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1. Introduction. There exists a vast literature devoted to Pontryagin’s princi-
ple for optimal control problems governed by ordinary differential equations or evo-
lution partial differential equations, but very few papers have considered the case of
elliptic equations. A simple case corresponding to a linear equation was studied by
Lions [19]. More recently, the authors have derived Pontryagin’s principle for semi-
linear monotone elliptic equations in [7]. Here we extend the results of the last work
by letting the existence of pointwise state constraints generalizing some preliminary
results of Bonnans [3], [4]; in [8] we have considered, assuming continuity of the data,
the case of boundary as well as distributed control and we obtain a “symmetric”
formulation of the optimality system involving boundary and interior hamiltonians.
See Bonnans and Casas [5] for a different approach to the optimality conditions of
state-constrained control problems.

The difficulty of deriving the optimality conditions for control problems associated
with variational inequalities is well known; see the works of Mignot [20], Mignot and
Puel [21], Barbu [2]. Zheng-Xu He [18] obtained the optimality conditions for state-
constrained problems governed by variational inequalities and Bonnans and Tiba [9)
proved Pontryagin’s principle for control problems of semilinear elliptic variational
inequalities. Here we will derive a principle of Pontryagin’s type for state-constrained
control problems of semilinear elliptic variational inequalities.

In this article we prove Pontryagin’s principle as follows: with the aid of Eke-
land’s principle, we introduce a family of control problems without state constraints
for which some approximate solutions converge towards the optimal control of the
initial problem; we derive the optimality conditions for the problems of this family
by using some results on problems without state constraints that generalize those of
Bonnans and Casas [7] and Bonnans and Tiba [9] and finally we pass to the limit. In
order to apply Ekeland’s principle we need assume some stability conditions of the
optimal cost with respect to small perturbations of the feasible state set. We distin-
guish two different stability conditions, called weak and strong respectively. Under a
weak stability condition we derive the optimality conditions in a non qualified form,
while the strong stability allows us to prove a qualified Pontryagin’s principle. The
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2 F. BONNANS AND E. CASAS

weak stability condition has been used by Casas [13] to prove the convergence of the
numerical approximations of state-constrained control problems.

The paper is organized as follows: in the next section we formulate the control
problem associated to a monotone semilinear elliptic equation and in Section 3 the
statements of the weak and strong Pontryagin’s principles are presented; in Section 4
we give some technical results used in sections 5 and 6 to prove the theorems stated in
the third section; finally Section 7 is devoted to the control of variational inequalities.

2. Setting of the problem. Let Q be an open and bounded subset of R",
n > 1, with a Lipschitz boundary I". Given a non empty bounded set K C R™,
m>1,and f:Q x R x K — R we consider the following boundary value problem

(2.1) { Ay = f(w,y(w),;(i)()) ;r; S%
where
Ay = - Z 0z; (aij(7)0z,y(2)) ,
ij=1
aij € C®'(Q) and
(2.2) n

JA > 0 such that Y ai;(2)&:&; > Al¢” VE€ R™, Vz € Q.

3,j=1

We recall that C%*(Q), with a € (0,1], is the space of all continue functions in Q
that satisfy the Holder condition:

|u(@2) — u(@1)|

< +00.
|zo — 21]® oo

sup
T1,T2 Eﬁ

Given two measurable functions L: Q@ x Rx K — Rand g: Q x R — R, for
every 6 > 0 we formulate the control problem

min J(y,u) = / Lz, y(x), u())dz

(Ps) Q
(y,u) satisfies (2.1), u(z) € K a.e. z € Q and g(z,y(z)) < § Vz € Q.

We will make the following assumptions on the functions defining the problem
(Ps): g € C(2 x R), g, L and f are continuously differentiable with respect to the
second variable for every (z,u) € Q x K and there exist functions M; € L*(Q),
s > n/2 and s > 2, My € L'(Q) and 7 increasing monotone verifying for every
(z,9,u) E AX Rx K

< Mi(z) +n(lyl),

(17(@,0,0)] + \g—;@,y,u)

oL
(23) {10001+ | G @ 0)| < MaGa) + 0o,
99 ol of
[ 3y € C(2x R), 8—y(x,y,u) <0.
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We will say that a control u : @ — R™ is feasible if u(z) € K a.e. z € Q and the
mapping (z,y) — (f(z,y,u(z)), L(z,y,u(z))) is measurable in Q x R. The set of
feasible controls is denoted by K. In this set we define the distance, called Ekeland’s
distance,

d(u,v) =m{z € Q: u(z) # v(z)}),

where m denotes the Lebesgue measure. Adapting the proof of Ekeland [16] to our
case it is easy to check that (K,d) is a complete metric space (the only difference
is that we have to check the feasibility of the limit of a Cauchy sequence, which is
immediate from the definition and the fact that a limit of measurable functions is
measurable).

Under the previous hypotheses and thanks to the boundedness of K, we can
deduce the following theorem

THEOREM 2.1. There exist constants C1 > 0 and a € (0,1) such that for every

u € K the equation (2.1) has a unique solution y, € H}(Q) N C%»*(Q) satisfying
(2‘4) ”yuHH(}(Q) + Hyuuco,a(ﬁ) < (.

Furthermore the mapping u € (K,d) — y,, € H} () N C*%(Q) is continuous.
Before proving this theorem we state the following lemma
LEMMA 2.2. There exist a € (0,1), Cy and C3 such that for every a,b € L*(Q),
a(z) > 0, the problem

Ay+ay=0>b inQ,
(2:5) { y=0 onT,

has a unique solution y € HL(Q) N C%%(Q) verifying

(2.6) lyll a2 @) + Yllze(o) < CallbllLe(0),
(2.7) ||?/||co,a(§) < C3||b||Ls(Q) (1 + ||a||Ls(Q)) -

This result follows from classical estimations in the spaces C%%(Q) (Gilbarg and
Trudinger [17] or Stampacchia [22]); see Bonnans and Casas [7] for details. Now we
prove Theorem 2.1.

