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Abstract We associate an extended quadratic tangent (EQT) optimization prob-
lem with any feasible point of a nonlinear programming problem. The EQT prob-
lem has linear homogeneous constraints and its cost is the sum of a linear term
and of a finite supremum of quadratic terms. The second-order necessary or suf-
ficient conditions have a natural formulation in terms of the EQT problem. The
strong regularity condition may also be formulated using EQT problems to simple
perturbations of the original optimization problem. Local properties of sequential
quadratic programming algorithms are best understood using this concept. We give
a partial extension of the theory to nonisolated solutions. Finally, we discuss the
extension of the theory to problems with abstract constraints.

1 INTRODUCTION

This paper gives a new presentation of the second order theory for nonlinear pro-
gramming problems (a finite dimensional optimization problem with finitely many
constraints) and discusses some extensions. The theory of second-order necessary
or sufficient conditions is due to Levitin, Miljutin and Osmolovski (1974) (see also
Toffe (1979), Ben-Tal (1980)). The results are expressed in terms of the curvature of
the Hessian of the Lagrangian along critical directions. The second order necessary
condition tells that, if some qualification condition is satisfied, then this curvature
is, for a certain Lagrange multiplier depending on the critical direction, nonneg-
ative. That this curvature is positive is a sufficient condition for optimality. For
non-qualified problems, similar results can be expressed in terms of a generalized
Lagrangian.

Our presentation of the second-order theory is based on the notion of extended
quadratic tangent optimization problem. Consider an unconstrained minimization



problem
Min f(z); =z € R"

With 2 € IR™ we associate the tangent quadratic problem
(Qz) Mdin fl(z)d + %f”(m)dd; deR".

The second-order necessary optimality condition may be expressed as follows: 0
is a solution of (@), while the second-order sufficient optimality condition is that
0 is the unique solution of (Q). Problem (Q.) is also a central object in many
optimization algorithms.

For constrained problems the situation is not so simple. We nevertheless show
that under a certain qualification condition, one may state an extended quadratic
problem (in the sense of section 2) that plays the same role. This extended quadratic
tangent (EQT) problem has linear homogeneous constraints and its cost is the sum
of a linear term and of a finite supremum of quadratic terms. We reformulate in §3
the second-order analysis as follows: a local solution of a nonlinear programming
problem (P) is, assuming the constraints to be qualified, such that 0 is a local
minimum of the EQT problem; if 0 is an strict local minimum of the EQT problem,
then the point is a local minimum of (P). The case of local solutions with unqualified
constraints is discussed in §4. In §5 we show that the strong regularity condition of
Robinson (1980)) may be formulated by reference to the EQT problem of a simple
perturbations of the original optimization problem. We discuss also the directional
second-order condition of Shapiro (1988). Then in §6 we express a necessary and
sufficient condition for sequential quadratic programming algorithms to converge
in the vicinity of a local solution. This condition, whose formulation is based on
the quadratic tangent problem at the solution, implies the quadratic convergence
of the sequence. In §7 we present an extension of EQT optimization problems to
sets of nonisolated solutions. Taking advantage of results in Bonnans and Ioffe
(1995,1996), we give a characterization of quadratic growth for convex programs in
terms of the EQT optimization problem. Finally, in §8 we discuss an extension of
EQT problems to optimization problems with abstract constraints.

2 EXTENDED QUADRATIC PROGRAMMING

We define an extended quadratic optimization problem as a problem of the form

(EQP) Min c'd + Q(d); Ad < 0,
aecR"
where ¢ € IR", A is a p x n matrix, the inequality Ad < 0 is taken componentwise,

and
Q(d) := sup{d'Hd ; H € H},

where H is a nonempty bounded set of n X n symmetric matrices. When H is
a singleton, problem (EQP) is quadratic (i.e. it has a quadratic cost and linear
constraints). Since H is bounded, Q(d) = O(||d||?), and an obvious necessary
condition for d = 0 to be a local minimum of (EQP) is that

dd>0, VdeR; Ad<O0. (1)



This is actually equivalent to existence of some Lagrange multipliers associated
with the linear problem Min{c'd; Ad < 0}, but we do not need to introduce these
multipliers in the subsequent analysis. The cone of critical directions is defined as

C:={deR"; c'd<0; Ad<0}.

