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Abstract. For standard nonlinear programming problems, the weak second-order suffi-
cient condition is equivalent to the quadratic growth condition as far as the set of minima
consists of isolated points and some qualification hypothesis holds. This kind of condition is
instrumental in the study of numerical algorithms and sensitivity analysis. The aim of the
paper is to study the relations between various types of sufficient conditions and quadratic
growth in case when the set of minima may have non isolated points.
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1 Introduction

The paper is devoted to the theory of nonlinear programming problems, i.e. finite-
dimensional optimization with a finite number of constraints. The importance of second
order sufficient conditions is largely determined by their role in sensitivity analysis and
numerical optimization. More attentive analysis of existing proofs [2], [3], [4], [5], [10], [6]
shows, however, that, at least as far as sensitivity analysis is concerned, what is needed is
not a second order sufficient condition as such but rather an estimate of the kind [13]

f(z) > c+ B dist?*(S, ), (1.1)
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in which f is the cost function, S is a set on which f has constant value ¢, and § a positive
parameter. When S is a singleton, or more generally a finite set, the standard second
order sufficient condition (e.g. [1], [8] [11]) is equivalent to (1.1) provided the Mangasarian-
Fromovitz constrained qualification is valid [3]. But very little has been known so far about
sufficient conditions and (1.1) like estimates in situations when the set of solution has a more
complicated structure than just a finite collection of isolated points.

This paper is an attempt to fill the gap. We establish several sufficient condition, based on
second order information, critical cones and proximal normals to the solution set at different
levels of generality and simplicity of formulations which imply a general “quadratic growth
condition” similar to (1.1). The formulation of the most general of them — we call it the
“general sufficient condition” in the paper — seems to be fairly awkward at the first glance.
It requires information which is not “intrinsic” in the sense that it cannot be expressed on
terms of derivatives of the Lagrangian function and relies upon the existence of a certain
“projection” map to the solution set with some special properties. (Although the proofs pro-
vide information on possible structure of the map, we cannot offer much practical advice for
its construction). What makes us introduce this condition as the basic sufficiency statement
is that it is equivalent to the general growth condition under an additional “transversality”
assumption which has a simple and natural formulation.

Transversality considerations are also instrumental in describing a (fairly general) struc-
ture of solution sets for which a sufficient condition very close to the standard second order
sufficient condition can be formulated. They also help to highlight the “bottleneck” at which
all the main difficulties caused by non-unicity of solutions are accumulated, namely the criti-
cal directions close to the contingent cone to the set of solutions. Much effort has been spent
in the article to investigate the behaviour of the problem near such directions. Still some
interesting questions remain unsolved.

A big portion of the paper is devoted to discussions on unconstrained optimization of
a simple composite function (maximum of a finite collection of smooth functions) and only
at the final section we reformulate all the main results for constrained optimization prob-
lems, using some simple reduction arguments. An advantage of such an approach (already
tested for necessary conditions [8] and sensitivity analysis [10]) is that it allows to get rid of
feasibility problems in the course of main arguments.

2 Main results

So we begin by considering the function

f(z) := max fi(z).

1<i<m

The functions f; are assumed to be twice continuously differentiable from IR? into
IR throughout the paper. We use the following notation and terminology :

I(z):={i;1<i<m, fi(x) = f(z)}
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the set of active indices,

L z):=> Nifi(w)
i=1
the Lagrangian of f,

S"={AeR"; x>0, D \:1}

i=1
the standard simplex of IR™

(where as usual V f;(x) is the gradient of f; at x) the set of Lagrange multipliers for f at
x and

the set of Lagrange ¢- multipliers.

We call a point = stationary if Q(z) # 0 and é-stationary if Qs(x) # 0. We set further
C(z) :={h: Vfi(x)h <0, Vie I(z)},
the cone of critical vectors of f at z.

In what follows we fix a compact set S of stationary points of f such that f(z) =
const = ¢y on S.

Definition 1 A mapping 7 from a neighborhood U of S onto S will be called a regular
projection onto S if w(z) = z for all x € S and there exists € > 0 such that

ellz — n(z)|| < dist(S,z), =ze€U.
Given a set C C IR? and z € C, we denote by T¢(x) the contingent cone to C' at z :

To(z) == liI?\i}lptil(C — ).

Definition 2 Let C, D be sets and z € CN D. We say that C and D are transversal at x if
Te(z)NTp(xz) = {0}.

