) its associated Lagrange multiplier. We know that Algorithm 2
is not generally superlinearly convergent, even if z¥ — 2 and M* — V2L(z,)). This
is due to the Maratos effect (Maratos [19], Mayne and Polak [20]). In this section we
show how to adapt the idea of a restoration step in order to accept the unit stepsize.
We define

I":={iel;X>0}UlJ,
Ii={iel;pf>0tuJ
We first perform a local analysis in which our hypotheses are as follows:

{MF*}, {z*}, {ar}, {d*} are given such that z* — 7,
(20) {M*} and {ay} are bounded,
d* is stationary point of Qq, (¥, M*) and d* — 0.

We define v* as the solution of

. g(z® + d*) + ¢'(z%)v < 0,
(21) e Il { gi(zF + d*) + gi(z*)v = 0 for any i € I},
where ||.|| is an arbitrary norm in JR™. Under some reasonable assumptions we show

in Proposition 4.1 below that the point 2* + d* 4 v* insures a significant decrease of
the exact penalty function. It could be argued that the computation of v* may be
expensive. A possibility ([20], [15]) is to compute v* solution of

(22) mvin vl ; gi(z® +d*) + gi(z¥)v =0 for any i € I}.

If the strict complementarity hypothesis holds, the two corrections are, for k
large enough, identical. This indicates that a reasonable way to solve (21) might be
to solve (22) first and to check if its solution is also the solution of (21). We start
with a technical lemma.



SEQUENTIAL QUADRATIC PROGRAMMING DISPLACEMENT 13

LeEmMMA 4.1. Assume that (8), (20), and (21) hold. Then one has for some a > 0,
ko € N

(23) I* CI; for k > ko ,
(24) 0% < alld*|I?,

(25) g(zF 4+ d¥ 4+ oF)* = o(d*)?,
(26) gr+(z% + d* + oF) = o(d*)?.

Proof. (a) It follows from (20), (6), and (8) that u* — A. So for k large enough,
{ieI; X >0}c{i€el; uF>0}and thus (23) is proved.
(b) Since (8) holds and by definition of I}:

g9(zF) + ¢'(z¥)d* <0,

gi(z%) + gi(z*F)d* =0, i € I},
it follows that

g(z* + d*) < O(d*)?,

gi(z® +d*) = O(d*)?, i e I},

hence using again (8), v* = O(d*)2.
(c) Expanding g(z* + d* + v*) and using (24) we get

(27)  g(z* 4+ d* + %) = g(z*) + ¢’ (2®)(d* + ") + %(dk)tg”(a:k)dk + o(d*)?.

Moreover, since (21) implies (g(z* + d*) + ¢'(z*)v*)¥ = 0, expanding g(z* + d¥)
and using z — ||2*|| Lipschitz, we obtain

(o(a*) +g'(a*)a* + 3 (d)'g" (a*)d* + g/ ()0 )| = ofd*)?.

Then, as z — ||2*|| is Lipschitz, we have (25).
(d) Since v* is solution of (21), the expansion of gr: (z* + d*) yields

1 . .
gi(z®) + gh(z*)d* + E(dk)tgé'(xk)dk + gi(z*)* = o(d*)? for any i € I}.

Hence (26) follows from (23) and (27). O
Then we compute z¥*! along the path p — z* + pd* + p?>v*. The first trial point
is z* + d* 4+ v* and if it appears to be necessary to test a small value for py, then
the contribution of v* is small with respect to the one of d*, and this allows us to
preserve the descent property on 6,.. Specifically the linesearch is as follows.
Linesearch rule LS2. Parameters v € (0,1/2), 3 € (0,1). Compute v* solution of
(21).



14 J. F. BONNANS AND G. LAUNAY

If Ay, is feasible, i.e., (10) holds for Ay, then compute p; = ()¢ with £ smallest
integer such that

Or, (2 + (B)0dF + (8)*0%) < 0, (%) — (B)* v Ak,

28
(28) ohtl — gk 4 prd® + (pr)2d*.