The theorem below is the cornerstone of the paper. In the case of a quadratic
programming problem it reduces to Majthay’s result (Majthay (1971)). The state-
ment uses the following concept: A local solution Z of the optimization problem
Min{f(z);x € X}, where X is a subset of a normed space, is said to be a strict
local solution if

de>0; f(z)> f(Z) whenever z € X, ||z—Z|| <eg,
and to satisfy the quadratic growth condition if
Ja>0; f(z)> f(@) +al|lr—z||> +o(|z —Z||?) whenever z € X.

The feasible set, set of solutions and optimal value function of an optimization
problem (P) are denoted F(P), S(P) and v(P).

THEOREM 1 (i) Problem (EQP) has a local solution at 0 iff (1) holds and
Q(d) > 0 for all critical direction d.

(i) The point 0 is a strict local solution of (EQP) satisfying the quadratic growth
condition iff (1) holds and Q(d) > 0 for all non zero critical direction d.

Proof. (i) “Only if” part. If 0 is a local solution of (EQP) and d is a
feasible direction, then for all o > 0

0 < ct(od) + Q(od) = octd + o*Q(d).

Dividing by o | 0, we get c¢'d > 0, whence (1) holds. If ¢!d = 0 then d is a critical
direction, and dividing by o2 the above relation, we get Q(d) > 0, as had to be
proved.

“If part” Let us proceed by contradiction. If 0 is not a local minimum of
(EQP), then there exists sequences d* € R"™, ||d*|| = 1, o} | 0, such that

c'(opd®) + Q(ord*) < 0.
Note that c!'d* > 0, by (1) and feasibility of direction d¥. We have then
Q(d*) < =ctdF Joy < 0. (2)

By Hoffmann’s lemma (Hoffman (1952)) there exists a critical direction d* such
that R
d* = d* + O(ctd¥).

As 'H is bounded, the function @ is Lipschitz continuous. Using Q(cik) > 0 and the
above equality, we get

Q(d*) = Q(d*) + O(d* — d*) > O(d* — d*) = O(c'd¥).



Combining with (2), we deduce that ctd* /oy < O(ctd*), a contradiction.

(ii) “Omnly if” part Let 0 be a strict local solution of (EQP). By (i) we know
that (1) holds. Let d be a critical direction. Then d € F(EQP) and c'd = 0,
therefore @ (d) > 0 as was to be proved.

“If part” Set o := inf{Q(d);d € C,||d]| = 1}. The continuous mapping @
attains its minimum on the compact set {d € C,||d|| = 1}; therefore o > 0. We
claim that Z satisfies the quadratic groth condition with this value of the parameter
a: it is enough to notice that Q,(d) := Q(d) — al|d||* has the same set of critical
directions C' than @ and satisfies Q,(d) > 0, for all d € C. Therefore, by point (i),
% is a local minimum of c'd + Q(d), which is equivalent to the desired conclusion.
O

3 APPLICATION TO NONLINEAR PROGRAM-
MING

We consider the nonlinear programming problem
(P) Min f(z); g(z) <0

where f and g are smooth mappings from IR"™ to IR and IR?, respectively, and <
stands for a finite number of equalities and inequalities, i.e. for z € IR?, z < 0 iff

2;<0,foralliel:={l,---,q},and z; =0forall j € J:={qg+1,---,p}.
The set of active inequality constraints is denoted
I(z) := {i € I; gi(x) = 0}.
For future references, let us denote the critical cone as
C(z) :={d € R™; f'(z)d < 0; gi(x)d < 0,i € I(z); g;(z)d = 0}.

We start with the case of linear constraints, i.e. g(z) = Az + b, with A being
a p X n matrix and b € IRP. Define the tangent quadratic problem to the linearly
constrained problem (P) at = as

1
@) Minf'(e)d+ 5" (@)dd; gi(@)d <0, i € (@) ; gj(@)d =0, j€ ]
THEOREM 2 Let x be a feasible point of the linearly constrained problem (P).
Then:

(i) If z is a local solution of (P), then d =0 is a local solution of (Q%).

(#3) The point 0 is a strict local solution of (Q%) iff = is a local solution of (P)
satisfying the quadratic growth condition.

