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Abstract. This paper presents some new results in the theory of Newton type methods for vari-
ational inequalities, and their application to nonlinear programming. A condition of semi-stability is
shown to ensure the quadratic convergence of Newton’s method and the superlinear convergence of
some quasi-Newton algorithms, provided the sequence defined by the algorithm exists and converges.
A partial extension of these results to nonsmooth functions is given. The second part of the paper
considers some particular variational inequalities with unknowns (z, A), generalizing optimality sys-
tems. Here only the question of superlinear convergence of {z*} is considered. Some necessary or
sufficient conditions are given. Applied to some quasi-Newton algorithms they allow to obtain the
superlinear convergence of {z*}. The application of the previous results to nonlinear programming
allows to strenghten the known results, the main point being a characterization of the superlinear
convergence of {mk} assuming a weak second-order condition without strict complementarity.
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1. Introduction. This paper is devoted to the local study of Newton type al-
gorithms for variational inequalities. Variational inequalities have been studied for a
long time (see Lions and Stampacchia [16]) mainly because of their applications to
mechanical systems. The operators in that field are often monotone, and a large the-
ory of monotone operators has been developed (see Brézis [6]); several algorithms for
convex programming, including duality methods, have been extended to this frame-
work (see Gabay [11]). Some problems in economy as well as optimality systems of
nonlinear programming problems can also be represented by variational inequalities
(see Robinson [21] and Harker and Pang [13]). Consequently the strenght and large
use of Newton type algorithms for nonlinear programming, the so-called successive
quadratic programming (see Bertsekas [2] and Fletcher [10]) suggests to develop a
theory of Newton type methods for variational inequalities (we will not speak here
of some different approaches of Newton type algorithms for variational inequalities
— reviewed in the survey by Harker and Pang [13]). Some early (but unpublished)
works in this direction due to Josephy [14, 15] give a local analysis using the concept
of strong regularity (Robinson [19]). Josephy obtains a quadratic rate of convergence
for Newton’s method and superlinear convergence for some quasi-Newton algorithms.
In the case of nonlinear programming problems, assuming the gradients of active
constraints to be linearly independent, the strong regularity reduces to some strong
second-order sufficient condition.

The quadratic rate of convergence under the weak second order sufficiency con-
dition for nonlinear programming problems, and assuming the linear independence of
the gradients of active constraints, has been recently obtained by the author [4]. This
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suggests that the theory of Newton type methods for variational inequalities can be
extended. For this purpose we use the new concept of semi-stability. We say that
a solution Z of a variational inequality is semi-stable if, given a small perturbation
in the right-hand side, a solution z of the perturbed variational inequality that is
sufficiently close to Z, is such that the distance of x to Z is of the order of the mag-
nitude of the perturbation. This does not imply the existence of a solution for the
perturbed problem. Indeed, we give a counterexample showing that existence for a
small perturbation does not always hold under the semi-stability hypothesis. We use
a “hemi-stability” hypothesis in order to prove the existence of the sequence satisfying
the Newton type steps, then we show that semi-stability allows to obtain in a simple
way quadratic convergence for Newton’s method and superlinear convergence for a
large class of Newton type algorithms (here we extend the Dennis and Moré [9] suffi-
cient condition for superlinear convergence). This allows us to adapt Grzegorski’s[12]
theory in order to derive the superlinear convergence of a large class of quasi-Newton
updates including Broyden’s one. For polyhedral convex sets we may characterize
semi-stability : it reduces to the condition that the solution Z is an isolated solution
of the variational inequality linearized at Z. An equivalent condition is the “strong
positivity condition” of Reinoza [18]. We also check that for non-differentiable data
the theory can be extended using point-based approximations (reminiscent of those
of Robinson [23]) that play the role of linearized function.

The second part of this paper is devoted to a special class of variational inequali-
ties generalizing optimality systems. The unknowns here are couples (z, ) and we try
to obtain conditions related to superlinear convergence of {z*} alone. Indeed we give a
characterization of the superlinear convergence of {z*}, valid under a second-order hy-
pothesis satisfied by optimality systems for which the weak second-order sufficiency
condition holds. This allows us to extend to inequality constrained problems the
characterization of Boggs, Tolle and Wang [3] for equality constrained problems (this
improves some previous results of the author [4] in which some necessary or sufficient
conditions are given) ; our result assumes only that the gradients of active constraints
are linearly independent and the weak second-order sufficient condition holds, but in-
cludes no strict complementarity hypothesis. We apply this result in order to obtain
superlinear convergence for a large class of quasi-Newton updates . We note that
these results can be used in order to formulate some globally convergent algorithms
having fast convergence rates (see [5]).

2. Newton type methods for variational inequalities. Let ¢ be a contin-
uously differentiable mapping from IR? into IR?. Given a closed convex subset K of
IR? we consider the variational inequality
(2.1) (p(2),y—2)>0, VyeK; z€K.

We may define the (closed convex) cone of outward normals to K at a point z € K

N(z):={zeR% (z,y—2)<0, VyeK},

and if 2 ¢ K, N(z) := (. A relation equivalent to (2.1) is then

(2.2) @(2) + N(2)>30.
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When K = R?, N(z) = {0} and we recover the equation ¢(z) = 0. A natural
extension of the Lagrange-Newton method for nonlinear programming (see Fletcher
[10]) is what we will call the Newton-type algorithm :

Algorithm 1.

0) Choose 2° € R", k « 0.
1) While z* is not solution of (2.2) : choose M*, ¢ x q matrix, and compute z*+!
solution of

(2.3) o(2F) + MF(FE — 28 £ N4 3 0.

We define Newton’s method as Algorithm 1 when M* = ¢'(2*). In order to
obtain estimates of the rate of convergence of {2¥} we essentially use the following
concept.

DEFINITION 2.1. A solution Z of (2.2) is said to be semi-stable if there exist
¢1 >0 and ¢y > 0 such that, for all (z,6) € RY x R? solution of

o(2) + N(z) 3 6,

and ||z = Z|| < e, then ||z — Z|| < e2|d]|-

REMARK 2.1. (i) Note that this definition involves only those § for which ||6]| <
c1/ca, because otherwise ||z — Z|| < co||6|| is always satisfied whenever ||z — Z|| < ¢1 ;
hence taking c1 small enough, we can restrict § to an arbitrary neighbourhood of 0.