Definition 3 We say that a closed set C C IR* is nice if for every z € C there is a
neighborhood U of z and a diffeomorphism F of U into IR® such that CNU can be represented
as a union of a finite number of (relatively closed) sets C; which are transversal to each other
at = and such that the sets F(C;) are convex. We shall call the C; components of C at x.

We say that f satisfies the quadratic growth condition (QGC) on S if



there exists # > 0 and a neighborhood U of S such that

f(z) > co+ B dist*(S,z) , Ve € U (2.2)
We say that f satisfies the general second order sufficient condition (GSO) on S if

for any 6 > 0 there are a neighborhood U of S and, a regular projection 7 : U — S and an
« > 0 such that for all z € U\S,

1 2
seax | [Lo(Am(@)h+ 5 Laa(A 7(2))(h h)] 2 ar Bl (2.3)

where h = z — w(z). We also say that f satisfies the transversality condition (7'C) on
D C IR? if for any x in D

for any i € I(z) either ¢ € I(y) for all y € D sufficiently close to z, or D and
{y : fi(y) = fi(x) = ¢o} are transversal at x.

If not specified, the set D is taken equal to S.
Theorem 1 The following implications hold :
(GSO) = (QGC),
(QGOY&A(TC) on S} = (GSO).
Theorem 2 Suppose that
(i) S is a nice compact set of stationary points of f and f is constant on S,
(ii) f satisfies (TC) on every component of S,
(iii) for any x € S and any h € C(z)\Ts(x)

lim inf max Lyz(A,u)(h, h) > 0. (2.4)

wSz AeQ(u

Then (GSO) holds.
Theorem 3 If (QGC) holds, then

max Lg(A, z)(h, k) > B dist*(Ts(z),h), VheC(z), VzeS,

XeQ(x)
B being the constant defined in (2.1). In particular

max) Lox(N,z)(hyh) >0, VzeS, VheC(x)\Ts(z). (2.5)

AeQ(z



2.1 Comments and Corollaries

2.4.1 Strictly speaking, (GSO) is not a second order condition. It holds, for instance, for
piecewise linear functions (or, equivalently, for linear program) in which case we actually
have a stronger “linear growth condition” [10]. A “pure” second order condition that we can
distill from Theorem 1 is the following.

Corollary 1 Suppose that the following property holds :

(GSO, ) there exists o, f > 0, a neighborhood U of S and a regular projection n : U — S
such that for h .=z — 7(x), we have

1
Z > 2
3\ Lag(A,7(2))(h, h) = o[

whenever x € U satisfies f(z) < co + B dist*(S, z).
Then (QGC) holds.

Proof. We may assume 3 < a. We observe that the proof of Theorem 1 actually shows
that, reducing if necessary the neighbourhood U, the implication (2.3) = (2.2) always holds
for any given z. Therefore if

f(z) < co + B dist*(S, z)

(otherwise (2.2) is trivial), then, as every point of S is stationary and Q(y) C Qs(y),

max {Ex()\,w(x))h + %Em()\, (2))(h, h)}

AEQs ()

1
> = > 2
- 2 )\EIKIll(%}({m)) ‘Ciﬂiﬂ()‘aﬂ-(‘r))(ha h) - a”h” )

which is (2.3). O

2.4.2 The main advantage of Theorems 2 and 3 over Theorem 1 is that they are intrinsic,
i.e. are stated in terms of the original data only, while Theorem 1 requires a foreign object
such as a “regular projection”. Further intrinsic sufficient criteria, easier to verify than that
of Theorem 2, can be found in S4.

Here we only observe that the standard second order sufficient condition is an easy
corollary of Theorem 2, for the conditions (i) and (ii) of Theorem 2are automatically satisfied
if S is a finite set, as then Ts(z) = {0} for any € S. On the other hand, if S is finite and
(QGC) is satisfied, then any z € S is a local minimum of the function f(z + h) — «||h||? for
some « > 0: applying the second order necessary condition, we arrive at the following local
characterization of quadratic growth for isolated minima.

Corollary 2 Let S be a finite set of stationary points of f. Then f satisfies (QGC) on S if
and only if
max L. (A, z)(h,h) >0, VzxeS, VheC(z), h#0.