Proof. The first part of the theorem is also proved in Bonnans and Casas [7]. Let
us prove the continuity of u — y,. Let {ur};>,; C K be a sequence converging to
u € K, i.e. d(ug,u) — 0. Denote by y; and y the states corresponding to u; and u
respectively. From (2.3) and (2.4) we deduce the existence of M > 0 such that

bi(z) = f(z,yk(z), u(z)) — f(@, yk(2), ur(z))

satisfies

bk || s () =

1/s
(/{m:w(m)#u(x)}|f($,yk($),u($))—f(iv,yk(ﬂf),w(x)ﬂsdm) — 0.
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Now applying the mean value theorem we get for some function 6 : @ — (0,1)

of
Aly —yr) — a—y(w,y + 6k (y — y&), w(@))(y — yx) = br-
Therefore, from Lemma 2.2 and using (2.3) we obtain

ly = yellmz ) + 11y = vkl go.e @y < MlIbkllLe@) — 0,

which completes the proof. O

REMARK 2.3. In order to use Lemma 2.2 in the above proof we have to check
that

Tz — Z—;(aﬂ,y(m) +6,(2)(y(2) — yr()), u(z))

is a measurable function. Although 0y (zx) itself might be non measurable, this is true
because by definition of 0y as

%my(m 1 0u(2)(y() — yu(2)), u(a)) =

if y(z) # yu(),
of ,
8—y(w, y(z),u(z)) if y(z) = yr().

We finish this section by proving a lemma that will be used several times in this
paper. First let us introduce some notation. In the sequel M () will denote the space
of real regular Borel measures in 2, which is identified with the dual space of Co(Q),

the space formed by the real continuous functions defined in Q and vanishing on T.
Let A* denote the formal adjoint operator of A:

Ay = — Z Oz, (a;i(%) 0z, y(x)) -

LEMMA 2.4. For every function a € L*(Q), with a(x) > 0 a.e. z € Q, and
every Borel measure p € M(Q) there exists a unique solution in Wy (Q), for all
o <n/(n—1), of problem

A*p+ap=p inQ,
y=0 onT.

Moreover there exists a constant M > 0 independent of a such that

(2.8) ||p||W01”(Q) < Mlpll o)

Proof. The existence and uniqueness in WO1 "7(Q) of p solution of the above Dirich-
let problem is well known; see Stampacchia [22] or Casas [12]. Let us prove (2.8). Let
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t be the conjugate of o, 1/t + 1/o0 = 1, thus t > n. For every ¢ € W=H{(Q) =
!
(Wol’s(Q)) , the equation

Ap+ap =1 in Q,
=0 onT

has a unique solution in Hy(Q) N Cy(Q) and, proceeding as in [7, Lemma 3.2], there
exists M > 0 independent of a such that

llelloo < Mllp|lw-1.:(q)-

/de = ‘/ wdu‘ <
Q Q

lelloolliell arey < M[Yllw-1.e)llpll o),

Hence

= ‘ / p(Ap + ap)dz
Q

which proves the desired inequality. O

3. The weak and strong Pontryagin’s minimum principle. In this section
we present the statements of the weak and strong Pontryagin’s principles. First let
us introduce some notations and definitions.

DEFINITION 3.1. We will say that problem (Ps) is weakly stable on the right if

(3.9) 61'i{'n§ inf(Ps ) = inf(FPs),

and weakly stable on the left if

(3.10) 51/1516 inf(Pys:) = inf(Py).

(Ps) is said strongly stable on the right (resp. left) if there exist € > 0 and r > 0
such that:

(3.11) inf(Ps) — inf(Ps) < r(8' —68) V& €[6,6 + €,
respectively
(3.12) inf(Py) —inf(P5) <r(6 —¢&') V8§ €[6 —¢,6].

If (Ps) is weakly (resp. strongly) stable on the left and on the right, it will be
called weakly (resp. strongly) stable.

Sufficient conditions for the weak stability were given by Casas [14] under ad-
ditional regularity hypotheses on the functions L and f. In particular, if they are
continuous with respect to the third variable, L is convex with respect to the same
variable, K is convex and closed and (Ps,) has a feasible pair (y,u), then (Ps) is
stable on the right for every § > §y. In spite of these results, in general it is difficult
to establish the stability of a problem, mainly the strong stability. However most of
problems (P5) are weak and strongly stable, more precisely:

PROPOSITION 3.2. Let us denote by 8 a real number such that (Ps,) has at least
one feasible pair (y,u). Then for every 6 > &y, except at most a countable number of
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them (resp. a set of zero measure), the problem (Ps) is weakly (resp. strongly) stable.

Proof. If we define ¢ : [6g, +00) — R by ¢(8) = inf(Ps), then ¢ is a decreasing
monotone function and therefore ¢ is continuous (resp. differentiable) at each point
except at most a countable number of them (resp. a set of zero measure). Finally it
is obvious that the continuity (resp. differentiability) of ¢ at 6 implies the weak (resp.
strong) stability of (Ps). O

Given a number a > 0, we define the Hamiltonian associated to (Ps) by

Hy(z,y,u,p) = aL(z,y,u) + pf(x,y,u).

If o = 1, we simply write H instead of H;. Now we can formulate the following
theorems:

THEOREM 3.3 (Weak Pontryagin’s Principle). Let @ be a solution of (Ps) in
(K,d), with 7 its associated state. If (Ps) is weakly stable on the right, then there

exist@ >0, p € Wy (Q) for every o < and it € M(Q) such that

n—1
(3.13) a + ||zl aa) > 0,
(3.14) 4P= %(%?(x)ﬂ(w)) + a(?9—];(x,?(ffs),ﬂ(w)) + Z—Z(x,y(x))ﬁ in Q,

(3.15) /Q(z(x) —g(z,7(x)))du(z) <0 Vz € Co(Q) with z(z) < éVz € Q,

and for everyv € K
(3.16) Hg(z,y(z),u(z),p(z)) < Hg(z,y(z),v,p(x)) a.e x €.

Moreover if there exists a Lebesgue measurable set Qo C Q, with m(Qo) = m(Q), of

such a kind that one of the two following conditions is satisfied

H1) For each y € Co(Q) and Yv € K the set of Lebesgue points of the functions
x — f(z,y(x),v) and x — L(x,y(z),v) contains Qq,

H2) The functions L and f are continuous with respect to the third variable for every
T € Qo,

then

(3.17) Hg(2,9(2), u(2), p(z)) = min He(z,3(z),v,p(z)) a.e. z €.

THEOREM 3.4 (Strong Pontryagin’s Principle). Under the assumptions of The-
orem 3.8 and assuming that (Ps) is strongly stable on the right, then there exist
PE Wy () and T € M(Q) satisfying (3.14)-(3.16), or (3.17) if the conditions H1)
or H2) hold, with & = 1.