(1i) If K = R? this condition reduces to the invertibility of ¢'(Z); this will be
obtained as a consequence of theorem 3.1.
THEOREM 2.1. Let Z be a semi-stable solution of (2.1), and let {2*} computed
by Algorithm 1 converge towards Z. Then
(i) If (¢'(2) — MF)(FH — 2 ) o(2F+1 — 2%) then {2F} converges superlinearly.
(ii) If (¢'(Z) — MF*)(2%HL — 2%) = O(||2¥+Y — 2%||?) and ' is locally Lipschitz then
{2*} converges quadratically.
Proof. Define 8% := (¢'(2) — M*)(2**! — 2¥). We can write the Newton type step
(2.3) as

(24) p(2"H) + N(*H) 5 7%
with,
i 6 (4 = (k) - (D) — 1)
= 0% 4 o(FtL — 2F).

If 6% = o(z%*+! — 2*) then from the semi-stability of Z and (2.4) we get

Az =0(r*) = oM = 2F) = o | M — 2| + ||2* - =),
hence 21 — 7 = o(2* — 2), i.e. {2*} converges superlinearly. This proves (i). If ¢’
is locally Lipschitz and 8% = O(||z¥*! — 2¥||?) we already know that {z*} converges

superlinearly, hence ||z**! — 2*||/||2* — Z|| — 1. Let L be a Lipschitz constant of ¢’
at Z. We have, for k large enough :

lp(2"+1) — (") — ' (2)(2** = M)l = II/ (2" + 02" = 2") = ¢'()] (" -

< Lmax([|2* =z, [|2* = 2[)[|] 2"+ = 2*||
S 2L||Zk+1 _ zkl|2a
3
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hence
=5 = 0(*) = (|44 = 2|) = O(l2* - 2P),

from which the quadratic convergence follows. O

REMARK 2.2. Taking K = {0} we see that the conditions of Theorem 2.1 are
not necessary in general. However, when K = IR? (case of a nonlinear equation) it
is known that condition (i) is a characterization of superlinear convergence (Dennis-
Moré [8]).

COROLLARY 2.1. If {z*} computed by Algorithm 1 converges toward a semi-stable
solution z of (2.1) then

(i) If M* — ¢'(2), {2*} converges superlinearly,

(ii) If ' is locally Lipschitz and M* = ¢'(2) + O(z* — z) (which is the case for
Newton’s method under the hypothesis of Lipschitz continuity of ¢') then {z*}
converges quadratically.

Until now we assumed the existence of a converging sequence instead of giving
the hypotheses that imply its existence. Our point of view is that it is clearer to do so
; indeed, if we want now to prove that the sequence is well defined, for say, Newton’s
method with a good starting point, we just have to posit the following definition :

DEFINITION 2.2. We will say that z is a hemi-stable solution of (2.1) if for all
a > 0 there exists € > 0 such that, given 2 € RY, the variational inequality (in z)

w(2)+ M(z—2)+N(2)20

has a solution z satisfying ||z — z|| < «, whenever |2 —Z|| + ||M — ¢'(Z)|| < e. Then
using Corollary 2.1, we obtain
THEOREM 2.2. (Local analysis of Newton’s method). If Z is a semi-stable and
hemi-stable solution of (2.1), there exists € > O such that if ||2° — Z|| < ¢, then :
(i) At each step k there exists z*t1 solution of the Newton step satisfying ||z*+1 —
2F|| < 2,
(ii) The sequence {z*} defined in this way converges superlinearly (quadratically if o'
is locally Lipschitz) towards Z.
Proof. We just have to prove (i) and the convergence of {z*} towards Z ; then
(ii) will follow from Corollary 2.1. Assume ¢' merely continuous at z. Take g9 <
min(er, 1/3¢a) where ¢;, ¢o are given by the semi stability condition. From the hemi-
stability condition we have that for some ¢ € (0,¢1), ||2¥ —Z|| < € implies the existence
of z¥*1 such that ||2Ft! — z|| < g¢ and

(2.5) 0(2%) 4+ ' (%) (2! — 2F) + N(ZFH) 3 0.

Now @(zF*t1) + N(2%+1) 5 6% where
(2.6) 8 = (M) = p(a4) = ¢ () (HH = o).

From differential calculus we obtain, reducing ¢ and ¢ if necessary, that
(27 641 < o llah* = 24,

As g9 < ¢y the semi stability condition gives

; _ 1. 4 . 1 _ 1. .
40— 2 < gl = 2 < gl — 2+ gl -
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1 _
151 = 2]l < Sl = 2]

2570 — 28| < 1P+ — 2]+ ]12* — 2] < 2.

This proves (i) and the linear convergence of {2*}. O

REMARK 2.3. The condition ||zFt! — 2*|| < 2¢ in Theorem 2.2 is constructive
in the sense that, if we choose the solution of (2.5) closest to z*, then, if the starting
point 2° is close enough to Z, the condition is satisfied and conclusion of Theorem 2.2

follows.

REMARK 2.4.
(i) Semi-stability does not imply hemi-stability, as shown by the following example.

Consider the variational inequality with K = R*:
—z+ N(z) >0,
corresponding to the optimality system of the badly posed optimization problem

min{—2%/2; z > 0}.

Here
] if 2<0,
N(z)={ Rt if 2=0,
0 if z>0.

We have that z = 0 is the unique solution. Now the perturbed variational
inequality

—24+N(2)36

has a solution iff § < 0 and this solution is z = —§, hence semi-stability holds
although the variational inequality may have no solution for ||6|| arbitrarity
small.

Let us prove now that hemi-stability does not hold. Here ¢(2) = —z and
@(Z) = -1 ; take 2 = ¢ and M = ¢ — 1 with ¢ € (0,1) ; we discuss the
solvability near 0 of

—e+(e—1)(z—¢e)+0RT(2) 30.

If 2 is solution, either z = 0, but then —e+(e—1)(z—¢) = —&2 < 0, impossible
;or —e+(e—1)(z—¢€) =0, i.e. z=2¢2/(e—1) <0, which is also impossible.
Hence the perturbed variational inequality has no solution, although (2, M) is
arbitrarily close to (Z,¢(%)).