AEQ(z)



2.4.3 The proof of Theorem 2 in the next section actually shows that the conclusion of the
theorem remains valid if we replace (iii) by the refined condition below :

(iii’) condition (2.5) holds and there exists € > 0 such that (2.4) is valid for all h €
C(z) N (T5(x)\Ts(x)), where Teg(x) is the set of approximate contingent directions to S at

' Ts(z) = {h : dist(Ts(), h) < &[]}

We observe further that (2.5) is actually necessary for (QGC) to hold as follows from
Theorem 3. It is therefore natural to ask whether it is possible to get rid of (iii) or (iii’)
altogether and to replace it by (2.5) in Theorem 2. The following example shows that (iii)
cannot be a necessary condition for (QGC) even in its modified (iii’) form.

Let X = R? z = (z1,22), and (see the picture)
f(x) := max{—x129 + 23, 1179 — 223, —1, 2Ty — 21,2, — 1};

S:={x=(x1,29) : 0< 27 <1, n=0o0rzy =11/2}.

)

> I

It can be easily verified that f satisfies (QGC) on S. Indeed :
if 1, < 0,0 < z; <1, then f(z) > 23 = dist*(S, 2);

if z; <0 then

f(@) > max{—=zy,z] — 21} > max{a?, |zs|(|22] — |z1])}
1 1 1
> 5[96% + (23 — |z122])] > Z(ﬁ +z3) > — |||



if 0 <xzy <27/2,0< 1z <1, then

2
f(z) > 2y (% - x2> > 2min {x%, (% - xz) } > 2 dist?(S, )

etc. ...
We notice furthermore that Ts(z) = C(x) at any z € S, x # 0 whereas

Ts(0) = {h=(B):a>0, B=00r8=a/2}
= a,):a>0, B8<a/2}.

If £ = (21,0) € S, &y > 0, then I(z) = {1,2} and L,(z) = —A\1z1 + Agz; = 0 which
implies A\; = Ay = 1/2. Therefore for any h = (¢, 3)

max L., (A, z)(h,h) = —5%/2.

AeQ(z)

Now taking h = (o, 3) € C(0)\Ts(0) which means that 3 # 0 (and 8 < «a/2) we see that

liminf max L, (A, z)(h, h) < ——ﬂQ < 0.

—0
230 AeQ(z)

Hence (iii) or (iii’) are not satisfied, as was to be proved.
On the other hand condition (2.5) alone is not sufficient for (QGC), even if S is smooth.
Indeed, consider the function

f(x) = max(z123, —21, =29, 22 — 21,1 — 1),

Then the minimum value 0 is attained on S = [0,1] x {0}. It happens that the set of
critical directions is equal to the contigent set of S at all z in S, so that (2.5) is trivially
satisfied. However x(t) := (¢,t) with ¢t > 0, ¢t — 0 satisfies f(z(t)) =t and dist(z(t), S) = ¢,
hence (QGC) does not hold. We note that Theorem 2 excludes this case as (TC) is not
satisfied over S.

2.4.4 Tt is useful to have simple verifiable criteria for conditions (iii) or (iii’). Thanks to
Theorem 3, (iii) is satisfied if (2.5) holds and lim Q(u) exists and is equal to (z) (we take

u—x

the limit, lim sup, lim inf of sets in the sense of Painlevé-Kuratowski). However, in general,
2(.) is no more then upper semicontinuous and the continuity requirement is rather strong.

Two obvious (though important) cases when it is satisfied could be mentioned : when
gradients of active f; are linearly independent at x and when the functions are convex.

In connection with this question we would like to draw attention to the following elemen-
tary fact.



Proposition 1 We assume that (TC) holds on S and let

Iy(z) = limsinf I(z).
Then for any A € Q(z) and i € I(x)\Io(z) such that V f;(x) # 0, we have \; = 0. In other
words, “no new multipiers are added by new constraints”.

Proof. Pick i € I(x)\Io(x). There exists a sequence of z, € S, x, — z such that ¢ ¢
I(z™). Extracting if necessary a subsequence, we may assume that 4 = lim ||2" —z|| ! (z"—x).
Then

Vi@)h = lim ||lz* — 2|7 (fi(2") - fi(2))

n—oo

< lim [la* — 2| 7H(f(z") - f(2)) = 0.

n—oo

On the other hand, if Vf;(z) # 0, then the equality V f;(z)h = 0 (meaning that A is
on the tangent cone to the level set of f) is by (TC) impossible as h € Ts(z) by definition.

