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Adaptive variations
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Adaptive variations

> Example of adaptive variations
> And create multidimensional adaptive
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Origin of variations

> Mutations:
Generally neutral or deleterious
Often not sufficient to generate new adaptive

phenotype

fithess

>

ENVIRONMENT
1



Origin of variations

> Mutations:
Generally neutral or deleterious

Often not sufficient to generate new adaptive

phenotype
> Migration often associated with locally

maladapted variants N

fitness

AN

fithess

tra:t 1 >
Q;\s” ENVIRONMENT
M <
>

ENVIRONMENT



Origin of variations

> Mutations:
Generally neutral or deleterious

Often not sufficient to generate new adaptive

phenotype
> Migration often associated with locally

maladapted variants N

fitness

AN

fithess

tra:t 1 >
Q;\s” ENVIRONMENT
M <
>

ENVIRONMENT



Origin of variations

> Mutations:
Generally neutral or deleterious
Often not sufficient to generate new adaptive
phenotype
> Migration often associated with locally
maladapted variants

> New variants appear at heterozygous state
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Balancing selection as a tool

> Balancing selection : maintained several
alleles at balanced frequencies

Typically maintaining several adaptive peaks in
sympatry

Either stable or transient

> Unique opportunity to compare several
adaptive variants in a common genetic
background

> Investigate the influence of dominance in
adaptation



Mechanims of balancing selection

> Negative frequency-dependent selection

Advantages associated with rare allele
Self-incompatibility locus in Plants




Mechanims of balancing selection

> Negative frequency-dependent selection

Advantages associated with rare allele
Self-incompatibility locus




Mechanims of balancing selection

> Negative frequency-dependent selection
Advantages associated with rare alleles
Self-incompatibility locus
Manual preference in Humans




Mechanisms of balancing selection

> Heterozygote advantage

> MHC in guppies ’




Mechanisms of balancing selection

> Negative frequency-dependent selection
> Heterozygote advantage

i

> MHC in guppies

[] Heterozygotes resisting to a
larger range of parasites

Immune
reaction
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Mechanisms of balancing selection

> Negative frequency-dependent selection

> Heterozygote advantage
> Selection/migration equilibrium
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Mechanisms of balancing selection

> Negative frequency-dependent selection

> Heterozygote advantage
> Selection/migration equilibrium
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Mechanisms of balancing selection

> Negative frequency-dependent selection

> Heterozygote advantage

> Selection/migration equilibrium
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Polymorphic mimicry as a case-study

> Mullerian mimicry: evolutionary convergence

among toxic species towards similar color
patterns
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Polymorphic mimicry as a case-study

> Mullerian mimicry: evolutionary convergence
among toxic species towards similar color patterns

> Strong positive number dependent selection by
predators at local scale
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Polymorphic mimicry as a case-study

> Mullerian mimicry: evolutionary convergence
among toxic species towards similar color patterns

fithes
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trait 1

predators at local scale
Most Heliconius

> Strong positive number dependent selection by
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Polymorphic mimicry as a case-study

> Mullerian mimicry: evolutionary convergence
among toxic species towards similar color patterns

> Strong positive number dependent selection by
predators at local scale

[] Geographic races of mimetic species

> Few cases of polymorphic mimicry
[] Heliconius numata
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Polymorphic mimicry as a case-study

> Mullerian mimicry: evolutionary convergence
among toxic species towards similar color patterns

> Strong positive number dependent selection by
trait 1 >

predators at local scale
[] Geographic races of mimetic species Most Heliconius
species

fithes

W

> Few cases of polymorphic mimicry
[] Heliconius numata

N et & 44
—oevee| TG

T’ ’ ‘ ' f Heliconius

Heliconiinae

numata

0.05




Heliconius humata as a model

> H. numata : striking resemblance with
several species from the distantly related
genus Melinaea (~90 My divergence)
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Origin of polymorphism in Heliconius nhumata

Elevation (m)
O o-268
O 288 - 537
0 537- 805

O 805- 1074
1074 - 1342

O 1342- 1610
B 1610- 1879

B melinaea menophilus ssp. nv.

C welingea menophilus hicetas

D wmelinaea marsaeus phasiana

E melinaea marsaeus rileyi
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Genetic architecture of mimetic colour
pattern in the Heliconius genus
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Genetic architecture of polymorphic
mimicry in H. numata

> Supergene encoding for color pattern
variations

> Polymorphic gene order corresponding to
different mimetic alleles

» Limited recombination

[] GENETIC ARCHITECTURE FAVOURING
POLYMORPHISM
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Genetic architecture of polymorphic
mimicry

> Polymorphic mimicry A
[1 High frequency of heterozygotes w “

Fitness (w)

Phenotype

S
> Selection on intermediate phenotype by predators

2 Selection on dominance in natural populations ?

> Persistence of polymorphism ?
[] Role of mating system ?