Proof. (i) Let  be a local solution of (P), and let d € F(QZ2). Then
z(0) := z + od is feasible for small enough o. Since

[(@(0)) = f(@) + o f (@)d + 3 ["(@)dd + o{a?),



we deduce that f'(xz)d > 0, and f"(x)dd > 0 whenever f'(z)d = 0. Therefore, by
theorem 1(i), 0 is a local solution of (Q2).

(74) The constraints of (P) being linear, problems (P) and (Q%) have (up to a
translation) the same feasible set and second-order expansion of the cost function.
Therefore, the quadratic growth condition holds for one of them iff it holds for the
other. Consequently, point (i7) is a consequence of theorem 1(i7). O

We now turn to nonlinearly constrained problems. Let x be a feasible point of
(P). The set of Lagrange multipliers associated with z is defined as:

A(z) := {X € R”; Vf(2) + ¢'(2)'A = 0; A > 0;9i(z) < 0; Xigi(z) =0, Vie I},

We say that the Mangasarian-Fromovitz (1967) qualification condition holds at z if
(MF) (1) {Vagi(z)}, i € J are linearly independent,
(i) IdeR"; gh(z)d =0; gi(z)d <0, i € I(x).

It is known that if Z is a local minimum of (P), then A(Z) is non empty and
bounded iff (M F) holds at Z (Gauvin (1979)). TheLagrangian function associated
with (P) is

L(z,X) = f(z) + N g().

With z we associate the extended quadratic tangent (EQT) problem below:

1

(Qz) Min f'(z)d + = max Ll,(z,\)dd; g¢i(x)d<0, i€ I(z); gj(z)d=0.
d 2 xeA(z)

We use the convention that the maximum over an empty set is —oo. Consequently,

(Qz) is defined at every feasible point of (P), and has value —oco if A(z) is empty.

Note that, if A(z) # 0 and the constraints are linear, then (@) is identical to (Q2).

THEOREM 3 let © be a feasible point of (P) satisfying (MF). Then:

(1) If x is a local solution of (P), then d =0 is a local solution of (Q).

(i1) The point d = 0 is a strict local solution of (Q) if and only if x is local
solution of (P) satisfying the quadratic growth condition.

Proof. Point (%) is a consequence of the second-order necessary condition (e.g.
[2]) and theorem 1(¢). The proof of (i) is similar to the one of the second-order
sufficient condition (e.g. [2]). O

Note that under the (M F) hypothesis, if no inequality constraint is active, then
(@) is an equality constrained quadratic problem, and local optimality for (Q) is
equivalent to global optimality.

Let (P;) and (P») be two nonlinear programming optimization problems over
IR". We say that (P;) and (P2) are tangent at x € F(P;) N F(Py) if (P,) and (FP2)
have the same EQT problem at z. If x satisfies (M F) for both (P;) and (P,), then
if follows from the above theorems that z satisfies the second order necessary (resp.
sufficient) second order optimality condition for (P;) iff it satisfies this condition
for (P2).



4 SINGULAR POINTS

A classical idea for dealing with points that do not necessarily satisfy qualifica-
tion conditions is the following: with a feasible point Z for (P), we associate the
optimization problem (where z € R™ and z € R):

(Pzg) h;[l;lz, f(w)—f(:E)—zSO, g,(-’L’)—ZSO,ZEI, gJ(.’IJ)IO
It is easily checked that if Z is a local solution of (P), then (z,0) is a local solution of
(P§). The displacement (Ojg=,1) belongs to the kernel of equality constraints and
satisfies strictly the linearized active inequality constraints. It follows that (Z,0)
satisfies (M F') for (PZ) iff g;(z) is onto.

The singular Lagrangian function associated with (P) is defined as

L@, A) = X f@) + D Nigi(),

ielfuJ

with A = (X, --,Ap). The EQT problem for problem (PZ), associated with (z,0),
may be written as

. z 1 s\ ([~ x JT =\ % z
- . . < .
Q%) ,li\i[,ldgd +3 Ag\zgaz{z)(ﬁ Vo2 (Z,0)d®d?; f'(z)d® < d7;

gi(Z)d* < d*,i € I(Z);9'(z)d =0,

where A9(z) is the set of normalized generalized Lagrange multipliers associated
with (Z,0) (John (1948)):

AE) = {A = (N0, A); Ao+ D =15 Ao > 05
i€l(x)

P
Ai 20, Xigi(z) =0, i € T; Mof'(2) + ) \ig(z) = 0}.
i=1
Note that an equivalent formulation of (Q)%) is:

Min max[f'(Z)d, g;(Z)d,i € I(Z)] + L max (L£%)h.(Z,A)dd; g;(Z)d = 0.
acR™ 2 xeAs(z)
THEOREM 4 Let Z be a feasible point of (P) such that g';(Z) is onto. Then:

(¢) If T is a local solution of (P), then (%,0) is a local solution of (PZ), and 0 is
a local solution of (Q).