(ii) A sufficient condition for semi and hemi-stability is the strong regularity of Robin-

son [19]. Indeed strong regularity amounts to say that the equation

0(2) +¢'(2)(z = 2) + N(2) 3 6
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is such that there exist e > 0, a > 0, 8 > 0 such that if ||§]| < e, there exist a
unique solution z such that ||z — Z|| < «, and this z satisfies ||z — Z|| < B||4]|.
Now let z solve the perturbed variational inequality p(z) + N(2) 3 §. Then

0(2) +¢'(2)(2 — 2) + N(2) 3 6 + o(z — Z).

Strong regularity implies that z — Z = O(6) + o(z — %), hence z — Z = O(6),
i.e. the semi-stability holds.

Also if Z is a strongly regular solution of (2.2) it is obviously a strongly regular
solution of the linearized variational inequality

p(z) + ' (2)(z —2Z) + N(2) 2 0.

We apply Thm 2.1 of Robinson [19]. If ||Z2—Z||+||M —¢'(2)|| is small enough,
the variational inequality

w(8)+ M(z—2)+N(2)30
has a solution and

Iz = zll = O(p(2) — ¢(2));

this implies hemi-stability.
(iii) We will see later that in the case of optimality systems for local solutions of non-
linear programming problems, semi-stability and hemi-stability are equivalent.

Theorem 2.1 may also be used in order to derive superlinear convergence of some
quasi-Newton algorithm. By quasi-Newton algorithm we mean a Newton type algo-
rithm with M*+! satisfying the so-called quasi-Newton equation

(2.9) MM = 2F) = p(F11) — ().

A typical situation is when a closed convex subset K of the space of ¢ X ¢ matrices is
known to satisfy

(2.10) ¢'(2) € K, Vz € RY.
Then M*+1 is taken as a solution of
(2.11) min |M — M*¥||y; M € K and M satisfies (2.9).

Here || - ||3 is a matrix norm that we will assume to be associated to a scalar product.
If ||.]|y is the Frobenius norm we recover Broyden’s update when K is the space of
q X q matrices, the PSB update when K is the space of symmetric matrices, etc.; see
Grzegorski [12]. We first quote

LEMMA 2.1. Under the hypotheses of Theorem 2.1, if {M¥*} satisfies the quasi-
Newton equation and

(Mk+l _ Mk)(zk+1 _ zk) — O(Zk+1 _ zk)’

then {2*} converges superlinearly.
Proof. Using (2.9) we get

(Mk+1 _ Mk)(zk+1 _ Zk) — <p(zk+1) _ @(zk) _ Mk(zk+1 _ zk)
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The conclusion is then obtained with Theorem 2.1. O

THEOREM 2.3. Let @' be locally Lipschitz, Z be a semi-stable and hemi-stable
solution of (2.2). We assume that (2.9)-(2.11) hold. Then there exists € > 0 such
that, if

12° =zl +1M° — ' (2)]ly <,

then
(i) At each step k there exists 2**1 solution of the Newton type step satisfying ||z
2% < 2e.
(i) The sequence {z*} defined in this way converges superlinearly towards z.
Proof. : Define

k+1_

S* = {M € K5 M(M = 2F) = (1) — p(2F)}.

Then M**! is the projection of M* onto S* (with the || - ||y norm), hence for all
M € S* we have (see Grzegorski [12], thm 1)

(2.12) IMEFE = MEIE + | MA = M < | M* — M3,

and a fortiori

(2.13) | M*E — M|y < || M* — M|y
Define
1
(2.14) Wb = / &' (2F + o( = 2))do,
0
(2.15) V¥ = max(||2¥*! - z|, ||2* - Z|)).

Then 9* is an element of S* and, for k large enough we have, L being a Lipschitz
constant of ¢’ in a neighbourhood of z in the || - || norm :

Wt =@l = I / [0 (2% + o(4+1 = 24)) — o/ (2)] doly < Lo*,

hence, taking M = 9* in (2.13), and using the previous inequality, we get :
(2.16) MM — o' (D)l < |1M* = ¢/ (2) s + 2Lo".

We prove in Lemma 2.2 below that this bounded deterioration result implies that (for
e small enough) 2¥F — Z linearly and ||M* —¢'(2)||y converges. As % — ¢'(2), ||[M* -
¥F||y and ||MF+L — k|| also converge towards the same limit. Taking M = ¢* in
(2.12) we deduce that ||[M*+! — MF*|| — 0 ; this and Lemma 2.1 imply the conclusion.
ad
LEMMA 2.2. (Linear convergence under bounded deterioration). Let Z be as in

Theorem 2.3. Let {z*} be computed by a Newton type algorithm such that {M*}
satisfies (2.16). Then for any 0 in (0,1) there exists € > 0 such that if ||2° — z|| +
1M = ' (2)]l; <e, then

(i) At each step k there ewists z*t1 solution of the Newton type step, satisfying

25— 2F]| < 2.
(ii) 2% — z linearly with speed 0, i.e. |21 — z|| < 6|2 — Z]|.
(i) | M* — ¢'(2)||y converges.



Proof. Writing (2.3) as
P(2F) + @' ()2 = 2F) + N(2*H1) 3 (¢'(2) = MF)(F = 28),
and using
P(M) = () + ¢ (2) (M - 2F)
+ /01[90'(2'“ +o(5 = 28)) — ¢ (2)](*F — M) do,

we deduce that

o(ZF ) 4 N(F 1) 5 6%
with (v* being defined in (2.15) and using the canonical norm of L(IR")) :

1841 < (ll' (2) = M*N| + Lo®) |l A = 24,
and from the semi-stability hypothesis we deduce
257 — 2|l < eallg’(2) — M¥|| + LoF) |41 — 25
Using the triangle inequality
[l254 = 2K < [l2F+ = 2] + [|12F ~ 2|
we deduce that whenever
l¢'(2) = M*|| + Lv* < 1/cs,

then

[l25%1 — 2| < 61]]2" — 2|
with

g — (e’ (2) = MH| + Lv¥)
' 1= o(l¢(2) - MF+ L)’

Using the hemi-stability hypothesis in order to estimate v* we see that there exists
€o > 0 such that 6; < 6 whenever

(2.17) ' (2) = M¥[lg + (|12 — 2]| < eo.

