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Abstract

The paper deals with the problem of optimal control of a gasoline-
fueled car engine, that uses a new technology called of catalytic convert-
ers called “NOx trap”. The aim is to minimize fuel consumption, with
constraints on NO, emissions. The model is an impulse optimal control
problem that is solved by a dynamic programming type algorithm. We
present the model, discuss the discretization scheme and analyse numeri-
cal results.

1 Context of the study

In recent years, a new technology of gasoline engines was introduced in order to
decrease fuel consumption. This technology, called “lean-burn engine”, uses an
air-fuel mixture which contains less fuel than in a classical engine. The air-fuel
mixture of an engine is characterized by a quantity called “Normalized Fuel-Air
Ratio” (NFAR) given by:

fuel mass / air mass

fuel mass / air massg;gichiometric

Here, “stoichiometric” means that the combustion is complete. The value of R
is close to 1 for a classical engine, and less than 1 for a lean-burn engine.

The drawback of lean-burn engines is high NOx (nitrogen oxide) harmful
emissions, especially when R is far from 1. A possible remedy is to use a after-
treatment system which contains a new type of catalytic converters (catalyst)
called “NOx trap”.
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1.1 Operation on a NOx trap catalyst

The NOx trap catalyst has two operation modes:

- Storage mode: in lean condition (NFAR < 1), the catalyst stores some
of the emitted NO,. It operates as a “non-ideal tank”: the higher the tored
quantity, the lower the proportion of incoming pollutants that are stored. In
addition, the tank size depends highly on temperature. The device does not
work when temperature is too low or too high.

- Regeneration mode: in rich condition (NFAR set to some value greater than
1), the stored pollutants are partially eliminated. The regeneration is quite fast
with respect to the storage process, although it can last several seconds.
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Figure 1: Typical behavior of the NOx Trap catalyst

1.2 Relative advantages of operation modes

e The lean mode allows a lower fuel consumption, but produces high NO,
emissions.

e The rich mode allows to empty the catalyst but needs a high fuel con-
sumption.

e The stoichiometric mode does not allow lowering fuel consumption, but
does not produce high NO, emissions.

The problem is to find the optimal strategy which minimizes the fuel con-
sumption while respecting the standard value of NO, emissions. ;From the
above discussion, we can infer that the stoichiometric mode should be used



when the temperature of the catalyst is too low or too high. Otherwise one
has to use the lean mode, untill the storage level is so high that the inciming
pollutant is not stored enough. Then one has to use the rich mode.

Such a strategy, however, needs a careful tuning for: (i) the value of R in
the lean mode, (ii) choosing at what times the rich mode should be activated,
(iii) choosing the duration of the rich mode when activated.

For a stationary behavior (constant values of N and ('), this tuning is already
a nontrivial operation since it has to be done for each possible value of engine
revolution N and torque C. Note that the engine controller may have effects on
the temperature of the engine, and hence of the controller.

In addition, for a real (non stationary) driving profile, the storage process is
slow enough for interacting with changes of N and C.

1.3 Mathematical tools

When controlling classical thermic motors, the long term dynamics are negligible
in the sense that that there is no need to forecast what will happen in the future.
Here the situation is quite different, since the knowledge of future is used for
choosing when making the catalyst empty. In real conditions, the future is quite
uncertain. However, in order to have an idea of the improvement brought by
this new technology, it makes sense to assume the future to be perfectly known
and to compute the corresponding (deterministic) optimal control strategy.

2 System modeling

In this section we set the mathematical model of the catalyst converter. We do
not enter into details of nonlinear functions that appear in engine modeling of
converter dynamics, since there expression is complicated. We prefer to use a
compact notation that gives a global idea of the study. The structure of the
model is given in figure 2.
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Figure 2: Structure of the model

Here are its main features:

The driving profile P is given, and described by the variation versus time
of the engine revolution N and its torque (some European normalized
cycle for example).

The control variables are R (NFAR) for the lean mode, and the initial
times and duration of stoichiometric and rich modes.

The engine is described by a nonlinear static model:

Tgm"t = F(N,C,R),
n]\}ootm = FQ(Na C7 R)a (1)
Q?Ot = F3(N7 Ca R)J
Qe = F4(Na Ca R) .
The exhaust pipe is described by a non-linear dynamic model:
T, = G(Tg‘“, Tgm"t). (2)

The catalyst is described by a nonlinear dynamic model with two state
variables, M, mass of stored NO,, and M., mass of exhausted NO,:

M, = fi(--)
{ Me fz() (3)



Although the model reduces to a single differential system, each operation
mode is described by a specific dynamics:

R<1: { My = (LT QP QRE),
%g _ %Oom B (,01(@,Tgm7Qrgno ’ %Oom)v
=0
R=1: .8 ’ )
- { Me = 0, ( )
M, = ‘P2(@ Tin QmOt mot )
E>1 {'s 1hg oWy Y WNO, />
Me = 0.