Hence Vf;(z)h < 0. If X € Q(z), then 0 = Y \;V fi(z).d and each term of the sum is not
i=1
positive, hence null. This implies A; =0. 0O

We note that if f;(z), i = 1,...,m are convex then the set of stationary points of f is
actually convex and equal to the set of minima of f so that hypothesis (i) of Theorem 2 is
satisfied.

3 Proofs of the Theorems

We first prove Theorem 1. We need a preliminary lemma.

Lemma 1 Assume that (TC) holds on a set D, and set for u € S
B(u) == {v: I(v)\I(u) # 0}.
Let x € D. Then there exists v > 0 such that whenever ™ € D and x"™ — x, then
dist(B(z"),z") = 7[lz — 2"||.

Proof. Assuming the contrary, we find a sequence of " € D converging to an x € D and
such that
dist(B(z"),2") = o([lx — 2"|)).

Extracting if necessary a subsequence, we may assume that I(x*) is a constant set say
J, and that there exists i € I(z)\J and a sequence y" — z such that I(y™) > i and
ly™ — z™|| = O(||]x — 2™]||). It follows that the limit of (z" — x)/||z" — z|| (which we may
assume to exist, extracting a further subsequence) is equal to the limit of (y" —z)/||y"™ — z||.
This common limit is in Th(x) as well as in the contingent cone to {y ; f;(y) = fi(z)}, and
of norm 1, in contradiction with (7°C). O

Proof. of Theorem 1



(GSO) = (QGC) .Fixé > 0, aneighborhood U of S and a regular projection 7 : U — S
such that (2.3) holds. Choose a 0 < # < a and a ¢ > 0 small enough to make sure that

L2+ B) = £ 2) — Lo )b — L La(X, ), 1) < (00— DI

provided z € S, A € S™ and ||h|| < 0. Pick z € v. With no loss of generality we may assume
that ||z — 7(z)|| < o. Setting h = z — 7(z), we obtain

f@)—c = f(r(z)+h) - f(r(2)),

> ,\eg;gr}%z)){ﬁ()\’ W(.I) + h) - E()" 7‘-(37))}5
> max (L, r(@)h+ 5 Loo0, (@) (b, 1) — (2= DRI},
> BlIh|2 > Bdist(S, 2)%,

i.e. (QGC) holds.

(QGC) & {(TC) on S} = (GSO) . Assume the contrary. Then as S is compact there

exists a 6 > 0 and " > z such that if a sequence u € S satisfies ||[u™ — z"|| < n dist(S, z")
we have

1 1
- < Z||nl|? .
e (Lo(\ wh+ 5 Les(h, ) (b, 1) < 1] (3.6)

where h"™ = 2" — u. We fix u” ins the following way
(A) dist(S,z") = o(||lx — z™||). Let u™ € S be such that [|z" — u"|| = dist(S,z") ; set
h™ = 2™ —u". By Lemma 1, I(2™) C I(u"™) for large n.

(B) There exists a > 0 such that, extracting if necessary a subsequence we may assume
that
dist(S, z") > 0||z" — ||

As I(u) is an upper semicontinuous map, we have I(z™) C I(z) for large n.
In both cases, by (QGC) we have
pIRm > < flu™+h") = f(u")

= max {fi(v" +n") — fi(u")}

icI(um) (3.7)
= Aegljén){z Ai(fi(z +hl)_ fi(u"))}
_ n\pn - n n pn n||2
= ax (LA uM" + 5 Laa(A, u") (W7, A7)} + o [I"17).

Set
§:= max{”[’w(/\am)”ax €S, A€ Qoo(x)}

Note that Qo (z) ={A € S™"; \; =0if i & I(z)}. We have
66710 (1) C Qs(x),
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so with (3.6) and (3.7)

n 6 n\pn 1 n n pn n
ﬂ“h ||2 < SAEIgi)x(")(Ew()\’u )h + Eﬁzw()‘,u )(h ah’ )) +O(||h ”2)

< ﬁ%ﬂh”ﬂ24-0(ﬂh"ﬂ2)==0(Hh"H2)
which may only happen if § = 0 contrary to (QGC). O

We now prove Theorem 2. The proof is based on the following lemma.
Proof.