(#3) The point 0 is a strict local solution of (Q%) if and only if (Z,0) is a local
solution of (Pg) satisfying the quadratic growth condition. If in addition the (MF')
hypothesis holds, this is equivalent to the fact that T is a local solution of (P) satisfing
the quadratic growth condition.

Proof. Point (¢) is a consequence of theorem 3(i), while point (4¢) is a conse-
quence of theorem 3(7¢) and of the fact that, under the (M F) condition, Z satisfies
the quadratic growth condition for (P) iff it satisfies the quadratic growth condition
for (P£): see e.g. Bonnans and Ioffe (1995), section 5. O



5 STRONG SECOND-ORDER CONDITIONS

Some strong forms of the second-order sufficient conditions are used in the stability
analysis of solutions of perturbed nonlinear programs, see Fiacco (1983), Levitin
(1994) and Bonnans and Shapiro (1996). We show that two of them, that maybe
are the most important, may be expressed using the concepts presented here.

Robinson’s strong stability condition (Robinson (1980)) is in fact a general sta-
bility condition for the sum of a smooth mapping and of a multivalued operator. It
says that the linearized operator, that is the sum of the the multivalued operator
and of the linearization of the smooth mapping, is locally the inverse of a Lipschitz
mapping. This concept is useful in the study of numerical algorithms and for con-
ducting a perturbation analysis. When applied to the first-order optimality system
of a nonlinear program, strong stability is known to have a simple characterization
(see e.g. Bonnans, Sulem (1995)) for a simple proof and references therein). Let
(z,\) be a solution of the first order optimality system of (P) (i.e., A € A(z)).
Define

I (z) :=={i € I; gi(x) = 0 and X; > 0}.

A characterization of strong regularity is

(SR) { (i) {Vzgi(x)}, i € JU I(x) are linearly independent,

(i) L (x,\)dd >0, Vd € R™\{0}, gi(z)d =0, i € JU I (x).

Point (%) is a constraint qualification hypothesis, that implies uniqueness of the
Lagrange multiplier, while (i7) is a strengthened form of the second-order sufficient
condition (since the set of directions d in (4¢) contains the critical cone).

As (z, \) satisfies the first order optimality system of (P), a statement equivalent
to (i) is: 0 is the unique solution of the equality constrained quadratic problem

Min f'(x)d + %[,;'2 (2, \dd; g(2)d = 0, i € JUT, (x).

Taking point (SR)(4) into account, we see that (SR) is equivalent to the fact that 0 is
the unique solution, associated with a unique multiplier, of the equality constrained
quadratic problems

1
l\/gnf'(a:)d +5 Yy (z,N)dd; gi(z)d =0, i € K,

for any K such that
JUIi(z) C K C JUI(z).

We now turn to the discussion of a condition that proved to be useful for the
study of optimization problems of the form

Min f(z,u); g(z,u) <0

where for simplicity we assume that v € IR;. An associated linearized problem,
expressed at the point (Z,u = 0) is

(L) Min f'(z,0)(d, 1); g;(%,u)(d,1) <0,i € I(z); g;(%,0)(d,1) =0,j € J.



Its dual problem is
(D*) M/\a,xﬁ&(i:,/\,(]); A € A(z).

The set of solutions of the dual problem is therefore a subset of the set of Lagrange
multipliers. It may be characterized through the complementarity conditions, as
follows:

S(D*) ={A e A(Z); \; =0,Vi e I"(z)},

where
I*(z) = {i € I(z); 3d € S(L);d; > 0}.

The statement of Shapiro’s condition (Shapiro 1988) is
Vd € C(z); 3X € S(D*); LU2(z,\)dd > 0.