If ¢ < go this is the case for k¥ = 0. Now assume that (2.17) is satisfied for
k=0,...,k Then with (2.16) and using the linear convergence of {z*}, we get

[|* — z|| < 6Fe, k=0tok+1,

k+1 IS %
k k 5 k|l .0 5
<2 —ZzZ[| <2 0 — < —
k<2 Ik - <230k - 2l <
k=0 k=0
8



~ k+1
g’ (2) — M¥*H |y < [lg'(2) — MO||y + 2L ) v*

k=0
<et 4L
Set 14
hence
. . 4Le AL +2
(2.18) I/ (2) = MFFLly + |27+ — 5 < 25228 < 22 2
1-6 1-9
We now choose
_1-6
TAL 2"

For this value it appears that (2.17) is satisfied also for & = k + 1 hence (by
recurrence) for all ¥ € IN. This proves the linear convergence with speed . Also for
alkeNand <k :

k-1
le'(2) — M¥|ly < ll¢'(2) — M*|ly + 2L v
i=L
2L4¢
< e _Mé
< lle'(2) = Ml + T,
hence
o _ 2L6°
Tl (2) — M)y < ¢/ (2) = My + =5

When ¢ — oo we deduce
lim||¢'(2) — M*||; < lim||¢'(2) — M*|s,

ie. [|¢'(zZ) — M|y converges.
REMARK 2.5. The hemi-stability hypothesis is needed only to insure existence of
2+ close to zZ. The rest of the analysis relies upon the semi-stability hypothesis.

3. Characterization of semi-stability when K is polyhedral. We assume
here that K is polyhedral, i.e. defined by a finite number of linear equalities and
inequalities. This allows us to give several characterizations of semi-stability.

THEOREM 3.1. If K is polyhedral and Z is a solution of (2.1), Z is semi-stable iff
one of the following hypotheses holds :

(a) Z is an isolated solution of the linearization at Z of (2.2) :

(3.19) 0(2) +¢'(2)(z —2) + N(2) 3 0.
(b) One has (z — z,¢'(2)(z — Z)) > 0 for all z € K different of Z solution of
(p(2),2—2) =0, (4)

p(Z2)+¢'(2)(z—2)+ N(2) 0. (i)
9
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(c) The conditions below have no solution but z :
N(z) C N(z), (4)
(3.21)  (p(2),z—2) =0, (i7)
ap(Z) +¢'(2)(z —2) + N(2) 0, for some o> 0. (iii)

REMARK 3.1.

(i) In the case of a nonlinear equation it follows from condition (a) that semi-stability
is equivalent to the inversibility of the Jacobian, which in turn is also equiv-
alent to hemi-stability.

(i1) Reinoza ([18], thm 2.1) already proved the equivalence of (a) and (b). He called
condition (b) a strong positivity condition, although in the context of nonlinear
programming we will see that it corresponds to weak second-order sufficient
conditions ; hence it might be better to call it a weak positivity condition.

Proof. of Theorem 3.1 : We will prove that

{Z is semi-stable} = (a) = (b) = (¢) = {Z is semi-stable}.

a) Proof of {Z semi-stable} = (a). If z is solution of (3.19) then from the first
order expansion of ¢ at z :

p(2) + N(2) 3 o(z - 2),

hence if Z is semi-stable and ||z — Z|| < ¢1, we get ||z — Z|| = o(z — Z) and this implies
z = Z for z close enough to Z ; hence (a) holds.

b) Proof of (a) = (b). Let z in K contradict (b), i.e. z # Z, z satisfies (3.20) but
(2 —Z,¢'(2)(z — 2)) < 0. From (3.20) we get

0<{p(2) +¢'(2)(2 = 2),2 = 2) = ( = 2,¢'(2)(2 - 2))
hence
(3.22) (z—=2z,¢'(2)(z—2)) =0.

For o in 0, 1[ define 2% := Z+a(z — Z). From (3.2 ii), (2.2) and the convexity of N (Z)
we deduce that

9(2) +¢'(2)(z* - 2)+ N(2) 3 0,
hence with (3.2 i) and (3.22), for all y € K :

0 <(p(2) +¢'(2)(2* — 2),y — 2),
= (p(2) + ¢'(2) (2% = 2),y — 2%),

that is
P(2) + ¢'(2)(z* — 2) + N(2*) 3 0,

hence z® is a solution of (3.19). Also 2* — Z when a \ 0 ; this contradicts (a).
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¢) Proof of (b) = (c). Assume that (c) does not hold and let z € K, z # Z be a
solution of (3.21). From (3.3ii) and (3.3 iii) we deduce that

(z = 2,¢'(2)(z - 2)) 0.

As (3.2 1) coincide with (3.3 ii) it remains to derive (3.2 ii) in order to get a
contradiction with (b). If a < 1, multiplying relation (2.2) by (1 — «), adding it to
(3.3 iii) and using (3.3 i) we get (3.2 ii). If & > 1 we may check similarly, dividing
(3.3 iii) by a, that y* := z + L (z — 2) contradicts (b).

d) Proof of (¢c) = {Z is semi-stable}. If Z is not semi-stable let z¥ — z and 6* — 0
in IR™ be such that

(323) p(z*) + N(z*) 3 6%,

and ||6%||/||z% — z|| — 0. Define ¥ := ||2*¥ — z||~! and w* := B¥(z* — z). Then
substituting ¢(2)+¢'(2)(2* —2)+0(2* —2) to p(2*) in (3.23) we get after multiplication
by B*

(3:24) Bro(z) + ¢'(2)w* + N(2*) 3 46" + pro(2* - 2).

This right-hand side of (3.24) has limit 0. As K is a polyhedron we may extract
without loss of generality a subsequence such that N(z°) = N(z*) for all k; also
|lw*|| = 1 hence {w"*} has at least a limit-point w (for the same subsequence) with
|w|| = 1. Again as K is a polyhedron, the set N° := N(2°) + Rt (%) is the cone of
exterior normals at z° to the set

K°:=Kn{zeR%(z—2°¢(z) <0}
Hence NV is closed. By (3.24) and the closedness of N° we have
(3.25) R*o(z) + ¢'(2)w + N(2°) 3 0.

Also as BF > 0 and the vectors z + (8F)~twk = 2F, 2F — (B%)~Lw* = z are elements
of K, we get from (2.1) and (3.23) :

(wk,cp(i)) = ﬂk<zk - E,QD(E)) 2> 07

—(wk, (%)) = Bz -2 (") 2 BHz - 2F,6%) — 0.

(3.26)

As 2 — z, o(2F) — ¢(Z). This, (3.26) and w* — w imply

(3.27) (w, ¢(2)) = 0.