Lemma 2 Under the hypotheses of Theorem 2, if 2" — xz € S, I(z") = J and dist(z", S) =
o(|[x — 2™||), then there exists {w™} C S such that

dist(5, 2") = O([|lz" — w"|)),

and e" = ||z" —w"|| " (" —w™) have, among their limit points as n — oo, a vector e & Ts(x)
such that V fi(z)e <0 for all i € I(z)\J. Moreover, given € > 0, the sequence of w™ can be
chosen in such a way that ||h—e|| < €, where h € Ts(x) is a limit-point of ||z"—z| ' (z" —z)..

Suppose the theorem is wrong and (GSO) is not valid. Then, as in the proof of Theorem
1, we find a 6 > 0 and a sequence of ™ converging to an z € S such that for any u € S with
||lu — 2™|| < ndist(S,z"), (3.6) holds.

Let u" € S be a nearest to z", h" = ¢! (z" — z), t, = ||2" —z]|, and let A" converge to an
h, ||h]| = 1. We consider the same two possibilities as in 3.1.3 (but at the opposite order).

(A) ||z — z™|| = O(dist(S,z™)). Then h & Ts(z) and as ||z — 2™|| < ndist(S,z") for large z,
so (3.6) must hold with h replaced by z™ — x and u replaced by x. Therefore
t_n
n

max [Ca(, 2)h" + %”L‘w()\, 2)(h" A" <

AEQs(z)

(3.9)

and, consequently, for any 6 > 0 :

max L,(A,z)h <0.
)\EQg(SL‘)
This may happen only if » € C(z). Thus h € C(2)\Ts(z) and inequality (2.4) is valid
for h and z, in particular

Jnax, LA, z)(h,h) > 0.

On the other hand it follows from (3.9) that

xeQ(z) 2 E
and therefore

zz(A, z)(h, h) < 0.
max L (A, z)(h,h) <0

10



Hence we arrived at a contradiction.
(B) dist(S,z") = ||u™ — 2"|| = o(||z — z™||). Then h € Ts(x).

Assume for the moment that the lemma has been already proved. Find a sequence of w"
as in Lemma 2 and let e € Ts(x) be a corresponding limit point.

As ||z™ — w™|| is of the same order as dist(S,z"), we have ||z" — w"|| < ndist(S,z™) so
that (3.6) holds with z = w™ and h = 2" — w", that is to say
Tn

-
ny N n n n oM <
Aergéz%gn)[ﬁm(/\,w e" + 5 Loz, w")(e",e")] <

(3.10)

n
where 7, = ||z™ — w"||.

We observe further that ||w™ —u"|| is both o(||w™ — z||) and o(||u™ — z||), so by Lemma 1
I(w™) = I(u™) = J for large n.

It follows from (3.10) that
Vfi(z)e=lmVf(z")e" =0 VieJ

and, by Lemma 2, V f;(z)e < 0 if i € I(z)\J.Consequently, e € C(x)\Ts(x), and (iii) implies
that
0 < lim inf max)ﬁm()\,w”)(e”,e”),

n—0o0 AeQ(w™

in contradiction with (3.10). O

Proof of Lemma 2 By (i) there is a finite collection of closed convex sets Ci, ..., Cy (say,
containing zero) and a diffeomorphism ) of a neighbourhood V' of zero onto a neighbourhood
U of x such that

SNU =Q(CNV); where C =UC;.

Let y™ and v™ be defined by

Then v — 0, y" — 0, v" € C,
2" —u™[] = O(lly™ = v"[1),  ll=" — =] = O([]v"[]) (3.11)
and the sets S; = Q(C}) are transversal at x.
We may assume that all v™ belong to the same C; say to C;. We deduce that v" € 5,

h € Ts (x), h & Ts;(x), j = 2,...,k. By (ii) , Vfi(z)h < 0if i € I(z)\J and Vfi(x) # 0.
Therefore we can find v > 0 such that |le — A|| < v implies that e & Ts, (), j = 2,...,k and

11



Vii(x)e <0if i € I(x)\J, Vfi(z) # 0. We can assume that v < e. Fix M > 1+ 2y ! and
let

o = Mla" —u"|/]z" — =],
2" = (1—a™)v", (3.12)
w" = Q™).