Used in connection with a certain directional qualification hypothesis, this condition
allows to check that the variation of the solution of the optimization problem is of
the order of the perturbation in the data (Shapiro (1988), Auslender-Cominetti
(1990), Bonnans-Ioffe-Shapiro (1992)).

Using theorem 1, we may restate Shapiro’s condition as follows: 0 is a strict
local solution of the extended quadratic optimization problem

1 , _ _
Mdin f'(@)d + 3 )‘Erg(ag*) Ll (z,\)dd; gi(z)d < 0,i € I(z); ¢g'(z)d =0.
It is not clear, however, if the above problem may be interpretated as an EQT
problem.

6 RELATION WITH NEWTON’S METHOD FOR
CONSTRAINED OPTIMIZATION

A natural extension of Newton’s methods (for solving systems of non linear equa-
tions) to constrained optimization consists in linearizing the first order optimality
system at a candidate point (x, ) in order to compute a convenient displacement
(do, pto)- The linearization may be done in such a way that dy and A+ pq are solution
of the optimality system of the quadratic problem

(Q(z, X)) Min f(@)d+ 3 Cl(a, \dd; g1(ax) +g}(@)d < 0; gs(a) +g)(a)d = 0.

Note that when (z,A) = (Z, ), with Z a local solution and A the unique associ-
ated Lagrange multiplier, then (Q(z,A)) coincides, up to the non active inequality
constraints, with the quadratic tangent problem. The basic algorithm (without
linesearches) is as follows:

Algorithm

Choose z° € IR™ and )\ € IR?, such that A\; > 0; k « 0.

1) Compute (d*, \¥+1), solution of the optimality system of Q(z*, \¥).
2) zbtl =gk 4 d* k:=k+1. Goto 1.



We discuss the convergence of (z*,\¥). We say that an algorithm is locally
convergent if, given a starting point close enough to the solution, convergence to the
solution always occurs. Because the above algorithm is based on Taylor expansion of
data, and reduces to Newton’s method applied to the gradient of the value function
for unconstrained problems, we may hope no more than local convergence. Now
let us assume that the algorithm starts from (Z, A), a local solution of (P) and an
associated Lagrange multiplier. If ) is not the unique Lagrange multiplier associated
with Z, then local convergence does not occur (take z* = Z and A* a non constant
sequence of Lagrange multiplier associated with Z). Therefore, uniqueness of the
Lagrange multiplier is a necessary condition for local convergence.

A desirable property, that is independent from local convergence, is that if the
algorithm starts from (z,)), then (z* A\*¥) = (2,)) for all £ > 0. A necessary
condition for this is that 0 is a strict local minimum of (Q)z). (Otherwise, there exists
a nonzero critical direction d such that IR, d is solution of (Qz)). Therefore, we see
that uniqueness of the Lagrange multiplier and condition that 0 is a strict local
minimum of (Q3) are necessary conditions for well posedness of the algorithm. The
theorem below shows that they are also sufficient, provided the algorithm computes
a displacement of “small” norm. This is a natural restriction, as otherwise the
sequence might not converge, even if the starting point satisfies the hypotheses of
the theorem. So, for simplicity, we assume the displacement of primal variables to
be of minimum norm. It is remarkable that these weak hypotheses imply quadratic
convergence.

THEOREM 5 Let 7 be a local solution of (P) and \ be its unique associated
Lagrange multiplier, such that d = 0 is an isolated local solution of Q(Z,\). Assume
that (2%, \%) is close enough to (Z,)) and (d*,\¥) is such that ||d*|| is of minimum
norm among all solutions of the optimality system of Q(x*, \*). Then (z*,\F) —
(Z,)) quadratically.

Proof. This is just a reformulation of theorem 6.1 of Bonnans (1994), that is
stated in terms of the second-order sufficient condition. Therefore, the equivalence
between the two theorems is a consequence of theorem 2. O

7 NONISOLATED SOLUTIONS

The standard second-order sufficient condition implies that the considered point
is a strict local solution of problem (P). However, there are important classes of
problems that have nonisolated solutions. In particular, convex problems, in the
case the solution is not unique, do not have isolated solution. We briefly review
some recent results concerning the links between an extended notion of quadratic
growth and some recent second-order conditions. Then we extend the notion of
EQT problem to nonisolated solutions.