In order to perform a local analysis we are led to assume that (%, A) (local solution
(P) and associated multiplier) satisfies the following strong second-order sufficient
condition (Robinson [24]):

(29) for any d € ker gi.(z)\{0}, d'VZL(Z,\)d > 0.

Recalling (8) we see that (29) is stronger than the standard sufficient condition
(5), and that both coincide if the strict complementarity hypothesis holds at Z.

The next proposition insures that the new linesearch rule accepts the step p* =1,
if ¥ is close to Z satisfying (28). Define

d%. orthogonal projection of d* onto ker gh. (z*),
d, = d* — db,

H:=V2L(z,)\),
and for z € IR?, % by

N u ifiel*
Z; = +

z;  if not.

PROPOSITION 4.1. Assume {M*}, {z*}, {a}, {r}, {d*} given such that (8),
(20), (21), and (29) hold and v, = 7 with r > ||\||« . If there exists g > 0 such that
for z* close enough to z,

1

k th k . k |12 >
(30) (@) M d + b > s

(dp) Hdy + eol|d5 |I?
then LS2 accepts step pr, = 1 for k large enough.

We call (30) the condition of sufficient curvature . A typical condition for the unit
step to be accepted is that M¥ is close to H, or maybe in some direction only in some
sense. Our condition is of a somewhat different nature, as we require the curvature
in the tangent direction, i.e., (d%)!M*d% to be sufficiently positive. This condition is
minimal in the following sense: in the framework of unconstrained optimization, so
that d* = d%, then it can be checked that a necessary condition for the unit step to
be accepted is (30) in which we change +¢¢l|d%||? into —¢o||d%-||2, as shown in Lemma
4.2.

LEMMA 4.2. Let Z be such that Vf(Z) = 0 and V2f(Z) > 0. Let z* — = and
{M*} be such that d* = —(M*)=1V f(z*) vanishes, and

f@* +d¥) < f(a®) + v f(ah)dk

Then for any g > 0 we have for k large enough

(d*) Mkdh > d'V2 f(7)d — eo|d)|?.

_ 1
2(1—7)
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Proof. Choose gy > 0. Set HF := fol(l —0)V2f(z* + 0d*)do. We have
. . 1 . :
Fa* + ) = £(a) + F@A)E + L@y b
with || M* — V2f(2)|| < 2(1 — 7)eo for k large enough. It follows that

0< f(a") +9f (@")d" - f(a* +d)
= (7= D (M)t — () Bk

= (1 — dk tHk:dk_ dk tdek: ,
(1) |@) ST (@)
so that
1
dk tdek> dk tdek
(@) H > s ()
1 kNt o2 £ = 7k k)2
> —
> Sy @) V@) — colld |,
as was to be proved. a

Before giving the proof we set some preliminary results.
LEMMA 4.3. For any n X n symmetric matriz M and for any ¢ > 0 one has

(31) (d") Md* > (dp)' Mdy — &2||d7 |3 — I MII(L+ || M]1/e%)lldx 113,

(32) (df) Mdy > (d*)' Md* — e2||di |13 — ML+ [|M]1/)]ld 13-
Proof. Since d* = dk + d%, we get
(@) Md* = (df)' Mdy + 2(d}) Mdy + (dy)' Mdy,
hence the following relation holds:
(33) |(d*)' Md*(dy) M| < 2| M]|||d%|2[ld 12 + | M]][|d]13-

Asforalle > 0,a > 0, b> 0, one has 2ab = 2(ca)(b/e) < e2a? + b* /2, it comes
for a = ||d} |2 and b = ||df||2[|M]]:

2| MIllldFll2lldNll2 < €*[ld7[13 + | M1 |dR 113/,

which with (33) gives the conclusion. O
LEMMA 4.4. Under the hypotheses of Proposition 4.1, for k large enough, Ay is
feasible and the following holds:

(34) Jas > 0;  Ag > as)ld¥|3
and (7 being the constant involved in LS2, i.e., v € (0, 3)):

1

; , >
(35) ey > 05 Ay > 2(1 —’}’)

(M HAF + ¢4||d¥)?.
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Proof. We restrict our attention to k such that z* is close to Z.