Then o™ — 0, 2" € C; and w™ € S;. We further define " as in the statement by means
of the w™. As always, we assume that e® — e. We have to show that e ¢ Ts(x) and that
|Ih — e]| < e. We have

w" = Q((1 —a")") = Q(0) + Q' (0)(1 — )" + o([|lv"]])
and, on the other hand,
w" = Q" —a"") = Qv") + Q'(v")(—a"v") + o(a”[|[v").
Multiplying the first equality by «”, the second by (1 — &™) and adding, we have

w' = "z +(1-a")u" +[Q(0) — Q(v")]a"(1 - a™)v" + o(a|[v"]]),
= oz + (1 —a™)u™+ o(a™]|v"]]),
= a"v+ (1 —-a™)u" +o(]|u" — z"|)),
or
w'— 2" =a"(x—2")+ (1 —a")(u" —z") + o(||Ju" — z"|]). (3.13)
It follows from (3.12) and (3.13) that

[w"™ — 2]

M| <1+", (3.14)
[um — 2| ‘

where ™ — 0. In particular, ||w™ — z"|| = O(dist(S1,2™)) from which, using the fact that
Sy is diffeomorphic to a convex set, we conclude that e & T, ().
Thanks to the choice of v, all we have to show is that ||h — e]| < 7. We have from (3.13)

. n :L.n _ un )
Settlng g = m

e —all ;. lla" —u”|

[l =] fla = wn

e =ao"

where ||7"|| — 0 or (by (3.12))

I i |

e (Mh™ 4+ g™) +1r"

Al —wn

which together with (3.14) gives

2
e — Bl < 2

12



that is (see the choice of M) :

— < .
e~ hll < 5o <7
Q.E.D.
We end this section by proving Theorem 3.
Proof. We have (see e.g. [9], Corollary 5)
h') —
timint ZETOM) ZI@ oy 20 2) (8 h) (3.15)
a—0 o AeQ(z)

h!'—h

for any z € S and any h € C(z). Assume now that the (QGC) holds. According to the
definition of Ts(z),
dist(S,z + oh) > o dist(Ts(z), h) + o(0);

hence
f(z +oh) > f(z) + Bo? dist*(Ts(z), h)* + o(c?)

which, together with (3.15), immediately implies the theorem. O

4 Further intrinsic sufficient conditions

The proof of Theorem 1 suggests that the orthogonal projection onto S has a special impor-
tance for (GSO). We shall obtain some simple intrinsic sufficient conditions using this idea.
Recall that a vector A is called a proximal normal to S at z € S if

t|h|| = dist(S, z + th)

for sufficiently small ¢ > 0. (Enough to require that there is at least one ¢ > 0 with such
property). We shall denote by PN (S, x) the collection of proximal normals to S at x. It is
always a closed convex cone.

We also denote by C.(x) the e-critical cone for f at z :
Ce(z) ={h:Vfi(x)h <e|lh|, i€l(z)}.

Lemma 3 Let 2™ € S and h™ — 0 be such that for a certain 6 > 0

max [£.0, 2" + 3 Lo a") (1, 1] < O(I77).

AEQs(z™)
Then given € > 0, there exists ng such that h™ € C.(z™) whenever n > ny.

Proof. We already observed in section 3 that Q. (z) C 66 'Qs(z) for some £ > 0. It
follows from the assumption that

1
max [£,(A, 2")1" + 5 Laa(X, 2")(R", A7) < O(|IR"[),

AEQo (™)
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hence

Lo(A,z")h" < O(||A"]|*).
aomax Lo (A, ") < O([[R]%)

On the other hand, for any u € S any h and any i € I(z), Vfi(z)h < )\Iga)(c )Em()\,x)h.
€l (T
The conclusion follows. O

Proposition 2 Suppose that there exists € > 0 and o > 0 such that

> 2
Joax Liz(A, z)(h, h) > Al

for any x € S and any h € C.(z) N PN(S,z). Then (GSO) holds.

Proof. Let m be an orthogonal projection onto S, i.e. ||z — m(z)| = dist(S,z). We shall
show that (GSO) holds with such a 7. Assuming the contrary we shall conclude that for any
6 > 0 there exists {z"} C S and A" — 0 such that ||h"|| = dist(S, 2™ + h™) and (3.6) holds
with w = 2™ + h™, h = h™. By Lemma 3, h™ € C.(z") if n is large enough and, by definition
h™ € PN(S,z™). So we get a contradiction as soon as a > n~1. 0

Calculation of e-critical vectors may present certain difficulties compared with calculation
of “regular” critical vectors. The next proposition gives a sufficient criterium in terms of the
latter. For any x € S and h we set

f'(z;h) = max V fi(z)h,

i€l(x)

which is the directional derivative of f at x. Then h ¢ C(z) if and only if f'(z;h) > 0. For
such h we set

Li(z;h) = {ie€l(x),Vfi(x)h= f'(z;h)};
M(z;h) = {X:€S™ Ni=0ifi¢ Lz h); Lo(A2)h >0}
pah) = min{|Ca\o)]| X € M(z; ).