A first version of these theorems (with stronger hypotheses) was given by Bonnans
in [3] and [4]. Since we will use penalization techniques to prove these theorems, the
stability on the right is the proper condition to obtain the desired result. However
the Slater condition, which is a stability condition on the left, is the usual hypothesis
to derive the optimality conditions (different of Pontryagin’s principle) in a qualified
form; see Bonnans and Casas [6]. Weak stability on the left also was the assumption
in [13] to prove the convergence of the numerical approximations.
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4. Hamiltonian formulation of the cost variation. In this section we gen-
eralize some results of [7] that we will use later. Let us denote by h : @ x R — R
and ¢ : R — R two functions satisfying the condition that ¢ is of class C* and h

Oh —
is continuous, differentiable with respect to the second variable and 50 € C(Q2 x R).
Y
Now we consider the functional

A

J(y,u) = /Q L(z, y(), u(z))dz + ¢ ( /Q h(a:,y(a:))da:) .

We are interested in studying this type of functionals because they play an important
role in the proof of Pontryagin’s principle, the second term being particularized later
to some penalization of state constraints. As in the previous section

H(z,y,u,p) = L(z,y,u) + pf(z,y,u).

In the first part of this section we will assume that the following regularity con-
dition holds:

(4.18)

OL
\ < Ma(@)+n(lyl) V(@,y,u) € Qx Rx K,

@("anau)

with M3 € L*(Q).
Let u,v € K be two controls and ¥, and v, the associated states. From the mean
value theorem it follows that there exist the intermediate states ¢, ¥ and § satisfying

o ([ memenas) =6 ( [ nou(onds ) +

¢ ( / h(a:,z;(a:»dx) / B )1 (0) — ()

f('ayvav) = f(';yuaq)) + %(-,@,v)(yv - yu);

OL .
L(',yuﬂ)) = L('ayuav) + a_y('ayav)(yv - yu)a

with §(z),9(z), #(x) € [yu(z),y.(z)] Yz € Q. Since y, and y, are bounded, it follows
that §,9 and ¢ also are bounded. Now we define the intermediate adjoint state py,
as solution of

0 . oL, . . Oh, . .
(41 A*pu,v = Fi('ayav)pu,v + @('ayav) + ¢I ([2 h(a:,y)da:) 6_y($,y) n Q
Pup =0onT.

Note that if v = v, then §,§ = § = y,, and p,,, = p, is the adjoint state associated
to u. Let us verify that (4.19) is well posed

LEMMA 4.1. If (4.18) holds, then equation (4.19) has a unique solution p, ., €
H(Q) N C%%(Q) that moreover satisfies

(4.20) ”pu,v”H(}(Q) + ”pu,v”(;o,a(ﬁ) < Cy Yu,v€eK.
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Proof. Tt is a straightforward consequence of Lemma 2.2 and the inequalities
(2.3). O

Now we have the following Hamiltonian formulation of the cost variation.

PROPOSITION 4.2. Assume that (4.18) is satisfied and let u,v € K and py,, be
the intermediate adjoint state associated. Then

F o) = F(yuru / H (@, 40(2), 0(2), Pun (2)) — B (@, 9 (@), u(®), puo (2))]de.

Proof. We have

J(yo,v) = J(yuru / [L(, 3 (2),0(2)) — L(, yu(2), u(z))}do+

o ([ naaands) =6 ( [ na i) .

From (4.19) we deduce

/Q[L(m,yv(:v),v(w)) — L(z,yu(2), v(z))]dz+

o ([ nemeie) = o [ 1o puteic) -

O (@90 30 (2) = ()t
Q 9y

o ([ mavitands ) [ S )0 a) - vule)do =
‘/Q[A*pu,v - g_;(xa?)(x)av(x))pu,v](yv - yu)d.Z' =
af, . _
/Q Ao — Yu)pundz — / o @ 3(), 0@ (o~ ) =
/Q 1@ 90(2), 0(2)) — (@ yul(@), u(@) ] puoda+

/Q @ yu(@), 0(@)) — (@, 40 (), 0(2))]pupde =
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/Q (@, yul(@), 0()) — £(, ya(2), u(@))]puod,

which proves the proposition. O

PROPOSITION 4.3. Assume that (4.18) holds and let {vi};>, C K be a sequence
converging to u in the topology defined by Ekeland’s distance. Then the states and the
adjoint states associated yr = Yy, and Py = Py, converge to Yy, and p, respectively
in H}(Q) N C%*(Q).

Proof. The convergence y; — ¥, follows from Theorem 2.1. The convergence of
{pr} follows from the continuity of v € K — py, € Hg(22) N C%%(Q) which can be
proved arguing in a similar way to the proof of Theorem 2.1. 00

Given a point zg € 2, we will denote

wr(zo) ={z € Q: ||z — zo|| < 1/k}

and my(zo) = m(wg(zo)) . We will say that a sequence {v;} in K is a spike pertur-
bation of u € K around z( associated to v € K if

_ v iz € wr(zg),
vk(z) = { u(z) otherwise.

PROPOSITION 4.4. Assume that (4.18) holds and let v;, be a spike perturbation of
u around g associated to v € K, and let y; be the associated state. Then for every
u € K there exists a set Q(u,v) C Q, with m(Q(u,v)) = m(Q), such that

dim mi(o) [ (. i) = (g, )] =
H(manu($0)avaPu(x0)) - H(z'o,yu(llfo),U(-'L'O),pu(xﬂ)) V.’Eo € Q(U,?))-

Proof. From Proposition 4.2 we have
j(yk,’l)k) - j(yu;u) = / ( )[H(w,yu(z‘),v,pk(x)) - H(m,yu(m),u(m),pk(m))]dw,
WelZo

where py = Py, converges to p, in HE(Q) N C%%(Q) as stated in Proposition 4.3.
Then

f(yk,vk)—f(yu,U)=/( )[H(x,yu(ﬂv),v,pu(w))—H(x,yu(ﬂc),u(ﬂc),pu(ﬂc))]dﬂf+

/ @U@ B ~pule)d + / @@ 0@ p) = @)

Let Q(u,v) the intersection of the Lebesgue points of the following mappings

z — f(z,yu(),v),

z — f(z,yu(), u(z)),

z — H(z,yu(x),v, pu()),

& — H(z, yu(z), u(2), pu(z))-
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Then m(Q(u,v)) = m(Q). Using now the uniform convergence of pp — py, it follows
for every xy € Q(u,v)

<

my (o)

/ @U@0 pue) ~ pel)de

(o) / 1@, 9(@), v)ldzlpu — el =0y — O.
we(zo)
Analogously

mi(Zo) <

/ @) o) @) = pule)da

mk(mo)/ ( )|f($ayu($),u($))|d$||1?u _pk||L°°(Q) — 0.
wrl(To

Therefore we deduce

lim mk(ivo)[j(ykavk) - j(yuau)] =

k—o0

k—o0

lim m (o) / (@), pul) = H 0 (0),0(0), ) =

H(z0,Yu(T0),v, Pu(T0)) — H(To, Yu(To), u(20), Pu(0)),

which concludes the proof. O

The last proposition allows us to deduce easily Pontryagin’s principle for control
problems without state constraints. In fact it is enough to suppose that @ € K is a
stationary point to derive a minimum principle.