Let S be a closed set of feasible points of (P) such that f has over S a constant
value denoted f(S). The distance of z to S is defined as

ds(z) := min{||lz - yll,y € S}-

A projection of x onto S, denoted Pszx, is a point of S where the minimum is
attained. We say that S satisfies the quadratic growth condition if



Je > 0; Ja > 0 such that f(z) > f(S) + ads(z)? if z € F(P), ds(z) <e.

Note that this is an extension of the definition given in section 2. Let us discuss
some material borrowed from Bonnans-Ioffe (1995,1996). The contingent cone to S
at z is defined as

Ts(z) :={d € R"; I{z*} € S, t;, 1 0, (tx) ' («F — 2) — d}.
The normal cone to S at z is the polar cone of Ts(z), i.e.
Ns(z) := {d € R"; d'y <0, Vy € Ts(z)}.
Given € > 0, the approximate critical cone at x is
Ce(z) := {d e R"™; dist(d,C(z)) < €||d]|}-

We say that (P) is a stable convexr problem if the set of Lagrange multipliers as-
sociated with a solution (that is the same at every solution) is non empty and
bounded.

THEOREM 6 Let S be a compact set of points over which f has a constant value.
Assume (MF) to hold at each x € S. Then
(i) A necessary condition for S to satisfy the quadratic growth condition is

da>0,e>0; Vz € S and d € C°(z) N Ng(z) : )\mAa(x)L';'z (z,\)dd > o|d||?.
EN(z

(i1) Assume that the following estimate of distance to critical cones holds:

Jy > 0; dist(d,C(z)) < yVf(z)ld, ¥(z,d) € S x R";
gi(x)d < 0,i € T(a); gh(a)d = 0.

Then the condition of point (i) is necessary and sufficient for quadratic growth.

(ii3) Assume that (P) is a stable convex problem. Then the estimate of distance
to critical cones of point (ii) holds and, consequently, the condition of point (i) is
necessary and sufficient for quadratic growth.

Proof. Point (i) is proved in Bonnans-Ioffe (1995), theorem 3, point (i) in
Bonnans-Toffe (1995), theorem 1 and proposition 2, and point (#4¢) in Bonnans-Toffe
(1996), theorems 2.3 and 4.1. O

By necessary condition for quadratic growth and uniform estimate of distance to
critical cones we will refer to the conditions in points (i) and (ii), respectively, of
the theorem. Note that in the case of an isolated solution, the estimate of distance
to critical cones holds, being a consequence of Hoffmann’s lemma (Hoffman (1952)).
A simple example of a nonconvex problem where this does not hold is

Min 21 25; me]R2, 0<2 <1, 0<z<1.

Several other sufficient second-order conditions for quadratic growth, in the frame-
work of nonconvex programming, may be found in Bonnans-Toffe (1995). An early
reference on this subject, where the set of active constraints is assumed to be con-
stant over S, is Shapiro (1988a).



We now define an EQT problem associated with a set of possible solutions S,
as follows. With z € S we associate the optimal value function of problem (Q;):

1
qz(d) :== f'(x)d + ikmax Ll (z,N)dd if d € F(Q,), +oo otherwise.
€A

Then we define

x(z) := inf{gz(z — 2); ||z — z|| = dist(z, 5)}-

In the case S = {Z}, we have of course x(z) = gz().

Note that if (P) is a stable convex problem, then S is convex and x(z) :=
gz(x — %), where T is the unique projection of x onto S. In addition, as the set of
Lagrange multipliers is bounded and constant over S, and F(Q,) contains F(P)—z,
x(z) is a continuous function over F(P).

THEOREM 7 Let S be a compact set of points over which f has a constant value.
Assume (M F) to hold at each x € S, and the uniform estimate of distance to critical
cones to hold. Then S satisfies the quadratic growth for (P) iff the problem

(Qs) Min x(z); dist(z,S) <€
has solution S, and S satisfies the quadratic growth condition for (Qs).

Note that, by theorem 6, the hypotheses on problem (P) are satisfied if (P) is
a stable convex problem with a bounded set of solutions.

