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CSBP

Let 5 € R, ¢ > 0 and pu is a o-finite measure on (0, c0) which

satisfies ~
(H1) : /()(1Az2)u(dz)<oo

Definition ( )

To each triplet (3, ¢, i), we can associate a CSBP Y*, which is the
unique non negative strong solution of a SDE

t t oYX
YtX:x—l-B/ YXdr+\/Z//’ W(dr, du)

///Y M(ds, dz, du) +// /YX M(ds, dz, du)
(1)
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CSBP

where
@ W is a space-time white noise on Ry x R,

e M(dr,dz,du) is a Poisson random measure with mean measure
dsji(dz)du independent of W.

The branching mechanism is given by

D) = —BA+ A2+ /Ooo(e*z ~ 14 Az ep)ul(dr).

We assume that Y* does not explode, which equivalent to

(H2) : /mﬂ:ﬁo

(YN
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CSBP

In this work, we prove that a properly renormalized continuous time
branching process with interaction converges to a generalized CSBP
solution of the SDE
A

t t |z
zx =x+/ f(Z,X)dr+\/2c/ / W(dr, du)
0 0 JoO

t rl pZ* o t roo pZ*
+/ / / zM(ds,dz,du)+// / 2z M(ds, dz, du),
0 JO 0 0 1 0 (2)

v

where f is a nonlinear function satisfies :
Assumption(H3) : f € C(R,;R), f(0) =0, and

fix+y) = f(x) <Py, Vx,y=0.
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The model
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The model

Let v be a finite measure on Z, = {0, 1,2, ...}, satisfying v(1) = 0.

@ Consider a population evolving in continuous time with m
ancestors at time t = 0, in which :
- each individual lives for an exponential time with parameter
I/(Z+)7
-And is replaced by a random number of children according to
the probability /(%) 'v.

@ For each individual we superimpose additional birth and death
rates due to interactions.
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The model

The total mass process X, which starts from m at time t =0, is a
Markov process whose evolution can be described as follows. X;”
jumps from k to

k+0—1, atrate v(0)k + Loy SIL[AFG)]T, €2 2;
k—1, atrate v(0)k + I [A(FG))] ™,

where A(f(j)) = f(j) — f( — 1).
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Renormalization |
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Preliminaries

@ Let us define ¢; and 1, € C([0,+o0)) by

o

0iu) = [ (e~ Thuz)(oz) and () = [ (e~ 1)p(ck),

where p satisfies (H1).
o We set

hin(s) = s + W: a0

and

hon(s) = s — W_; Z% man(f)s
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Preliminaries

@ Let us define
dlvN = ¢1(N), d2,N = —’g[)é(N) and d/\/ = 2CN+d1,N+d27N.

@ Let 7 be the probability measure defined by 7 = %50 + %52.
e For any / > 0, we define

1
IJN(E) = di [2CN7T(£) + d17N7T1’N(£) + d27N7T2’N(£)] .
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Renormalization

@ We now choose m = [Nx], and v(¢) = dyvn(¥) for all £ >0
@ We multiply f by N and divide its argument by N

@ We attach to each individual in the population a mass equal to
1/N.
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Renormalization

The total mass process Z"*| which starts from [Nx]/N at time

t = 0, is a Markov process whose evolution can be described as
follows. Z"* jumps from k/N to

K1 ot rate dywn(0)k + Nlg—oy I [A(FG/N)IT, €2 2;

k—1

KL atrate dywn(0)k + NI [A(F(/N))] .
where A(f(j)) =f() —f( —1).
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Renormalization

From this, ZVN* can be expressed as

zM Z[Nx]ﬂb/t/z /NZ'NJX(Z—l)MN(df7 dz, du)
e [0S (acump) o)
([ Z (atetm) o) ©

M" is a Poisson random measure on (0,00) x Z, x (0, 00), with
mean measure dydsvy(dz)du, P; and P, are two standard Poisson
processes, such that M", P; and P, are independent.
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Convergence Result |
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Main result

Theoreme

Suppose that Assumptions (H1), (H2) and (H3) are satisfied. Then
foralln>1,0<x <X << X,

(ZN7X17ZN,X2, . ',ZN’X") = (Z.Xl,Z.X27 e ZXn)

in D([0,00);R"), as N — oo, where {Z, t >0, x > 0} is the
unique solution of the SDE (2).

Let us discuss only the convergence of ZN* for a fixed x > 0.
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|dea of proof ( Tightness)

Let {7y, N > 1} be an arbitrary sequence of [0, T]-valued stopping
times.

A) For all T e > 0, there exists k. > 0 such that

N—oc0 0<t<T

lim sup IP’( sup ZMN* > ke> <e

B) For any T > 0, and 7, € > 0, there exists 6y > 0 such that

z"

sup sup IP’( oo ZNX

N>10<6<6y

>77)<6

@ The only difficulty is to prove A, then B is easily deduced.
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|dea of proof ( Tightness)

Let Y"V* be the Markov process which starts from [Nx]/N at time
t = 0, and evolves as follows YV jumps from k/N to

KL at rate {(2¢N + du)un(€) + Bly—oy tk, forall £ > 2,

%1 at rate (2cN + dy)vn(0)k.

YN-xis obtained from Z"* by replacing f(z) by j3z.
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|dea of proof ( Tightness)

We prove
P1) For all T e > 0, there exists k. > 0 such that

N ™

N—o0 0<t<T

lim sup IP’( sup YtN’X > k6> <

-It is easy to see that P1 implies A, since

SUPg< e Zt 7 < supge e Yi', stochastically.

To prove P1, we will proceed in three steps :

First step : : It is not hard to prove : For all T > 0, x > 0, for all
A >0,

E (eAY#I’X) —E (e*”;) ;

as N — oo, where Y* is the unique solution of the SDE (1).
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|dea of proof ( Tightness)

Combining this with the Portmanteau theorem, we have

VM. >0, limsup P(Y7™ > M) <P(Y;>M). (4

N—o0

Since from (H3) Y¥ < oo a.s, we can choose M, such that

B(Y;>M,) < (5)
Second step : : We next define the process YV in the same way as
YN-x with the measure y replaced by ji = plio )

It is not hard to establish :

For all T > 0, x > 0, there exists a constant C; > 0 such that for all
N>1,

FNJIRN

E( sup \_/tN’X> < (.

0<t<T
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|dea of proof ( Tightness)

Third step : : Now, switching from YV to YV consists in removing
some of the positive jumps of YN-x So, the time reversed process
K™ = YN behaves as K" = Y, with some negative jumps
deleted. Consequently

]P’( sup YV > k.

0<t<T

Y < I\/I€> < 1P>< sup YN > k.

0<t<T

Y < I\/l€> .

Combining this with the two first steps, it is easy to deduce P1.
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Idea of proof (Convergence)

@ By A and B, we may as well assume that {Z"*, t > 0}
converges weakly to a process {Z), t > 0} for the Skorohod
topology of D([0, c0); R,).

@ Since the solution of the martingale problem of (2) is unique, it
suffices to prove that the weak limit point {Z), t > 0} of the
sequence {Z'*, t > 0} is the solution of the martingale

problem.
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Thank you for your kind attention ! l
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