DEFINITION 4.5. We say that u is a stationary point of the control problem

(P) { min J(y, )
(y,u) satisfies (2.1) and u(z) € K a.e. © € Q

> 0.
d(u, @) —0 d(u,w 20

~

Obviously, every local solution in (K, d) is a stationary point. Now we can prove
the following proposition

PROPOSITION 4.6. Let us suppose that ({.18) holds and let @ be a stationary
point of (P). Then for everyv € K

H(z,y(x),u(z),p(x)) < H(z,Y(z),v,p(x)) a.e z €,
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where ¥ and P are the state and adjoint state associated to w. Moreover, if condition
H1) or H2) is verified, then T satisfies Pontryagin’s principle:

H(z,y(z),u(x),p(x)) = vmellré H(z,y(z),v,p(x)) a.e. x € Q.

Proof. The first part of the proof is an immediate consequence of Proposition 4.4,
it is enough to remark that d(vx,u) < mg(zo)~t. To derive Pontryagin’s principle
under the condition H1) we use the fact that the set Q(@,v), defined in the proof of
Proposition 4.4, contains the intersection of {2y and the set of Lebesgue points of the
functions:

z — f(z,7(x),u(x)),
z — H(z,y(z),u(z), p(z)).

Indeed the continuity of p and the condition H1) imply that Qg is a subset of the
Lebesgue point set of the functions:

z — f(z,3(z),v),
z — H(z,y(z),v,p(x))-

Therefore

=
B
<
~~~
8
\.\/
|
~~~
8
\.\/
i1l

(z)) < H(z,y(z),v,p(z)) Vz € Qy and Vv € K.
Then

(2)) = min H(z,5(x),v,p(z)) Yz € Qo.

=
8
s
&
&l
&
k3|

In the case H2), let us take a sequence {v;};2, dense in K and Oy = Ny Q(w, vy).
Then

H(z,y(z),u(z),p(z)) < H(z,y(z), vx,p(x)) Vo € Oy and VE.

Finally the continuity of the Hamiltonian with respect to the control and the last
inequality imply Pontryagin’s principle in the points z € Qo N Q. O

We now get rid of the regularity hypothesis (4.18).

PROPOSITION 4.7. Let w be a local solution of (P). Then the conclusions of
Proposition 4.6 remain true without hypothesis (4.18).

To prove this proposition we will use Ekeland’s principle:

THEOREM 4.8 (Ekeland [16]). Let (E,d) be a complete metric space, F': E —
RU {+00} a lower semicontinuous function and let e € E satisfy

F(e) < inf F 2,
(ec) < inf Fle) + e

Then there exists an element €, € E such that
F(e.) < F(e.), d(ecec) <e
and

F(e.) < F(e) + ed(e,e.) Ve€ E.
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Now we proceed to prove Proposition 4.7.

Proof. The idea is to regularize L and to check that % is an approximate solution of
the regularized problem. Using Ekeland’s principle we get some optimality conditions
as in Proposition 4.7 and finally we pass to the limit in these optimality conditions
and get the desired result.

The regularization is as follows. By Proje. we denote the projection onto the
segment [—1/¢,+1/€], i.e.

Proj.(t) = max{—1/e,min{¢, +1/€} }.

We define
<p€(;1:,t,u) = Proj. (g_:l;(m,ta“)>
and
t
L (z,t,u) = L(x,0,u) +/ we(z,t,u)dt.
0

We can now state the problem

min J.(y,u) = | Le(z,y(z), u(z))dz + ¢ h(z,y(z))d
- Y, U /Q z,y(z), u(z))dx (/Q z,y(x a:)

(y,u) satisfies (2.1), u(z) € K a.e. x € Q.

We claim that inf(P¢) — inf(P) when € \, 0. To prove this it is enough to check
that

(4.21) |J.(y,w) — J(y,u)| <7 Vue K and (y,u) satisfying (2.1),

with r. \, 0 when € \, 0 and r. independent of u. Indeed, if u. € K satisfies that

A

Je(Ye,ue) < inf(P.) + ¢, y. being the state associated with u., then by (4.21)

. . . > . . 3 _ > . . z — _ — .
hzn\lélf inf(P,) > hzn\lglf(Je(ye,ue) €) > hren\lélf(Je(y,u) re) = inf(P)

and also

lim supinf(P.) < limsup J.(7,%) < lim sup[J(7, ) + r] = inf(P),
e\o0 e\0 e\0

which proves that inf(P.) — inf(P), as desired. Let us now check that (4.21) holds.
Indeed

Yy
Lm%w—a@%w=l[%wmw—%wuﬂﬁ.

Let M > 0 be such that |y(z)] < M whenever (y,u) is solution of (2.1) and u € K.

Then
+M
|4mm—ﬂwms//
QJ—M

oe(z, t,u(z)) — g—j(x,t,u(a:))‘ dtdx =
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+M
/—M /S;

2M sup
Q |t|<M,veK

dxdt <

e, tyu(z)) g—jw,u(w))

dx.

oo, t,u(z)) - Z—j(x,t,u(m)

Put

Q. = {x €Q: sup ‘g—j(m,t,u(m))‘ > l/e}.

|t|<M,veK

As
‘Z—j(w,t,um))‘ < M, € IM9),

it follows that m(£2) \, 0 as € \, 0, and

o) = Iy, )| < v =2M | M@z —0.

As a consequence of the previous results, we can get a family of real numbers
{6c}e>0, with 8 N\, 0 when €\ 0, such that

J.(7,7) < inf(P.) + 82

Therefore we can apply Ekeland’s principle with F(u) = J.(yy,u) defined in the
complete metric space (K, d), and deduce the existence of a control u. € K such that
d(w,ue) < 6. and

(4.22) fe(ye,ue) < je(yu,u) + 6cd(u,ue) Yu €K,

where y. is the state associated with u.. To apply Proposition 4.6 we must put
the cost given by the right hand side of inequality (4.22) into the framework of this
proposition. For it we introduce the function x. : 2 x K — R by

(@) :{ 0 if v=uz)

1 otherwise.