Now, as K is a polyhedron, Z 4+ ew is in K for ¢ > 0 small enough. Let us
check that N(Z + ew) D N(2°). It is sufficient to check that any linear inequality
constraint defining K that is active at 2° is also active at zZ + cw. Here we say that
a constraint {(a,z) < b is active at z if (a,z) = b. Extracting again if necessary a
subsequence we may assume that the set of active constraints is the same for all {z¥}.
Then for the subsequence considered here we have (a, 2*) = b, hence {(a,z) = b and
(a,w*) = 0, from which (a,w) = 0, and finally (a,z + ew) = b. This proves that
N(zZ + ew) D N(2°). This and (3.25) (multiplied by € > 0) imply

(3.28) R p(2) +e¢'(2)w + N(Z + ew) 3 0.
11



Also for € > 0 small enough and as K is a polyhedron, N(zZ+ew) C N(Zz).This, (3.27),
(3.28) and the fact that z = Z + ew is in K give a contradiction to (¢). O
REMARK 3.2. The proof of

{z is semi-stable } = (a) = (b) = (c)

does not use the fact that K is polyhedral.

4. Extension of the theory to nonsmooth data. Although we are mainly
interested in this paper by finite dimensional variational inequalities with smooth data
we will give here a partial extension of the previous results to problems in a Hilbert
space with nonsmooth data. Let K be a closed convex subset of a Hilbert space Z,
N(z) the cone of outward normals to K at z and ¢ a mapping from Z into itself. In
order to define an extension of Algorithm 1 for the problem

(4.29) p(z) + N(2) 30,

we use a concept of point-based approximation (PBA) close to the one of Robinson
[23].

DEFINITION 4.1. We say that v : Z x Z — Z is a PBA to ¢ if for any two
sequences {y*},{2¥} converging to the same point the following holds :

(4.30) low®) — v (2", ") < r(y*,2"),

with r(y*, 2*)/|ly* - 2*|| = 0.

Here 9(2*,.) can be seen as a generalization of the linearization of ¢ at z* (see
Remark 4.1 below). We now define a somewhat abstract Newton type method as the
following algorithm :

Algorithm 2
0) Choose 2° € Z;k < 0.

1) While z* does not satisfy (4.1) : choose a mapping ZF : 7 — Z, approximation
of ¥(2*,.). Compute z**+! solution of

(4.31) ER () £ N(ZFT) s 0.

We define semi-stability as in section 2.
THEOREM 4.1. If {2*} computed by Algorithm 2 converges towards a semi-stable
solution z of (4.1), then

(i) If ¥(2F, 28H1) — BR(ZFHL) = o(2%+1 — %), then {2*} converges superlinearly.

(i) If (2%, 2F+1) — Zk(F+1) = 0(]| 2%+ — 2%||2) and for some c; > 0 and all (y, 2)
close enough to Z the function r in ({.2) satisfies r(y,2) < ci|ly — 2|2, then {z*}
converges quadratically.

Proof. Writing the step (4.3) as

B(E, ) + N(H) 3 (s, 24) — B4 ()
and using (4.2), we deduce that

(p(zk+1) + N(zkH) = 7’[}(zkak+l) _ Ek(zk+1) + O(Zk+1 _ zk)‘

12



In case (i) it follows from semi-stability that z¥t! — z = o(z*¥*t! — 2*), hence
2% converges superlinearly. In case (ii) we similarly obtain z¢*! — 7z = 0(||2*+! —
2*||?),which implies the quadratic convergence. O

REMARK 4.1. Theorem 4.1 can be seen as an extension of Theorem 2.1. Indeed
if @ is continuously differentiable and

P(2*, M) = p(2F) + ¢! () (2FF = 2P),

(1]

R = o(F) 4+ ME(AH - 0,
for some q x q¢ matriz M*, then
D, LY Z BR (ALY = (o (2F) = MP) (2 = o)
= (¢'(2) = MP) (M = 28) + oM = 2F),
hence point (i) of Theorem 4.1 reduces to point (i) of Theorem 2.1. Similarly if ¢’ is
locally Lipschitz we have
(' (2%) = M*) (= 2F) = (¢! (2) = M*) (R —2%) +0(]12F — z]|.[| 2"+ = 2*])),

the last term being 0(||2¥+1 — 2F||)2 as ||2¥+1 — 2¥||/||2F — Z|| — 1 because of the super-
linear convergence, hence point (ii) of Theorem 4.1 reduces to point (i) of Theorem
2.1.

We define the directional derivatives ¢'(.,.) of ¢ as the limit

P (21d) =l S (e + ad) = 9(2)

We will state in Theorem 4.2 below an extension of Theorem 3.1. This Theorem
4.2 applies to B-differentiable mappings (here B stands for Bouligand), as defined in
Robinson [22], i.e. mappings having the following property : ¢ is locally Lipschitz
has directional derivatives and d — ¢'(z,d) is Lipschitz. Then it is known that (for
given z) p(z + d) = o(z) + ¢'(z,d) + o(d) (see also Shapiro [24]).

THEOREM 4.2. Assume that Z = R?, ¢ is a B-differentiable mapping , K is
polyhedral and z is a solution of (4.1). Then Z is semi-stable iff one of the following
hypotheses holds :

(a) Z is an isolated solution of the linearization at zZ of (4.1) defined as follows :
0(z2) +¢'(z,2—2)+ N(2) 3 0.

(b) One has (z — z,¢' (2,2 — Z)) > 0 for all z different of Z solution of
(p(2),2-2) =0,

- &

0(Z)+¢'(Z,2z— %)+ N(2) 5 0.
(¢) The relation below has no solution but z :
N(z) C N(z),
(p(2),z —2) =0,
ap(Z) +¢'(2,2—2)+ N(2) 20 for some a > 0.

The proof is the same as the one of Theorem 3.1, replacing first order variations
by directional derivatives.
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5. Convergence analysis for some structured variational inequalities.
We now specialize our study to a particular case of variational inequalities. In the next
section we will apply the results of this section to nonlinear programming problems.
Let F,g be smooth (resp. C! and C?) mappings : IR” — IR" and R"” — R?,
respectively. Let I, J be a partition of {1,...,p}. By g(z) < 0 we mean

9i(z) <0,Viel,
9i(z) =0,Yj € J.
We now consider the system (in which A € IRP)
F(z) +4'(z)*A =0,
(5.32)
g9(z) €0, \f >0, A\;gi(x) =0, Viel.