(a) Preliminaries. It was already noticed (cf. proof of Lemma 4.1(a)) that under
our hypotheses u* — X. From this result and the hypothesis » > ||A||. one has for k
large enough

r =Ml > (= 11711 /2,
and also it comes for ¢ := min{); ; i € I* NI} (and so ¢ > 0) that for k large enough

min{p¥; ie I*nI} > g

Hence, as p* > 0 and g(z*)* > g(z*),

(1) (9™}t~ 9(a*) > § Y (@l — gila)
iel*NI

=5 Y max(0,gi(s"))
iel*NlI

;From the definition of g(z*)* and §(z*) we finally get with (12) that there exists
& > 0 such that for k£ large enough

Ax > €15 + anlld P + (a5 M.
Now from (32) with M = M* it follows that for all € > 0
Ap > €|zl + arlld®ll3 + (d7) M*dy — 2|7 |13 — IME(I(L + (M5 /) |dy 13-
As {M*} is bounded, (8) holds, and d%; is solution of
min d]. : gr-(a*) + gf. (a5)d = 0,
we have
(36) dy = O(gr- (")) = O(g(z")),
hence for k large enough, since ||d*||3 = ||d%||3 + ||d% |3 > ||d%||3, we get
(37) B> S+ (o — <3 + () M.

(b) Proof of (34). Since (8) and (29) hold, there exists § > 0 such that for z*
close enough to T

(38) for any d € kerg.(z%), d'Hd > §||d|>.
(From (30), (37), and (38) one has for k large enough
&~ . .
Ak > 13" + x(dp) Hdy — e?||d7 |3 + o(d7)”,

gu (@) + (x8 = e)|d5 13 + o(df)?.



SEQUENTIAL QUADRATIC PROGRAMMING DISPLACEMENT 17
Hence for k large enough, taking € = 1/x6/3 we get
&, 6
A > S+ xg b 3

Using (36) we deduce (34).
Hence, as we assume that d* — 0, it follows that Ay, is asymptotically feasible.
(¢) We now prove (35). jFrom (30) and (37) we have for k large enough

£~
Ap 2 2§ + x(dp) Hdj + *||di 13-
Then using (32) of Lemma 4.2 with M = H, we obtain for all ¢ > 0
§iiapk . . .
Mg > Sllg(@®) + x(a*) Hd" = 2¢?||dp |3 = [|HI| (L + || H [ /%) lldy 13-

Hence one has from (36) for k£ large enough,

(39) Ag 2 x(d*) Hd* —2¢2||dy |13

Take 6 in (0,1) such that @y = It follows with (34), (39), and the

2(1—=7)

relation ||d% || < ||d¥|| that
Ay = 0A; + (1 — 0)Ay

1 kyt prk gk 21117k 12

> 2(1_7)(0l ) H " + [(1 - 6)as — 27][|d"||".

We now choose e; = (1 —6)as/2 and € = /&1, so that e; = (19)as — 2¢?; relation
(35) follows. 0

LEMMA 4.5. Assume that the hypothesis of Proposition 4.1 holds. Define &% :=
z* — 2. Then 2% = O(dF).

Proof. ;From the optimality system of Q, (z¥, M*) we deduce that z* satisfies
the optimality system of

min f(z) + zlck ; g(z) +eF < 0
X

with c* := M*d* + a;d* and e* := ¢g'(z*)d* and so ¥ = O(d*) and e* = O(d*).
Consider the family of perturbed problems

(Pe,e) mgcin f(z) + ztc; g(z) +e < 0.