Then (y.,u.) is the solution of the problem

min J.(y,0) = J.(v,0) + & [ xa,u(@)
(Q°) ¢
(y,u) satisfies (2.1), u(z) € K a.e. z € Q.
Then Proposition 4.6 implies that for every v € K
He(z,ye(x), ue(2), pe(z)) < H(2,ye(2),v,pe(2)) + 6 ae. z€Q,
where p. is the adjoint state

A*pe = g—f(x,ye,ue)pe + %(w,ye,ue) in €,
(4.23) 4 v

pe=0 onT,
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and
(4'24) HE(.Z', y7u7p) = Le(m7 y7 u) +pf('r7y7u) + 6€X€($7 u)'

From Theorem 2.1 it follows that y. — 7 in H}(Q) N C%*(Q). Then, thanks to
hypothesis (2.3) and the definition of L., we have
of

f(@yerus) — f(z,5,T) and g—g(m,ye,uwa—y(x,y,m in L°(Q),

L L
Lu(opeu) = Lagow) and S5 (apeu) - G (@50 in 1(@),

With the aid of these relations and Lemma 2.4 we can pass to the limit in (4.23)
and (4.24) and to deduce the first conclusion of Proposition 4.6. To prove the second
conclusion, i.e. the Pontryagin’s principles, we argue as follows. Under condition
H2), the argument used in the proof of Proposition 4.6 can be repeated here without
modifications. If condition H1) is satisfied, then, thanks to Proposition 4.6, we can
take a sequence €; \, 0 and §; = &, \, 0 such that

He (z,ye, (), ue; (2), pe; () < min H (7, Ye; (), 0,p¢; () + 65 ae. z €y,

with m(2;) = m(Q). Now we pass to the limit and get

H(z,y(z),u(x),p(x)) = UmEIII(l H(z,y(z),v,p(x)) ae. z€ 0= ﬂ Q;,

which concludes the proof because m(Q2) = m(Q). O
THEOREM 4.9. The statement of Proposition 4.6 is still valid without hypothesis

(4.18).
Proof. From the definition of stationary point we deduce that for every € > 0
there exists r. > 0 such that

j(y, ’LL) - j(ga H)

> - Br _7
(o) > —€ Yu€ B, (u)

where B, () is the open ball of (K, d) of radius r. and center at w. Hence
I < J,0)+ ¢ [ X(@u(@)de Vue B, (@)
Q

with

0 ifv=ma(x)
1 otherwise.

x(@,v) = {

Then it is enough to apply Proposition 4.7 to the problem

min J(y,u) + e/ﬂx(a:,u(x))d:v

u € By (), u(z) € K,
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and pass to the limit when € \ 0, to deduce the desired result. O

The hypotheses made about K, L and f do not allow to assure the existence of a
solution of control problem (P). Here we will prove a principle of Pontryagin’s type
for e-solutions.
_ DrriNniTioN 4.10. A control w € K is called an e-solution of (P) if
J(Yu,u) < inf(P) +e.

THEOREM 4.11. For every € > 0 there exists at least one €2-solution of (P) in
K. Furthermore for every e?-solution of (P), W., there exists another e?-solution u.
such that d(u.,T.) < € and for everyv € K

H(z,ye(z), uc(2), pe(x)) < H(z,ye(2),v,pe(2)) +€ a.e. z€Q,

where y. = y,. and pe = p,.. Moreover, if there exists a Lebesgue measurable set
Qo C Q, with m(Qo) = m(Q), in such a way that H1) or H2) holds, then T satisfies
Pontryagin’s principle:

H(waye(x)aue(x);pe(w)) = %%H(ﬂf,ye(m),v,pe(w)) +€e a.e z €.

Proof. Thanks to the hypothesis (2.3), we have that inf(P) € R. Therefore there
exists at least one e2-solution of (P). Let %, be one of them. Then we can apply

Theorem 4.8, with F(u) = J(yu,u) defined in the metric space (K, d), and deduce the
existence of a control u. € K, e2-solution of (P), such that d(u.,%.) < € and

(4.25) j(yue,ue) < j(yu,u) + ed(u,u.) Yu € K.

Now we put the cost into the framework of Proposition 4.7, using the function x.
as in its proof, and apply it to get the result. O

5. Proof of the weak minimum principle. Let @ be a solution of (Ps) and
y its associated state. For every v > 0 we define the problems

i = L (e, y(@) — %) da
Q)4 min Jv(y;U)—/Q[L(m,y(m),u(x))+2,y((9( y(@) —6)7)*| d

(y,u) satisfies (2.1) and u(z) € K a.e. z € Q.

The first issue to remark is the following
PROPOSITION 5.1. Let (Ps) be weakly stable on the right. Then

o
lim inf(Q,) = inf(Py)

Proof. Let {uy} be a family of v-solutions of problems (Q,) and {y,} the associ-
ated states:

J(Yysuqy) <inf(Qy) + -

From the definition of (Q,) it follows that (g(z,y,(z)) — &)t — 0 in L*(Q), which,
together with (2.4) and the compactness of the inclusion Hj(2) N C%*(Q) C Co(R),
implies the convergence (g(z,y,(z)) — 6)" — 0 in Cy(Q). Therefore

6y = I(g(x, y(2)) = 8)[leo() + 6 — 8 if v\, 0.
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As (yy,u,) is feasible pair for (Ps,) we deduce that
inf(P57) < J(yn,, uw) < inf(Q’Y) +7.

Then, using the weak stability of (Ps) on the right, we obtain
inf(Py) = lim inf(Py,) < lim {inf(Q;) + 7} = lim inf(Q) < inf(Py),

with the last inequality due to the fact that (y,,u) is feasible for (Q,) whenever it is
feasible for (Ps), with the same cost. O

Proof of Theorem 3.3 Thanks to Proposition 5.1 we deduce that @ is a e?y—solution
of (@), with e, N\, 0 when v\, 0. Applying Theorem 4.11 we obtain the existence
of a control u, € K, eg—solution of (@), with d(u,,7@) < e, and such that for every
ve K

H(z,y,(z),uy(x),p,(2)) < H(z,y,(2),v,p,(7)) + €, a.e. x €1Q,

where y, = v, and p, is the adjoint state:

of oL 1 dg .
A*py = = (2, Yy, Uy )Py + = (2, Yy, Uy) + —(g(, y) — 6)T ==(z, in Q,
Py 8y( Yrys Uy ) Dy 3y( Yrys Ury) 7(9( Yry) ) 8y( Yry)
py=0 onT.
Defining
1 -1
@ = (1413 6@, = )" )
Q.
fy = 77(9(1';?/"/) - 6)+; and Dy = QyPy,
we get

_ _9of __ L _ 8¢ _
* = . - —
(5.27) 4D, = dy (@, Yy uy)Py + Ty ay (T Yy, uy) + 1y By (z,yy) in Q,
P,=0 onl,

and for every v € K
(5.28) Hg, (7,yy(2),uy(2),D, (7)) < Hg, (7,9,(2),v,5,(7)) +¢, ae z€

If v \\ 0, then d(u,, %) < €, — 0, therefore from Theorem 2.1 we get y, — 7 in
HL(Q) N C%*(Q). Using now (2.3), we deduce the convergences

of of

f(xay%“'y) - f(-"ﬂ,?;ﬂ); 6_y($ay'y;“'y) - Fy(m’y’ﬂ) in L (Q)a
o OL oL, _ _._.
L(m,yq,uy) — L(z,7,), 8_y($ay’yau'y) - Fy(xayau) in L*(€).