As observed in Robinson [23] we may embed (5.1) into (2.1) in the following way. Put
g:=n+p, z:=(z,)) and

Ki:={AeRP,A\; >0}; K :=R" x Ky;
so that K is polyhedral and
N(z,A) = {0} x Ni(}),
with N1 (X) normal cone (or cone of outwards normals) to Ky at A, i.e.

M) = 0 if X is not in K, otherwise
BV 7 {peRP; py=0; ur <0; py =0if \; >0,Vi € I}

The corresponding variational inequality can be written in the following way :

F(z) +g'(z)*A =0,
(5.33)
—g(z) +Ni(\) >0.

Let us denote
p
H(z,\) := F'(z) + Z \iV2gi(x).
i=1

Then we have

( H(z,)) g¢'(x)* )
(5.34) o' (x,A) = )
—g'(z) 0

and

(5.35) ((y, 1), ' (z, N)(y, 1)) = (y, H(z, N)y).

14



Taking (5.2)-(5.3) and Theorem 3.1 in account, we see that semi-stability for (5.2)
(expressed at some point (Z, A) solution of (5.2)) can be stated as

(y, 1) = 0 is an isolated solution of

(5.36) (i) HENy+9' (@) n=0,

(i1) g(Z) + g'(Z)y € N1(A + p).

A i A
For any I C I by z < 0 we mean 2y =0 and z; < 0 for all ¢ in I. Let us define

I :={iel;g:(z) =0},

It = {ie ;)\ >0},
°=I—TIt={iel X\=0},
I .=JuIrt.

It may be convenient to define the so-called “critical cone” (or cone of critical direc-
tions) :

C={y eR™ ¢'(@)y < 0; gl (a)y = O}.
PROPOSITION 5.1. Semi-stability of (5.2) is equivalent to
(y, ) = 0 is the unique solution of
(5.37) (1) H(zNy+g'(@)*n=0,

(i1) y€C, po >0; p;=0if g:(T) <0,Vi € I; pigiy(z)y =0, Vi € I°.

Proof. We have to prove the equivalence of (5.5) and (5.6). The set of solutions
of (5.6.i-ii) is a cone. Hence it is equivalent to state that (y,u) = 0 is the unique
solution of (5.6i-ii) or to state that (y, ) = 0 is an isolated solution of (5.6i-ii)). Now
it is sufficient to prove the equivalence of (5.5 ii) and (5.6 ii) when (y,u) is small
enough. If 4 is sufficiently close to zero and i € I'* then A\; + u; > 0 hence by (5.5 ii)
9i(Z)y = 0. On the other hand if (5.5ii) holds pj0 must be nonnegative and p; > 0
for some ¢ € Iy implies g}(Z)y = 0. Also if ¢;(Z) < 0, then ¢;(Z) + ¢}(Z)y < 0 for
y sufficiently close to 0. For that reason (5.5 ii) is equivalent (when (y, u) is small
enough) to

gy = 0, Vielt,
gi(@)y < 0, pi>0, pgi(®)y=0,Viel,
Wi = 0 ifgi(%) <0,

and this is easily shown to be equivalent to (5.6ii). O
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Let us now consider Newton’s method applied to (5.2). The subproblem to be
solved at step k is, denoting by d* the increment in z, i.e. d¥ = zF+1 — 2 :

F(z*) +H(z* \F)dF + ¢'(a)* A+ =0,
g(zF)  +g'(zF)d* € Ny (AFF1).

As the evaluation of g'(z¥) is already necessary in order to evaluate ¢(z¥, \¥) the only
part of the Jacobian that perhaps needs to be approximated is H(z*, A\¥). We obtain
then the Newton type algorithm

Algorithm 3
0) Choose (z°%,)\) € R™ x RP. k « 0.
1) While (z¥, \¥) is not solution of (5.2) : Choose M* n x n matrix and compute
(dF, \k*+1) solution of

F(z*) +MPFd* + g'(zF)*AFt+1 =0,
g(zF)  +g'(zF)d* € Ni(AFT1).
and put zFt! — zF 4 gk,

When M* = H(x* A*), applying Corollary 2.1 and Proposition 5.1, we easily
obtain

THEOREM 5.1. (Convergence of Newton’s method). Let {z*,\¥} be computed
by Algorithm 8 with M* = H(z*,\¥) converge toward (z,)) satisfying (5.2) and
(5.6). If v — (F(z),g'(z)) is C' (resp. C' with a locally Lipschitz derivative) then
(%, A¥) — (2, ) superlinearly (resp. at a quadratic Tate).

We now consider conditions related to the superlinear convergence of {z*} alone.
We are looking for necessary and/or sufficient conditions of the following type : at
each iteration k we define

E* closed convex subset of R",
PF*orthogonal projection onto E*,
nk = PF[(H(Z,X) — M*)d"].

The condition will be
(5.38) h* = o(d¥).

As a particular case of our results we will recover the characterization of Boggs, Tolle
and Wang [3] concerning equality constrained nonlinear programming problems, and
we will be able to extend the characterization to variational inequalities satisfying the
assumption

(5.39) d'H(z,\)d >0 for all din C — {0}.

All our results, however will need the following qualification hypothesis (linear inde-
pendence of the gradients of active constraints)

(5.40) {Vgi(Z)}icius surjective.
16



On the other hand we do not need any strict complementary hypothesis.

THEOREM 5.2. We assume z — (F(z),g'(z)) to be Ct. Let {(z*, \*)} be com-
puted by Algorithm 3 converge towards (Z,)), semi-stable solution of (5.2) satisfying
(5.9). Then :

(i) Condition (5.7) is sufficient for superlinear convergence when E* is defined as

EF := {d € ker g}.(z%); gi(z*)d > 0,Vi € I’  such that g;(z*) + gi(z*)d* = 0}]}

(ii) Condition (5.7) is necessary, and also sufficient for superlinear convergence if in
addition (5.8) holds, when EF is defined as

EY = {d € ker g}.(z"); gho (2*)d < 0}.

REMARK 5.1. If the strict complementarity hypothesis holds, i.e. I® = ¢, then
Ef = E¥ = kergl.(2%) and, with this choice of E*, condition (5.7) is necessary and
sufficient for superlinear convergence of {z*}, under the hypotheses of semi-stability
of (z,)). Proof of Theorem 5.2
a) Preliminaries. Writing the Kuhn-Tucker conditions for the projection problem
defining h* we get the existence of n* € R satisfying

(5.41) hk — [H(Z,X) — M*d* + ¢'(«*)*n* =0
and

=0 ifiel—1I,
n% <0,mF =0 for all i in I such that g;(z*) + gi(z*)d* < 0, if E¥ = EF,
nt >0 if E¥ = E%.