Selection on intermediates within
natural populations

» Test in natural populations (Peru) using artificial butter

Labex Phd




Selection on intermediates within
natural populations - study sites

oo Venezuela

N aanal
mbia b " El..!r-_'l.a_me-
A

b = AP

!P‘,— AR o, RS CE
; |
YoAC " Brazil
SES Tarapoto
i e AT B
: G0
Bolivia
. il ¥ [
L 1 oMS
S — e
FParaguay k] |
Chile .'__,_';
.- -".-
4 s
Uruguay
Argentina
.f
L




Selection on dominance within natural
populations- experimental design

- Local (bicoloratus)

Intermediate (bic/arc)
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Selection on intermediates within natural
populations- experimental design

> Experimental sites
Light gap on a transect: 150 per trial

> Five colour patterns per gap

> Left 72 hours before checking




Selection on dominance within natural
populations- attacks

P Arias et al. 2016



Selection on intermediates within
natural populations

okt

> Significantly higher
attacks:
On exotic morphs

On heterozygotes exhibiting
an intermediate phenotype
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Selection on dominance within natural
populations

> Selection againt intermediate detected
within natural population

Selection acting on slightly deviating
heterozygotes

> Impact on polymorphism ?




Modeling the impact of dominance
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Modeling impact of dominance
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Modeling the impact of dominance
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Modeling the impact of dominance
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Persistence of polymorphism

B Persistence of polymorphism due to mlgratlon/selectlon
balance, in heterozygo T ]

®In haploid model :
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Migration rate (m)



Persistence of polymorphism
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Persistence of polymorphism

® Strict dominance (h=1): B
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P Llaurens et al. 2013
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Persistence of polymorphism

B Co-dominance (h=0.5): heterozygote AB with intermediate
phenotype
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Persistence of polymorphism

B Co-dominance (h=0.5): heterozygote AB with intermediate
phenotype

= Loss of polymorphism for lower values of m

> Migration load higher when heterozygotes are
intermediate

P Llaurens et al. 2013



Allelic frequencies in the

metapopulation
B Fixation and frequencies depend on dominance
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Persistence of polymorphism

B Selection /migration balance
B Modulates by heterozygote behaviour

B Dominant alleles tend to be fixed when migration increases

>Nevertheless polymorphism is stable
throughout

H. numata range

P Llaurens et al. 2013



Mate preferences for wing colour patterns

> Male & female preferences for wing colour
patterns.

Male choice
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Mate preferences for wing colour patterns

> Male & female preferences for wing colour
patt D Female rejection @
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Mate preferences for wing colour patterns

> Realized mating:

Number of matings in
Tetrad experiments tetrad

with 2 males and 2 Male

females with different ' :
Female
morphs g
b 10 13

Mating events
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Dominance and disassortative mating

> Consequences on polymorphism within populations ?

> From the previous model

Mate preference parameter, which depends on resemblance
Mate=0 [J Strict assortative mating
Mate=0,5 JRandom Mating
Mate=1 [J] Strict disassortative mating

— mate 1 _ mate
Pref[i][j] = (1 — Res[i][}_]) + ( )Res[i][j]

Three mimetic alleles with:P<




Effect of disasssortative mating
- within a single population

> Disassortative mating within a single population,
assuming: '

mimicry
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Effect of disasssortative mating
- within a single population

> Disassortative mating within a single population,
assuming: -
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Effect of disasssortative mating
- within a single population

> Disassortative mating within a single population,

assuming: |
| g

Observed level of
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Origin of disasssortative mating ?

> Inversions: linked deleterious mutations (captured or
accumulated)

I S Ancestral allele

(recessive)
v _\

I [ S Derived allele 1

s (o m— oerived allele |
(dominant)

> Disassortative mating:

> Purge of deleterious mutations in recessive alleles (frequently
occurring at homozygous state)

> Accumulation of deleterious mutations associated with dominant allele
> Increase of heterozygote advantage
» Promote disassortative mating

p Chouteau et al. submited



Genetic architecture associated with
polymorphism

> Dominance influences
> Polymorphism in sympatry
> Gene flow among populations

> Origin of disassortative mating ?
> Linked to genetic load associated with inversions ?

» linked to dominance among haplotypes ? Genetic

architecture:

Adaptive landscape:

- Mimetic communities / \ - Inversions
- Predators behaviours - Dominance
A 4

B} | I
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— A

Disassortative mating:
_____________________________________________________________ 1 Linked preference locus ? |
' 0 Linked genetic load ?




Thank you for your attention
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