Applying Lemma 2.4, we obtain the following estimation for p,

_ _ OL _ 0g
||P7||W01”(Q) < M||C¥~,a—y($,y~nuq) +/"ya_y($ay"r($))”M(Q) <M' < 400
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for every o < n/(n—1). Therefore, remembering (5.26), we can extract subsequences,
denoted in the same way, such that 7, — @z in M(Q2) *weakly and p, — p weakly in

W,y°(€). From the Rellich’s theorem (Adams [1]) it follows P, — P strongly in L(Q2)
for each ¢ < n/(n —2). Then

of _ _Of, .
a_y(xay’hu’)‘)pw - a_y($7y7U)p mn Ll(Q)

We can pass to the limit in (5.27) and derive (3.14). Relation (3.16) follows from

(5.28). Relation (3.15) is obtained as follows: for every z € Cy(2) with z(z) < ¢ for
all z €

/Q (2(2) — 9(z,7(2)))d(z) = lim 2 / (2(2) — 92,3 (2)))(9(2, 9 (2)) — ) dz < 0.
It follows that

<@ g(-,y) >= max{< &,z >: z € Co(N), 2(z) < b},

hence 7 is nonnegative and the value of the max is 6|7l apr(q)-
To obtain (3.13) it is enough to remember (5.26) and remark that

_ _ .1 .=
<797 >= 71135 5 <Fp9(iyy) >= yg}) 72 || a1 (2)-

SN

17l a2y =

Finally we must prove (3.17). If we assume that H1) is satisfied, then, thanks to
Theorem 4.11, (5.28) can be written

Hz (z,y,(%),uy (), P, () = 1r}rgg Hz (z,y,(7),v,p,(7)) + €, ae. z €.

Taking a subsequence {v;}52,, we pass to the limit as above and get (3.17).
If H2) is satisfied, we can argue as in the proof of Theorem 4.9 to conclude (3.17).
ad

6. Proof of the strong minimum principle. In this section we establish the
existence of a certain link between the stability of the cost with respect to small
perturbations of the feasible state set and the viability of the exact penalization
procedure of the state constraints. In the context of the abstract optimization Burke
[11], generalizing an idea of Clarke [15], proved an equivalence result between stability
and exact penalization. Since we are assuming the hypotheses of Theorem 3.4, we
have that (Pj) is strongly stable on the right and (7, %) is a solution of this problem.
Now we consider the exact penalization of state constraints:

PROPOSITION 6.1. Ifr > 0 satisfies (3.11), then @ is a local solution in (K,d) of
the penalized control problem

min Jp(u) = AL(xayu(w),U(m))dw + 7ll(g(2, yu) = 6) T [loo
u € K.

Proof. From (3.11) it follows

inf(Ps) = inf {J(yu,u) + (8’ = 8) 1w € K, g(z,yu(zx)) < &', & €[6,6 +€]}.
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Minimizing first with respect to §’ for fixed u we find
inf(Ps) = inf { J(yu,u) + 7(|(9(z,yu) — 6) T |loo : w € K, 9(z,yu(z)) < E+¢€}.

Since the mapping u € (K,d) — v, € Co(Q2) is continuous, we deduce the existence
of a ball By(w), A > 0, such that

9z, yu)llco <6 +€ Vu € Br(u),

which, together with the previous identity, proves that w is a local solution of the
penalized control problem. O

Take A > 0 as in the proof of the previous proposition and r > 0 verifying (3.11).
We introduce the problem

min Jp(u) = /QL(x,yu(x),u(w))dx +7ll(g(z,yu) = 8) )l
u € By ().

(@r)

Then w is a solution of this problem. We passed from a state-constrained control
problem to another control problem without state constraints. The difficulty in this
new problem is that the penalization term is not differentiable. To overcome this
difficulty we define

Teal®) = [ B i s (471 + [ oo - par)
and

min J, 4(u)
(Qr,q) { (XS BA(ﬁq;,

with ¢ > 1. Note that (@) has a differentiable cost and moreover it represents an
approximation of (Q,):
PROPOSITION 6.2. The following identity holds

inf(Q,) = qli_{go inf(Qr,q)-

Proof. From the convergence [|z||ps() — [|2]lc for every z € L*°(€2) and the
inequalities

1/q
(9(z, yu) = 6)F [l Laa) < (q_q +/Q[(g($,yu($)) —5)+]q)d$> <

1
1 + 1(9(2, yu) = 8)F Il Lo

we deduce that J; 4(u) — J.(u) when ¢ — +00. Therefore for every u € By (%)

lim sup inf(Qr,¢) < limsup Jy 4(u) = Jr(u),

q—+o0 g——+oo

hence

(6.29) lim sup inf(Q,,4) < inf(Q;).

q——+o0
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Now we prove the converse inequality. Let us take € > 0 arbitrary and let C7 >0
be the constant given in Theorem 2.1. Since g : 2 x R — R is continuous, it follows
the existence of a constant p € (0,¢€) such that Vz,z' € Q

(6.30) lg(z,t) —g(z',t)| <e if |z—2'|<pandlt| <Ci.
Moreover we assume p small enough in such a way that m({z : |z| < p}) < 1. Now
we define Q,(zg) = QN B,(xg). Since the boundary of I' is Lipschitz, there exists a
number 8 € (0, 1) verifying
m(Q,(z0)) > Bm({z : |z| < p}) Vzo € Q.
0
On the other hand, from the continuity of 99 e deduce the existence of another

Oy
constant M > 0 such that
0 _
(6.31) lg(z, )] + ‘a—z(m,t)‘ <M Y(z,t) €0 x [~Cl, +C1).