Substracting the first relation defining the Newton type step from (5.10) we
get

(5.42) h* — F(a*) — H(z,\)d* + ¢'(zF)*(n* — A¥+1) = 0.

Expanding F(z*) up to the first order and taking (5.2) in account we have

Let us define

8° = |B*]| + llz* — 2l + lld®]|.

Then (6%)~1(h*,z* + d* — z, \¥*1 — 9%k — X) is bounded, the boundedness
of the third term being a consequence of (5.9) and (5.12). Let (h, 2,() be a
17



limit-point of this sequence, i.e. a limit for a subsequence k € S C IN. Then
(;=0ifi € I —I and from (5.12) we deduce that

(5.44) h—H(z,\)z—g'(z)*¢(=0.
Also, expanding g as follows :
g(a*) + ¢'(a*)d* = g(z) + ¢'(&)(a* + d* — &) + o(a* - 7),

we deduce from the fact that d* is a Newton type step associated to a mul-
tiplier A**1! that
I
9'(%)z <0,
(5.45) i
9i(%)z2 =0, if i€ I is such that /\_z-+ >0forall ke S
(which is the case if A\; > 0, i.e. i € IT).

The above relations imply

(5.46) z€C.
We also have from the definition of h* :
(5.47) gp (T)h =0,
(5.48) he€C when E¥ = E¥.
b) Proof of case i). If h* = o(d¥), then a fortiori A = 0. With (5.13) we deduce that
(5.49) H(zZ,\)z+g'(2)*¢ =0.

If i € I° is such that gi(z)z < 0, then g;(a*) + gi(a*)d¥ < 0, n¥ = 0 and
AFL =0 for k in S large enough, hence ¢; = 0. This implies
Gigi(®)2 =0 forall i in I°.
But this with the fact that (ro > 0 (due to 7% < 0), (5.15), (5.18) and (5.6)
imply z =0, i.e.
g* =z = o||h*|| + ||z - 7| + [|a*])).
This and (5.7) imply
gt —z = o([|z* — 2| + 2"+ = 2*|)) = o(llz* — 2| + [l*H — =)

k+1 k

which implies zF*! — Z = o(z* — Z), i.e. 2* converges superlinearly.
c) Proof of case ii). If 2% converges superlinearly then z = 0. Computing the scalar
product of (5.13) by h we get

111> = (¢, g'(2)h).

Using (5.17), the nonnegativity of /\’;3' ! and the complementarity condition
nFgl(x¥)h* = 0, for i in I°, we deduce that the right hand side of the above
relation is non positive ; hence h = 0, i.e.

h* = o([|hF]| + |l — 2 + [ld*]),

which implies h* = o(||z* — z|| + ||d*||). However the superlinear convergence
of {=*} implies ||d*||/||z* — Z|| — 1, hence (5.7) holds.
18



We now prove that if (5.7) and (5.8) hold, {z*} converges superlinearly. As (5.7)
implies h = 0, computing the scalar product of (5.13) with z we get

(5.50) (2, H(z,X)2) + (¢, (2)2) = 0.

As z € C,gi(z)z = 0 if AT #£ 0, and % > 0, the second term of (5.19) is non
negative. This and (5.8) 1mp1y that z =0 i.e.

et —z = o(||hF|| + |lz* — || + [|4*])).-
Using (5.7) and the relation ||d*|| < ||z**! — Z|| + ||z* — Z|| we deduce that
B — 7 = o(|lz* — || + [|* T — ).

x

which implies the superlinear convergence of {z*}.

With the help of Theorem 5.2 we may obtain the superlinear convergence of {z*}
when M* is updated using ideas of quasi-Newton algorithms.
We define the quasi-Newton equation (for M**1) as follows

(551) M(.’L’k+1 _ .’L'k) — F(Z‘k+1) _ F(Ilfk) + [gl($k+1) —g'(a:k)]* )\k-l-l‘

We assume that there exists a closed convex subset K of the space of n x n matrices
such that

(5-52) H(z,A) € K, Y(z,A) € R" x R?,
and we choose M**1 solution of
(5.53) min || M — M*||y; M € K; M satisfies (5.20),

where as before || - ||y is a norm associated to a scalar product.
LEMMA 5.1. Under the hypotheses of Theorem 5.2, if M*+1 satisfies (5.20) and

(5.54) (MFHE — MF) (2P — k) = o(2FH — 2),

then {z*} converges superlinearly.
Proof. As M**+1 satisfies (5.20) we have

Mk+1(wk+l —.’L'k) — F(.’Ek ) (CL‘I") +( ( k+1) gl(.’l?k))*j\ + (g'(a:k“) —gl(z'k))*()\k+1
= H(E N — o)+ ofaht — o).
Hence if M*+1 satisfies (5.20), and (5.23) holds, then
(H(z,\) — M*)(aF Tt — zF) = o(ah Tt — zF).
Now let h* be the projection of (H(z,A) — M¥)(zF+! — z*) onto EF. As Ef is a
cone, and the projector operator being non expansive we obtain ||h*| < ||[(H(Z,)) —

MF)(zF+t —2*)|| = o(x**! —z*). This and Theorem 5.2 (case i) imply the conclusion.
ad

THEOREM 5.3. Let (Z, ) be a semi-stable and hemi-stable solution of (5.1). Then
there exists € > 0 such that, if ||2° — Z|| + [|[M° — H(Z, A)||s < €, then :
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At each step k there exists (x*T1, \et1) solution of the Newton type step satisfying
lzF+ — || < 2e.
The sequence {z*} defined in this way converges superlinearly towards .
Proof. Define

Sk .= {M e K;M satisfies (5.20)},

1
AR = / H(z* + ("' — 2%), M) do.
0

Then A* is an element of S* and for some ¢; > 0
(5.55) |AF — H(z, M)y < erv®,
with here
vE = (|t = g+ Jlz® -z 4+ A= AL

As M*+1 is the projection of M* onto S*, we have from Grzegorski [12]
(5.56) MR+ — MFIE 4 (| MR — AR < % — AR,
hence with (5.24)
(5.57) IM*4E — H(z, V), < 1M — H(@, V), + 260"

As a consequence the approximation of the Jacobian at step k is
and approximates

We define a new norm as follows. To

s My Mia
= (g 00

is associated
1 M]lg := | Maally + [|M1z]|
with ||.|| an arbitrary norm. From (5.26) we deduce that for some ¢y > 0
|5 — g < (|M* - Mls + cov*.