Note that ¢2(-) has nonpositive values, whereas o1 (-) may have positive

or negative values, but is always less than Q% . Therefore the derivative

of M, is always nonnegative, whereas the one of M, can change of sign.
3 Optimization problem formulation
The total system (engine + exhaust pipe + catalyst) can be described by:

e 2 state variables : x1 = M, and zo = M.,
e 1 control variable : u = R,
e 2 output variables : y; = Q. and yo = M,.

The state equation (dynamics) are as follows:

1 = fi(t,®1,22,u),

.’i‘g = fg(t I1,T2 u)
M ) ) 7 )
M) yi = g(t,u).

Y2 = Z2.

The optimization problem is

T
(P) min/ g(t,u)dt subject to (M) and z,< M.
0

u

Note that o > 0. Also, 1 > 0 and upper bounds on z; can be easily
computed using the storage model. Hence the state variables have both natural
lower and upper bounds.

Problem (P) enters in the framework of the theory of optimal control. In
addition, since there are only two bounded state variables, and a finite horizon,
it is straightforward to solve it by a dynamic programming type algorithm. But
before that we will slightly change the formulation of the problem, in order to
take into account some specific aspects of the regeneration: (i) The decision
of purging is followed by a delay, due to the distance between the engine and
catalyst converter. (ii) The decision is to regenerate during a certain duration,



and hence is not local in time. (iii) The duration of regeneration is small with
respect to the duration of storage (the engine dynamics is neglected). (iv) Given
storage and duration, the storage after regeneration can be readily computed.

For these reasons, it makes sense to consider the regeneration decision as an
impulse control. This means that the decision is to make a jump from one value
of state to another. The associated delay is the sum of an offset delay and of
duration.

4 Numerical analysis

4.1 Abstract impulse control problems

Consider the following abstract framework for impulse control problems, where
decisions of impulse take place at times {6;},7=1,---, N, and the duration of
each impulse is a function v(-,-) of the current state and variation of state &;.
It is convenient to denote the duration of ith impulse as

vi = v(yo(6:),&)- (5)
The state equation is
yw(t) = f(tayw(t)7u(t))> te (01 + Vi70i+1)7
yw(0i+’/z') yw(ez)'i'fz: 7/:0; aNa
yz(s) = =.

Here z is the initial state at initial time s € [0,7], 6o = s by definition, and
{6;},i=1,---,N,is a (possibly infinite) increasing sequence of stopping times.
The criterion to be minimized is

V(z,s,u,0,§) := /0 0t yo (), u(t))e Mdt + Z c(&)e Midt + o(y.(T)).

It includes a running cost £, an impulse cost ¢(-), and an actualization coefficient
A > 0. We may include restrictions on the jump impulses ¢; by assuming that
¢(+) has value +o0 outside its effective domain

dom (¢) := {£ € R"™; ¢(§) € R}. (6)

These restrictions make sense in our application. In addition we have the state
constraint

yz(t) € cQ, tel[sT]. (7

Here Q is an open subset of IR"™ whose closure is denoted clQ. Consider the
problem, denoted (P; ), of minimizing the criterion over all possible controls,
for an initial state x at time s. The value of the problem is

V(z,s) :=inf{V(z,s,u,0,8); (u,0,€) such that (7) holds}. (8)



4.2 The Hamilton-Jacobi-Bellman equation

Consider the operator that with a function v : Q x [0,7] — IR (a candidate for
being equal to the value function V(z, s)) associates the optimal value after an
impulsion:

(Mv)(z,s) := inf {v(z+& s+ v(z,§)) +c(§)} 9)
¢cclR

Obviously
V(z,s) < (MV)(z,s), V(z,s)€Qx][0,T], (10)

with equality for those (x,s) where the optimal strategy is to take an impulse
control. Consider the pseudo-Hamiltonian function

H(t,m‘,u,p) = f(t,x,u)—}—pf(t,m,u) (11)

By the usual argument dealing with optimal control problems without impulse,
we have that

AV -V, — irelgH(t,x,u,Vgc) <0, (12)

with equality if the strategy of making no impulse at point z and time s is
optimal. Combining with (10) and the discussion following it, we obtain, at
least formally, the Hamilton-Jacobi-Bellman equation for the value function:

{ max(A\V = V; —infyey H(t,z,u, V),V — MV) =0, (z,t) € R* x [0,T],
v(z,T) = ().
(13)

Under appropriate technical conditions on the data, it can be proved using the
techniques of [2, 4] that V(z,s) is solution of (13) in the so-called viscosity
sense. In order to have a well-posed equation (i.e. uniqueness of solution) we
should add some boundary conditions on 9, see [1, 2, 4]. We will not enter into
the abstract theory, but rather discuss them later for the specific application
considered in this paper.

4.3 Discretization

We make several assumptions. The actualization term A is supposed to be
equal to 0, since the extension of the results to the general case is easy, and this
simplifies the formulas. We assume that, as is the case in our application, (2 is
the set obtained by taking into account bound constraints on the state variables.
We may also assume without loss of generality that the lower bounds are 0, and
denote as zM - zM the upper bounds. Given integers Ny,-, N,, greater than 1,
let h; := M /N; be the space steps, and denote by hg = T//Ny the time step.