We also set,
PNs(S,z) = {h: dist(PN(S,x),h) < 6||h||}

Proposition 3 Suppose that there exists i > 0 such that
wzh) >, VeS, Vh¢C),
and that there exist a > 0, 6 > 0 such that

max) Lo\, 2)(hy h) > bl

AEQ(z

forallxz € S, h € C(x) N PNs(S,x). Then (GSO) holds.
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Proof. We will apply Proposition 2 in order to get the result. So, let A be in C.(z) N
PN(S,z). It follows from [7] that

dist(C(x),h) < 5" f'(w; )
(due to homogeneity of f'(z;.)). Therefore

he C.(z) = dist(C(z): h) < %||h||. (4.16)

Choose 6; € (0,1/2) such that
|Loe(N, 2)(hy h) — Log(N, z) (B, B)| < /2 (4.17)

ifxeS, >0, > N=1,]||h]| =1, ||h = 1| < 6. Let £ > 0 be so small that

g . 61 0

By (4.16) and (4.18) for any h € C.(z) N PN(S, z) there is a e € C(z) such that

9
[h— el < ﬁllhll < le]l- (4.19)

This means that e € C'(z) N PNs(S,z). Then by hypothesis

2 < Loo(A
alle]] < nax wz(A, ) (e, €)

and, as ||h — e|| < 61]|e]| by (4.18), (4.17) implies that

max Loo(\)(h,h) > max Em()\,x)(e,e)—%ﬂhﬂz

AEQ(x AEQ(z)

ale[* = 1/2)[|R]*).

\%

Taking ¢ small enough and using (4.18) we can minorize the right hand side by, say,
%||h||2. We now just have to apply Proposition 2. 0

It can be be observed that Propositions 1 and 2, though much simpler to formulate, are
weaker results then Theorems 1 and 2. To see this, we can consider the function

f(x) :max{fﬂa _éa _na§+77_ 1}
(where z = (£,7) € R?), and

It can be easily verified that the conditions of Theorems 1, 2 and even Corollary 1 are
satisfied on this case but not the conditions of Proposition 1 and 2.
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5 Problems with constraints

5.1 General case

This section is essentially devoted to the reformulation of the main results for constrained
non-linear programs:

P) minimize fo(x)
subject to fi(x) <0,i=1,...,k; fi(x)=0,i=k+1,...,m

The very fact that theorems on a maximum function as considered above can be applied
to (P) follows from the simple observation (cf. [10]) :

Proposition 4 Let S be a closed set of feasible elements of (P) such that fo(x) = const = ¢
on S. Set

f(@) = max{fo(z) — ¢, fi(2),..., fe(), |fora(@)],- -, [fm(@)I}. (5.20)

Then the following two properties are equivalent :

(a) there is a neighborhood U of S such that fo(x) > ¢ for any x € U\S which is feasible
for (P);

(b) f(z) >0 for any x € U\S.

Proof. The implication (b) = (a) is obvious. Conversely, if (a) holds, then f(z) > fo(z) >
0 for any feasible z € U\S. On the other hand if = is not feasible then either f(z) > 0 for
some ¢ =1,...,k, or |fi(x)] >0 for some i =k +1,...,m ; in either case f(z) > 0. O

Thanks to this proposition we can easily reformulate the basic properties, i.e. the
quadratic growth condition and the second order sufficient condition, as well as all the
theorems for (P), using the specific form of the function f given by (5.20).

The reformulation procedure actually consists on (a) replacing | f;(x)| by max{ fi(z), — fi(z)}
on (5.20) followed by application of all the formulae to the so obtained function and the sub-
sequent return to the original notation and (b) the observation that f(z) and f;(z) for
1=k+1,...,m are constant on S.