Pick u € By(@). If ||(9(#,yu) — 6)*llw = 0, then J; 4(u) = J;(u). Let us suppose
that ||(9(z,yu) — 8) T ||ec > 0 and take zo € Q verifying

(9(z0,yu(0)) — )" = [I(9(; yu) = 8) " [loo-

Then for each z € Q,(zy) we get with the aid of (2.4), (6.30) and (6.31)

|9(2, yu(@)) = 9(0, yu(20))| <

19(z, yu(2)) = 9(20, yu(@))] + 9(20, yu(2)) = 9(x0, yu(0))] <

€+ M|yu(z) — yu(wo)| < e+ MCyp* < M'e,
hence

(9(z,yu(2)) = )" > (9(20, yu(w0)) — 8§ = M'e)* Vz € Qp(z0).

Therefore, we obtain

1/q
I(9(z,9u) = &)l a) > (/ [9(z, yu(z)) — 5)+]qd$> >

m(Qy(20)) 4 (g(x0, yu(20)) — 6 = M'e) > ll(g(z,yu) = 8)* lloo+
(m(Qp(@o )M = DI(9(2, yu) = 6)Flloo — M'em(Qy(20))"/* >

I(9(2:yu) = 6)Flloo + M (m(Qp(20))"/* = 1) = M'e.
Choosing ¢g. > 1 such that

1= m(Qp(20))/* < 1= [Bm({z : |2] < P}V <e Vg > g,
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it follows
I(9(@,yu) = ) [l Lac) 2 (9(2, yu) = 6)Flloo — (M + M")e Vg > ge.
We have proved that
Jpq(u) > Jp(u) — (M + M')e
for each u € By(u) and all ¢ > ¢, hence
L inf inf(Qrg) > nf(Q,) — (M + M")e
for € > 0 arbitrary, consequently

(6.32) lim inf inf(Q; 4) > inf(Q,).

q—+0o0

So the proposition follows from (6.29) and (6.32). O

Proof of Theorem 3.4 Thanks to Proposition 6.2 we deduce that @ is an eg—solution
of (Qr,q), with €, — 0 as ¢ — co. Then Theorem 4.11 states the existence of a control
ug € K, with d(ug,w) < €, satisfying for every v € K

(6'33) H(x;yq(x)a“q(w):pq(x)) < H(x,yq(:c),v,pq(x)) +€ ae x€ Q,

where y, = y,, and p, is the adjoint state:
of oL dg
. _Of oL dg .
(634) A pq - ay (xayqauQ)pq + ay (w,yq,uq) + :u‘q8y (xayq) n QJ
pg=0 onT,
with
1/g—1
wa=r (a4 [ [on(@) =87Tda) [l -1,
Now we must pass to the limit. From d(uq,7) < ¢, — 0 and Theorem 2.1 we

obtain that y, — 7 in Hg(Q2) N C®*(Q). On the other hand, from the definition of y,
we get

1/q—1
liallarey = lallzrey < 7 ( /Q [(g(w,ym))ﬂqu) /Q (g(z, o ()14 M =

P9, 90) = 6 a9 3) = ) 19251 -
Applying Holder’s inequality with exponents ¢/(¢ — 1) and ¢ it follows
lzllzo-s(2y < (Y2l aay V€ LI(Q),
which together with the previous relation leads to

ltall sy < m()4rl(9(2, y4) = 8)F lpaga) <

m(Q)2/ 17| (9(z,yq) — ) |loo < M < +00 ¥g > 1.
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As in the proof of Theorem 3.3, the boundedness of {fi,},>1, the convergence of
{(yq,uq)}4>1 and assumptions (2.3) imply the boundedness of {p,};>1 in W7 () for
every o < n/(n —1). Therefore we can extract subsequences {pq, } and {ug, }, with
qr — +00, converging to P and 7r in Wol"’(Q) weakly and M (Q) *-weakly respectively.
Now it is easy to pass to the limit in (6.33) and (6.34) and to obtain (3.16) and (3.14).
As in the proof of Theorem 3.3 we derive (3.15) from the definition of .

Finally, as stated in Theorem 4.11, under the conditions H1) or H2) given in
Theorem 3.3, the relation (6.33) becomes

H(z,94(2), u4(x), py(2)) = min H(, y,(2),0,p,(2)) + €, ae. v €.

- veEK
Therefore, passing to the limit in this inequality, we get (3.17). O

7. Pontryagin’s Principle in the Control of Variational Inequalities. In
this section we will consider the following control system:

(7.35) { ;4.1/: * ﬂ(()?rjl) Ef(x,y(x),u(m)) in 0,

where A and f are as in Section 2 and 3 is a maximal monotone graph in R x R (see
Brezis [10] and Barbu [2]) such that dom(3) 2 0. The control problem is

xmumwz/memmmm

(Ps) Q
(y,u) satisfies (7.35), u(z) € K a.e. x € Q and g(z,y(z)) < 6 Vz € Q.
We keep the assumptions stated in Section 2 on the data of this problem. Then
we have the following result about the state equation analogous to Theorem 2.1:
THEOREM 7.1. There exist constants Cs > 0 and o € (0,1) such that for every
u € K (7.85) has a unique solution y,, € H}(Q) N C®*(Q) satisfying

(7.36) ”yu”H(}(Q) + “yuuco,a(ﬁ) < Cs.

Furthermore the mapping u € (K,d) — y, € H}(Q) N C%%(Q) is continuous.

Proof. We may assume that $(0) 3 0. If dom(3) = R and 3 is Lipschitz and
of class C?, the result is consequence of Theorem 2.1. When J is a general maximal
monotone graph in R x R it is enough to apply the standard procedure that consists in
approximating (via Yosida’s approximation and convolution with a smoothing kernel:
see [2]) with a Lipschitz C' monotone function 3.. In this way we obtain solutions
ye € H} (2) N C%*(Q) of

{ Ay + Be(y) = f(z,y(z),u(z)) in Q,
y=0 on T.

In order to pass to the limit and derive (7.36) we need a uniform estimate of y. in
HL(Q) N C%*(Q). Using the mean value theorem we can write

Be(ye) = Bi(fe)ye, )
f(@, ye(x), u(z)) = f(z,0,u(x)) + 8—£(w,ﬂe,u(x))yf,



22 F. BONNANS AND E. CASAS

with |fe(2)| < |ye(z)| and |§c(z)| < |ye(z)| for all z € Q. Hence

Ay + (ﬂ;(ga(m))—g—;”(x,ge,u(x))) ye = f(2,0,u(x)) in 9,
y=0 on T.