Applying Lemma 2.2 (for which we may assume that A\’ = )) we deduce that if
(2%, M) is close enough to (Z, H(Z,))), then (z*,\*) is well defined and converges
linearly to (#, ) and that ||M* — M||g converges. This implies that || M* — H(z,\)||;
converges. As A — H(z,N), |[M**! — A¥||; and ||M* — AF||; do converge to the
same limit, and with (5.25) this implies ||M*+! — M¥|| — 0. The conclusion is then
a consequence of Lemma 5.1. O
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6. Application to nonlinear programming. In this section we particularize
some of our results to nonlinear programming problems, and we will see that it allows
to get some improvements with respect to known results. By nonlinear programming
problem we mean

(6.58) min f(z); g(z) < 0

where f is a smooth mapping IR"™ — IR, and g as well as the relation “<” are as in
section 5. Let us recall some well-known facts of optimization theory (see e.g. Fletcher
[10]). To problem (6.1) is associated the first-order optimality system

V() +9'(z)*"A =0,
(6.59)
g(w) < 05 A1 > 07 )‘tg(x) = 05

which is formally equivalent to (5.1) if we define F'(z) := V f(z). In this case the map-

ping H(z, ) can be interpretated as the Hessian with respect to z of the Lagrangian

L(z,\) := f(z) + A'g(z). We will say that X is a Lagrange multiplier associated to

if (z, ) satisfies (6.2). We recall the results involving second-order conditions with a

unique multiplier.

PROPOSITION 6.1. (see e.g. Ben-Tal [1])

(1) (Second-order necessary condition). Let T be a local solution of (6.1) to which
is associated a unique multiplier \. Then d'H(Z,\)d > 0 for all critical
directions d .

(ii) (Second-order sufficiency condition). Let (Z,)) satisfying (6.2) be such that
dtH(Z,\)d > 0 for all non zero critical directions d . Then Z is a local
solution of (6.1).

We now make the link between semi-stability and the second-order sufficiency
condition.

PROPOSITION 6.2. Let (Z, ) be an isolated solution of (6.2) such that % is a local
solution of (6.1). Then (Z,)) is semi-stable iff it satisfies the second-order sufficiency
condition.

Proof. Characterization (3.2) of semi-stability applied to the variational inequality
in form (5.1), and using (5.4), gives

(d,H(z,\)d) > 0 for all (d, 1) # 0 solution of

Ar+pr>0
H(z,\)d+¢'(2)'n=0,
9(@)'(n—A) =0,

(z
9(Z) +¢'(Z)d € N1 (N),

the last relation implying that d is critical. Hence the second-order sufficiency optimal-
ity condition implies semi-stability. Conversely, let us assume that the second-order
sufficiency condition does not hold. By Proposition 6.1 there exists a critical direction
d # 0 with d* H(Z,\)d = 0, and d is a solution of the quadratic homogeneous problem

min %dtH(i",j\)d; deC,
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where the critical cone is
I
C:={d;g'(z)d < 0;9;(x)d=0 if \; >0,Vi € I}.

Writing the optimality system of this problem, we find that to d is associated a
multiplier g such that (d, u) satisfies (5.6 i-ii). By Proposition 5.1 this contradicts
semi-stability. O

PROPOSITION 6.3. Let (&, ) be a semi-stable solution of (6.2) such that T is a
local solution of (6.1). Then (Z,)) is hemi-stable.

Proof. Semi-stability implies the uniqueness of the multiplier, hence also the
hypothesis of Mangasarian and Fromovitz. By Proposition 6.2 the second-order suf-
ficiency condition also holds for problem (6.1) at (Z, ). Let us consider the following
problem

(6.60) min Vi(z)td+ %dtH(;E, Nd; 9(z) +¢'(2)d < 0.

Obviously d = 0 satisfies the first order optimality condition associated to the unique
multiplier A. Also d = 0 satisfies the second order sufficiency condition (their formu-
lation for (6.3) at (d = 0, ) coincides with the one for (6.1) at (z,))). Hence if we
make a small perturbations in the data of this problem there exists a local solution
whose distance to d = 0 is of the order of the perturbation (see e.g. Robinson [20],
Thm 4.1). Hence hemi-stability holds. O

From Theorem 2.2 and Proposition 6.3 we deduce

THEOREM 6.1. Assume that f and g are C? with Lipschitz second derivatives,
= is a local solution of (6.1), X is the unique Lagrange multiplier associated to Z,
and the second-order sufficiency condition holds. Then there exists € > 0 such that if
|2 —Z||+ | A° = A|| < &, and (zF+1, \E+1) is chosen so that ||z*+! — 2k ||+ || AFFE = ME|| <
2¢, then Algorithm 8 with M* = H(z* \¥), i.e. Newton’s method, is well defined and
converges at a quadratic rate to (T, ).

REMARK 6.1. That Newton’s method converges at a quadratic rate when the start-
ing point is close to a solution (T, ) of (6.2), assuming x is a local solution of (6.1),
the gradients of active constraints linearly independent, and strict complementarity,
is well known. Recently the author [4] relazed the strict complementarity hypothesis.
Here we improve the result of [4] by assuming that the multiplier is unique instead of
the linear independence of the gradients of active constraints.

We now apply the results of section 5 on the superlinear convergence of {z*} only.
From Theorem 5.2 and the fact that condition (5.8) coincides with the second-order
sufficient condition, we get:

THEOREM 6.2. Let Z be a local solution of (6.1) such that the gradients of active
constraints are linearly independent, X be a multiplier associated to T and the second-
order sufficient condition holds. Then if (¥, \¥) computed by Algorithm 3 converge
to (z,)), then {z*} converges superlinearly iff

P*[(H(z,X) — M*)d*] = o(d"),

with P* orthogonal projection on the set EY defined in Theorem 5.2.

REMARK 6.2. If no inequality constraint is present, Theorem 6.2 reduces to
a theorem of Boggs, Tolle and Wang [3]. Some necessary or sufficient conditions
(but not the characterization given here) for problems with equalities and inequalities,
without strict complementarity have been given by the author in [4].
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