Proof. (a) Assume that S satisfies the quadratic growth condition for (P).
If S does not satisfy the quadratic growth condition for (Qg), then there exist
{z*} C F(Qgs) such that dist(z*,S) — 0 and x(z*) < dist(z*, $)2/k (as the value
of x over S is 0). Let zF = Pgz* be such that x(z*) = ¢+ (zF — Z*). Denote

o = ||lz* — z*||, dF .= (F — 2% /oy
Set € > 0. As

0 > lim sup x(2*) /o, = gor (d¥) /oy, = V f(z*)'d*

we have by the uniform estimate of distance to critical cones that d* € C¢(z*) for
large enough k. Note that f'(z*)d* > 0 as d* € F(Q;+) and (M F) condition holds
over S. By theorem 6, the second-order necessary condition for quadratic growth
implies
X&) = g (d) > & max Ll (@, \)dd > afld|?,
2 xeA(z)

for some a > 0 not depending on k, which gives the desired contradiction.

(b) Let S satisfies the quadratic growth condition for (Qg). Then in particular
it satisfies the second-order necessary condition for quadratic growth. By theorem
6, S satisfies the quadratic growth condition for (P). O



8 EXTENSION TO ABSTRACT CONSTRAINTS

We now turn our attention to a general optimization problem in Banach spaces (e.g.
Bonnans-Cominetti (1996))

(P) rnmin f(z): G(z) € K,

where f and G are C? mappings from X to IR and Y respectively, X and Y are
Banach spaces, and K is a closed convex subset of Y. In order to state a natural
extension of the EQT problem, we recall the definition of the first and second order
tangent sets to K

Tk(y) := {h €Y : there exists o(t) such that y + th + o(t) € K},

Tx(y,h) := {k€Y: there exists o(t?) such that y + th + %t2k +o(t*) € K}.
A natural first-order approximation of the optimization problem at a point Z is
(L) Min f(z)d;  G'(2)d € Tk (G(2))-

We assume that Z satisfies an extension of (M F') condition, due to Robinson (1976)
(EMF) 0 € int [G(o,0) + G (20,0)X — K].

Under this condition, if Z is a local solution of (P), then v(L) = v(D) = 0 where
(D) is the dual of (L), i.e.

(D) Max0; £,(3,0) =0; A€ Nk(G(3)),

and S(D) is the set of Lagrange multipliers associated with Z. The analysis of
critical directions leads to the problem (Cominetti (1990))

(Lg) l\/gn fl(@)w+ f"(®)dd; G'(z)w + G"(z2)dd € T (G(z),G'(%)d).

Assuming (EMF), a second-order necessary condition is that v(Lg) > 0 for all
critical direction d (Cominetti (1990)). Another consequence of (EM F) is that the
value of (Lg4) is equal to that of its dual

(Da) Max £:(z, M)dd — o(\, T (G(2), G'(2)d)); X € S(D).
Here o stands for the support function
o(y, Z) := sup{(y,2); z € Z}.
That v(Dy) > 0 appears as a natural extension of the second-order necessary con-

dition in nonlinear programming (as this o term is zero in that case). Therefore, a
natural extension of the EQT problem is

(@) Mpn f’(i:)d+%v(Dd) it @'(2)deTx(G@)), oo if not,



and a natural question is whether the second-order necessary condition is equivalent
to the fact that 0 is a local solution of (Q).

We say that the cone of critical directions S(L) has the approzimation property if,
given d € F(L), there exists d € S(L) with ||d—d|| = O(f'(Z)d). By Hoffman (1952),
the approximation property holds for a qualified problem with a finite number of
equality and inequality constraints.

THEOREM 8 Assume that the (EMF) condition is satisfied, that the cone of
critical directions S(L) has the approrimation property, and that the cost function

of (Qz) is Lipschitz continuous over F(Q;). Then the second-order necessary con-
dition holds iff 0 is a local solution of (Qz).

Proof. The proof is similar to the one of theorem 1(i). Indeed, set Q(q) :=
%v(Dd). Then (@ is positively homogeneous of order 2 by definition of second order
tangent sets, and Lipschitz continuous over F(Q);) by hypothesis. These are the
two properties used in the proof of theorem 1(3). O

We note that the hypothesis that the cost function of (@) is Lipschitz contin-
uous over F(Q,) is always satisfied for positive definite optimization problems, as
follows from section 4 in Shapiro (to appear).

Another approach to tangent quadratic problems is presented in Bonnans (1996),
in the context of optimal control problems with polyhedric feasible sets.
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