Now applying Lemma 2.2 to the above equation we get a uniform estimate of y. in
HL(Q) N L*(). Then the hypotheses (2.3) on f imply that {f(z,yc(x),u(x))}es0
is uniform bounded in L*(2). On the other hand, arguing as in [9, Appendix] we
also deduce the boundedness of {fBc(y)}eso in L#(2). Therefore {Aye}eso is uniform
bounded in L*(2); applying Lemma 2.2 again we obtain the desired result. O

The aim of this section is to prove the Pontryagin’s principle for control problem
(Ps). For this purpose we need the following approximation scheme. First let us
observe that Proposition 6.1 is still valid and consequently there exists a number
A > 0 such that @ is a solution of the problem

(0] min 7w = [ 1@ pu@)u@)is + rlg(e. ) = )
u € By(u).

Here y,, denotes the solution of (7.35) corresponding to the control u.

The next step consists in approximating (Q),) by a new control problem with a
differentiable cost functional and a state equation with a C' monotone term 3, (y).
Let us begin with the last question. Following Bonnans and Tiba [9] we will say that a
maximal monotone graph in R x R (3,, with ¢ > 1, is an (1/¢)-uniform approximation
to B if B, satisfies the following two conditions:

2. dom(f,) D dom(p).
Here we view 3 and 3, as multivalued operators extended on R with value —oc on
the left of their domains and 400 on the right of their domains, and the inequality
for sets means

E>n>v, VEEP(t+1/q), ne By(t), vept—1/q).

A constructive procedure for (1/g)-uniform approximations of class C' was given in
[9], and the following result was proved:
PROPOSITION 7.2. Letuw € K. Then the problem

{ Ay + By(y) = f(z,y(2), u(x)) in
y=0 on T,

has a unique solution y,.,, € HE(Q)NCYQ) and ||yg,u — Vulleo < 1/g.
Now we consider the following approximation of (Q.):

min Jy4(u)
(qu){ il

where

Trg(u) = /Q L@, Yo @), u(@))dz + 7 (q—q + /Q (92, D) — 6)+>]Qdm)1/q .
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PROPOSITION 7.3. The following identity holds

inf(Q,) = qli_>120 inf(Qr,q)-

Proof. With the aid of Proposition 7.2 we get

1(9(2, 9g,u) = 8) | a) = (9(@, ya,u) = 6) T lloo| <
1(9(@,yu) = 6)*llLaca) — (9(, yu) — 6)*lo| +
||| T, Yg,u) )+||L‘1(Q) — I(g(z, yu) — 5)+||Lq(9)| +
1(9(@, yg,u) = 8)Flloo = I1(9(2; ) = 6)Flloo| <
1(9(, yu) = &) [l Laga) — 1(9(=, yu) — 8)* | +
l9(2, yq,u) — 9(, yu)llLo(e) + 19(2; Yg,u) = 9(, yu)lloo <

m(Q)V/1 +1
19 ygn) — )y — () — 6)F o] + % L 0as g — oo

Therefore we can argue as in the proof of Proposition 6.2 to deduce that

(7.37) lim sup inf(Qy 4) < inf(Qy).

g—0

Let us prove prove the converse inequality. Let C5 > 0 be the constant given in
Theorem 7.1. From the properties of g we obtain

(7.38) l9(a )] + \@

2.0 <M W(a,0) € B x [-Cr 4y

for some constant M > 0. Applying the mean value theorem and using the hypotheses
(2.3), (7.38) and Proposition 7.2 we get for some constant M’ and all u € By (u):

R (qq + [ Kot - 6)+>1de) s

[ Lot o) + 1 (q—q + [ Kot - 6)+>14dx) " z

Therefore

lim inf inf(Q, ;) > lim inf inf {/ L(z,yy (), u(z))dz+
Q

q— q—0o0
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T (q_" + /Q[(g(w,yu) - 5)+)]qdw) v Tu€ Bx(ﬂ)} :

The proof is concluded by noting that the second term of this inequality is greater
than or equal to inf(Q, ), which is proved exactly in the same way than in Proposition
6.2. 0

Now we are ready to state the extension of Pontryagin’s principle.

THEOREM 7.4. Let @ be a solution of (Ps) in (K,d), with T its associated state.
If (Ps) is strongly stable on the right, then there exist x € W=17(Q), p € Wol"’(Q)

and i € M(Q) such that x is a limit point in W17 (Q) weak of

for every o <
n—1

{84(yg)pq} and

2),1(x)) + g—f;@,m),m» + g—g@,m in 9,

-~
o
e
b
*
S
+
>
Il
|
\
®
Sl

(7.40) /Q(z(ac) —g(z,7(z)))dp(z) <0 Vz e Co(R) with z(zx) < 6 Vx € Q,

and for everyv € K

(7.41) H(z,y(z),u(z),p(x)) < H(z,y(2),v,p(x)) a.e z €
Moreover if the conditions H1) or H2) of Theorem 3.3 hold, then
(7.42) H(z,5(2),u(z),p(z)) = min H(z,5(2),v,p(z)) a.e. z €.

Proof. This theorem can be proved in the same manner than Theorem 3.4: ap-
plying Proposition 7.2 we deduce that @ is a solution of ((),) and then Theorem 4.11
provides a minimum principle for an eg—solution uq. The adjoint state corresponding
to uq satisfies the equation

of OL dg .
A* ! = - Q
Pq + ﬁq(yq)pq Ay (T,Yq,Uq)Pq + By (T, Yq, Uq) + fig By (z,9) in Q,
pg=0o0nT,

with

1/q-1
fig =" (qq + /Q[(g(x,yq(w)) - 6)+]qd$> [(g(z,5q) — )]

The passage to the limit is carried out as in the proof of Theorem 3.4 with the
only modification due to the term S/ (y4)p,. That {,} is bounded in L'(Q2) can be
proved as in Section 7, therefore the boundedness of {p,} in Wy **(2) is a consequence
of Lemma 2.4. Finally from the adjoint state equation it follows that {8 (y,)p,} is
bounded in W~19(Q), for all o < n/(n—1). Then there exists a subsequence, denoted
in the same way, and an element x € W~"7(Q) such that f;(y,)p, — x weakly in
W~17(Q) when ¢ — oo. O

REMARK 7.5. Additional information on x can be derived from Theorem 7.4 for
particular choices of 3. For instance if 8 is Lipschitz near yo € R and xo € Q is such
that y(zo) = yo, then x(z) € 0.8(y(z)) with O.0 the Clarke gradient [14] of B, for x
close to xqg. See e.g. [9] for other illustrations.
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