Finally denote by k£ and j the time and space indexes, respectively. It is
convenient to denote

ty = kho; Tj = (jlhla T 5.7nh7l)



We wish to compute a function v* defined over the space and time grid, such that
¥ is an approximation of V (tx,z;). It is convenient to denote vf as v(zj,tk).

Vs
J
Therefore we want to have, in a sense to be more precise later,

vf =v(zj,te) = V(zj, tr). (14)

Given z and u € U, we consider the upwind numerical scheme applied to
the differential equation z = f(¢,z,u), (integrating from ¢ = T to t = 0, since
we have a backward equation), and then maximize with respect to u € U for
each time step. We need the following notations. We define the sign function
for a vector, o : R™ — {—1,4+1}", by the relation

Ve e R™; Vie{l,.---,n} o(z); =1if z; >0, —1 if not.

Denote by e; the ith element of natural basis of R™. With a “sign” ¢ €
{-1,+1}", and coordinates (z,t), we associate a subset of U and a finite differ-
ence discretization of the spatial gradient D¢, as follows:

U(z) :=={u € U; o(f(t,z,u)) =<}, (15)

v(t,x + hies,u) —v(t, z,u) i oo —1

c . hz i — 4
(D ’U(.’L‘, t))z = v(t,a:,u) _ U}(f,m _ hiei,u) it o= 1. (16)

Therefore if u € U¢(x), we have that the ith component of the spatial gradient
of v(x,t) is decentered to the right if f;(¢,z,u) > 0, and to the left otherwise.
(Remember that the algorithm goes backward; hence this is really where the
information comes from.) Consider an abstract discretized algorithm of the
form

(i) o'(zj,th1) = v(zj,te) +ho _inf  H(ty, j,u, Dov(z;, 1)),

S

(ii) v(zj,tg—1) = min (vl’(mj,tk_l), (va)(a:j,tk)) , (17)

n = 17 Ty NO:

(ii)) v} = o(a;).

That is, the algorithm computes the value without impulsion, the one with
impulsion, and keeps the best value. The value without impulsion is itself the
infimum over all values obtained by a finite difference discretization of the HJB
equation, using an upwind scheme.

Remark 1 (a) Given x, the set US(x) may be empty for some of the ¢, but
not for all. Since by convention the infimum over an empty set is +oo, this
means that the above minimum is in fact taken among the signs ¢ for which
the associated set US(x) is mot empty. By compactness of U, we have that
0" (zj,t, 1) whenever v(-,ty) has finite values. (b) Note that step (ii) in (17)
is explicit. (c) Since v(-,ty) is defined only at points of grid, it implicitly uses
some interpolation scheme.



The scheme is said to be monotonous if v(+, tx_1) is a nondecreasing function
of v(-, tx).

It follows from the analysis of [3] that if the scheme is monotonous, then
it is convergent. Note that step (ii) in (17) is monotonous, provided, as we
assume in the sequel, that the interpolation scheme is itself monotonous. In
that case, monotonicity in (14) occurs iff the first argument in the minimum
is monotonous. A sufficient condition is given by the following classical CFL
condition:

(2

i=1

4.4 Boundary condition

In order to be well defined, the upwind scheme needs boundary conditions for
incoming boundaries (i.e. the part of the boundary where some of the char-
acteristics start at the boundary). We discuss this point only for our specific
example.

For the first state variable, the bounds are such that it can be guaranteed
that no boundary is incoming. The second state variable is the total amount of
NOx emitted since the beginning (¢ = 0) and hence decreases along a backward
time trajectory. That is, the boundary corresponding to the maximum NOx
allowed is incoming. Along this boundary the only possible strategy is to take
the NFAR equal to 1. Therefore a simple preliminary computation allows to
compute the value function on this boundary.

5 Numerical results

5.1 Constant-speed driving profile

We have perform validation tests in constant-speed configuration, so that engine
speed and torque are constant. We represent the value function, optimal control
feedback, and optimal state and control along a given trajectory.
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Figures 3 and 4: Value function, constant-speed driving profile

We represent the value fonction for the initial time and close to the final time.
The value function is clearly increasing with stock and pollution, especially for
a high level of pollution, which is the expected behavior.
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which is reflected in the second figure.
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Figure 7: Optimal control vs time

In this case of a constant profile, we obtain the optimal control at any time
a “threshold curve” which limits two zones, the first with storage control and
the second with regeneration control. As was expected, the profile of optimal
control vs. time seems to be cyclic with a constant period except close to the
initial and final time. The behavior there is somewhat artificial since we have a
given initial state and a constraint on the final state of charge.

5.2 Normalized driving cycle

We have performed a second test with more realistic conditions, using input data
corresponding to the normalized European cycle (MVEG) imposed by pollution
standards.

The profile of the optimal control is more complicated compared with the
constant-speed case. We can observe that the optimal control gives a stoichio-
metric control in the beginning and the end of the cycle. This result is logical
since the efficiency of storage/regeneration mechanism is low in this zones. In
fact, it is well-known that a NOx trap is efficient only in a limited temperature
zone called “temperature window”. In addition, the catalyst temperature is too
low in the beginning of the cycle and too high in its end.
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Figure 21: Optimal state and control, European cycle
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