The results of the reformulation can be summerized as follows. Consider the set A(z) of
Lagrange multipliers of (P) at z:

the set of é-multipliers:
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the subset of normalized multipliers and é-multipliers:
A¥(z) = {DeAl); D N[ <1}
Af(z) = {Aes(z); DN <1h
and the critical cone for (P) at z:
Kx)={h:Vfi(x)h<0,i=0,...,k, Vfi(x)h =0, i=k+1,...,m}.
Now let us say that

(QGCp) Problem (P) satisfies the quadratic growth condition on S if f(x) defined by (5.20)
satisfies (QGC) on S;

(GSOp) Problem (P) satisfies the general second order sufficient condition on S if there are
a neighborhood U of S and, regular projection 7 : U — S and an « > 0, such that (2.3) is
valid with Qs(7(z)) replaced by AY (7(x)).

(TCp) For any x € S and any i € Ip(z) :={i=1,...,k: fi(xr) = 0} either i € I(z) for all
y € S sufficiently close to x, or S and {y : f;(y) = 0} are transversal at z.

Then the theorems are reformulated as follows.

Theorem 1 (P) The following implications hold:
(GSOp) = (QGCp),
(QGCp) & (TCp) = (GSOp).

Theorem 2 (P) Assume that
(i) S is a nice compact set of stationary points of (P) and f is constant on S
(ii) (P) satisfies (TCp) on every component of S
(iii) For any x € S and any h € K(z)\Tc(x)
liminf max L,.(A, z)(h,h) >0

wSa AEA(u)

Then (GSOp) holds.

Theorem 3 (P) If (QGC,) holds, then
max L,.(\ z)(h,h) > B dist*(Ts(z),h), Vh e K(z) VzeS,

AEAN (z)
B being the same as on the (QGC,), in particular
max L. (A x)(h,h), VrxeS, VheK(x)\Ts(z).

AEAN ()

The corresponding replacement can be also made in all other results.
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5.2 Constraint qualification

Further specification of definition and results can be obtained under the assumption that
the Mangasarian-Fromovitz constraint qualification holds at any x € S. As S is compact,
it follows that there is a constant 1 > 0 such that the distance from the origin to the affine
manifold spanned by the gradients of the equality constraint functions is greater than n and
there is an h in X with the unit norm such that :

Vi(@)h=0, i=k+1,...,m; Vfi(x)h <—n, icl(x),

and
inf{Xo: A€ AN(z); Y [N =1} >

which means that the standardly normalized sets of Lagrange multipliers:
A(z) ={r e Ax), =1}
are uniformly bounded on S. This immediately implies
Proposition 5 If the (MF) constraint qualification condition is satisfied for any x € S then
in (GSOp) we can replace AN(x) by A(z).
The change which occurs with the growth condition is more substantial.

Proposition 6 If the (MF) constant qualification condition is satisfied for all z € S then
(QGCp) is equivalent to the following

(QGCyrr) there are a B> 0 and a neighborhood U of S such that
fo(x) > c+ B dist*(S, z)
for all feasible x € U.

Proof. It is clear that (QGCp) = (QGCur). Conversely, assume that (QGCyx) holds.
Let
A={x: folx) <0, i=1,...,k, fi(x)=0, i=k+1,...,m}

be the set of feasible elements. It follows from the Robinson regularity theorem [12] that for
any = € S, there are a y(z) > 0 and an L(z) > 0 such that

dist(A, u) < L(z). max{fi(u),. .. folw), |ferr(@)],- -, [ fn(w)]} (5.21)

if [[u — z|| < v(x). As S is compact, we can chose v > 0 and L > 0 such that (5.2) is valid
with v(z) and L(z) replaced respectively by v and L. Assuming that (QGCp) does not hold
we shall find a sequence of {u"} outside of S such that dist(S,«") — 0 and

Fum) < % dist?(S, u™) (5.22)
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where f is given by (5.20). Then (5.21) implies that

L
dist(A,u") < -~ dist*(S, u"),

hence there is 2" € A with [|z" —u"|| < £ dist’(S, u"). Such an z" cannot belong to S and,
in fact, dist(S, z™) ~ dist(S, u").

On the other hand, as all functions are Lipschitz continuous near S we have by (5.22)

f(z™) = o(dist?(S, u™)) = o(dist?(S, z")).

Since z™ € A\S, we have

B dist?(S, 2™) < fo(2") — ¢ < o(dist?(S, z™))

a contradiction. 0O
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