For ¢ =0, e =0, z is a local solution of P;; satisfying the regularity hypothesis
(the linearized constraints are qualified) and the strong second-order sufficient con-
dition. It follows that for c*, e* close to 0, any local solution z* of the first-order
optimality system of (P .x) which is in a given neighbourhood of # is such that
zF = O(c*) + O(e*) = O(d*) (see Robinson [25]). a

Proof of Proposition 4.1. We know from Lemma 4.4 that, for k large enough, Ay
is feasible; so it remains to check that (28) holds with £ = 0. Define

R = gk gk 4ok,
gkl = gkt _ g

a:=0,(z") - 0,.(z*+1).
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We must prove that a > yAy. Indeed
(40) a=L(z*,X) = L1, X) + X (g(#*1) — g(*)) + r(llg(®)H|| — [lg(@* ).

Expanding L(., A) at & one obtains

Lok

_ - 1
(41)  L(z* X)) — L(@*, X)) = (@ Y Hzk — 5(5:’6“)%5:’““ + o(ZF)? + o(&*+1)2,

Moreover one has

(.’Z’k)tka _ (:Z'k+1)tHIZ'k+1 — (i’k _ i‘k+1)tH(i’k + :Z'k+1)

= —(dF + V") H (2% + dF + oF).
So using (24) we get
(z")'Hz* — (&) Hi* ' = —2(d*)' Hz" — (d*)'Hd* + o(d*)?,

then, since (24) yields #¥*1 = z*F + d* + o(d*) and using Lemma 4.4, we obtain from
(41)

L, ) — L(E,5) = ~(d) Ha* — S(d") Hd* + o(d)”
Then from (25), (26), and Lemma 4.4 we get from (40)
(1) a= (@ HE — () HE — Ng(ah) + rllg(ah) | +old").
On the other hand we have

Ak = rllg(a®)H|| - f'(a*)d*
= rllg(a* )|l = Vo L(z*, X)'d* + X'y’ (z*)d".

So expanding V,L(z*, ) at Z and using Lemma 4.4
Ay, = rllg(z®)F|| = (a*) Hd" + Ng' (z*)d* + o(d*)*.
Using (23) and the complementarity condition in (6), we get for any ¢ € I*
9i(a*) + gi(a*)d* =0,
hence —Atg(zF) = Atg'(z*)d* and so
Ay =7llg(@®)|| - (2*) Hd* — XN g(a*) + o(d*)’.
Plugging this in (42) we obtain
a= —%(dk)tHdk + Ap + o(d¥)?.

We want a > vAyg, i.e.,

(1—7)Ax > %(d’“)tHd’“ + o(d*)?
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which is a consequence of (35). O

According to §1.4, we now present an algorithm that is globally convergent (as
in §3) and that converges superlinearly when we assume that {}M*} approximates in
some sense the Hessian of the Lagrangian of problem (P) (using §4 and properties of
Newton type algorithms quoted in §1.2). We now state the algorithm.

ALGORITHM 3.
Perform the same steps as in Algorithm 2, replacing LS1 by LS2.

THEOREM 4.1. Let z* be computed by Algorithm 3. We assume that (7) and (8)

hold. Then
(i) {rr} and {ar} are bounded.

(ii) The set of limit points of {z*} is connected and to each of them is associated
a Lagrange multiplier.

(iii) Assume that the algorithm computes the solution d* of minimal norm of the
optimality system of Qq, (%, M*). If to some T limit-point of {z*} is associated a
multiplier X such that (29) and (30) hold, then x* — % and py = 1 for k large enough.
If in addition P¥[(V2L(z,\) — M*)d*] = o(d*), then the convergence is superlinear.

Proof. The arguments for proving (i), (ii) are essentially the same as for Theorem
3.1. As they are rather long we do not reproduce them in detail but rather analyse
where the differences are.

Proof of (i). This proof relies on extension of Lemmas 3.1-3.3 for Algorithm
3. Lemma 3.1 is proved by checking that ||g(z*)|| converges if 7, \, oo, and on a
first-order expansion (in p) of ||g(z* + pd*)?||. These last arguments have immediate
extensions as the paths p — zF + pd* and p — z* + pd* + p?v* have the same first-
order expansion, the term v* being uniformly bounded. Simple considerations allow
an immediate extension of Lemma 3.2. For the extension of Lemma 3.3, estimate
(18) on Ay is still valid, and (19) also holds, but with a possibly different constant
ay (because of the additional term v*) and the conclusion follows. Now the same
discussion of points (a), (b) of proof of Theorem 3.1 can be used in order to check
that (i) holds.

Proof of (ii). The mechanism of adaptation of {z*} and Lemma 3.3 imply that
pr > 0 for an infinite subsequence {k'}, and we may suppose that {z¥'} — &. If
A — 0 it follows that d¥ — 0, hence Z is a stationary point of (P). If not, assuming
d¥ = d # 0 and v* — o (note that v* is bounded by (24) hence has limit-points)
expanding p — 0,(2 + pd + p?9) as in the proof of Theorem 2.1 we deduce that py
cannot converge to 0, hence Gr(xk') — 00, which is impossible. Henceforth d = 0 and
point (ii) follows. Using (29), (30), and applying the sensitivity result of Robinson
[25] to d = 0 solution of Q(Z, V2L(Z,))) we deduce that d* — 0 for the considered
subsequence.

Proof of (iii). That prr = 1 asymptotically for the subsequence {wk’} — T is
then a consequence of Proposition 4.1. Indeed p* — X as d* — 0 and (M*,a;) are
bounded. If p;: < 1 for a subsequence then (for k' large enough) 7441 > || A||+, hence
r > ||All« and the hypotheses of Proposition 4.1 are satisfied: it follows that pp = 1
for k' large enough, hence ay \, 0 at a geometric rate.

Now by (29), Z is an isolated stationary point (see Robinson [25]), and by point
(ii) is an isolated limit-point of {z*}. As the set of limit points of {*} is connected
it follows that all the sequence converges to Z.

If in addition P*[(V2L(Z, ) — M*)d*] = o(d*), then as ay, \, 0, P*[(VZL(z,\) —
(M* + aiI)d*] = o(d*) hence by Theorem 1.2, zF + d* — 7 = o(zF — z). As vk
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0(d*)? = o(z* — z) we get 2*t! — 7 = o(2* — Z), as desired. a

We now formulate an algorithm that, assuming that the second derivatives of f
and g are known, is an extension of Newton’s method in the sense that, when z*
is close to some Z satisfying (29), it computes d* using M* = V2L(z*, uF~1) where
puF~1 is the multiplier associated to d*~1, and ¥ — Z with a quadratic rate. The rule
is as follows:

choose M*+! = V2 [(z*+1 A\k+1) with

(43) pF o if e ||db|| + (| MFaF]| < 1,
AL =

pF /(1 + o ||d¥|| + [|DLEdE]]) if not.

THEOREM 4.2. (a) Let {z*} be computed by Algorithm 3 with {M*} computed
by (43). We assume that {z*}, {d*} are bounded, that (8) holds and that aj,1 = 0 if
pr = 1. Then points (i), (ii) of Theorem 4.1 still hold.

(b) In addition, if T satisfying (29) is limit-point of ¥ and d* is the solution of
minimal norm of the optimality system of Qq, (%, M*), then all the sequence {z*}
converges to T with a quadratic rate.

Proof. (a) In order to get point (i), (ii) of Theorem 4.1 we must just check that
{M*} is bounded; indeed A\**! is bounded by (8) and (42) hence so is {M*}.

Now as d* — 0 and (M*,ay,) are bounded, it follows that u* — X and AF+1 = %
by (43), hence M* — V2L(z,)) and point (iii) of Theorem 4.1 implies that p = 1
since (30) obviously holds which implies the convergence of all the sequence to Z at a
quadratic rate by Theorem 1.2. O

Acknowledgments. Thanks are due to M. J. D Powell, P. Terpolilli, and an
anonymous referee for their remarks that improved a preliminary version of this paper.
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