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Course 1: Stochastic compartmental SIR model



Compartmental SIR model (1)

+ Population of size N + 1.

Individuals are separated into 3 classes :
» Susceptibles &, size S; attime t > 0,
» Infectious Z;, size I,

» Removed R;, size R;.

Y Initial conditions Sp = N, I = 1.

* Vt>0, Si+h+R=N+1.



Compartmental SIR model (2)

Infection rate:
» Infectious individuals have infectious contacts at rate ),
» The contact is chosen uniformly among the N individuals

% For a given pair with one infective and one susceptible, the rate at
which the infective transmits the disease to the susceptible individual
is \/N.

% Removal rate:
Each infective becomes removed at rate ~.

% At the population level:
» The global infection rate at time ¢ is %St/,.
» The global recovery rate at time t is 7/;.
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Branching approximations



Start of the epidemic

% Start from a single infective Iy = 1 in a large population N + 1.

% Infectious individuals have contacts at rate \. The probability of
contacting somebody who is susceptible is %

% As long as the infectives or removed are not contacted a second
time, there is a coupling between /; and a continuous time branching
process (Z;)i>o0 where

» individuals die at rate ~,
» they give birth at rate \.
Z; is the population size at time .

% The first infective or removed that is contacted a second time is a
ghost.



Branching approximation

The expectation of the offspring number Y is:

+o00
E(Y) = E(E(Y | lifelength)) = / (Af)yedt =
0

Define 7 = inf{t > 0, Z; = 0}.

The generating function of the offspring number Y is

= Fi'o.

= too (,\t
Zsk]}”Y k) Z / e Mye dt

:/O+oofyexp(— (1 = ) +7)1)

-
(A —=8s)A+~



Criticity of the branching process

Ry =

2>

Prop: The branching process (Z;)>o is

v

» subcritical or critical if A <~y < Ry < 1. Then P(r < 4+00) = 1.
» supercritical if A >~v < Ry > 1.

Then P(r < +00) = p € (0, 1) where p is solution of p = g(p)

SMp-1(p-1)=0=p=1

and P(lim;, 4o Zt = +00) = p.



Ghosts

The branching process and the epidemic process agree until time
Tn, where the first ghost appears.

Define My the number of infections before the first ghost, so that the
ghost corresponds to the My + 1-th birth in the tree.

e Prop: F(My > K) =1 - 5510+ K20(},).

Proof:
k+1 , k .
Py > k) = (1-151) = 1- 3 3 + 0

J=1 j=0

So as long as k(N) = o(V'N), limy_+oc P(My > k(N)) = 1.



Ghosts (2)

% Let A; be the number of births in the branching process before t.

It is known that A(t) = O(e') where the Malthus parameter r is
defined by:

400
/ eMe Mdt=1er=\—~.
Jo

% Hence, for € > 0, there exists C. > 0 such that

1—e< lim P(k(N) < C.e'™)

N—+co

from which we deduce:

) >1—=c.
N—+oo r



Total size of the epidemy for Ry < 1
% K is the size of epidemic when it dies out.

Let (Yn)nen- be i.i.d. random variables with the distribution of Y
(generating function g).

% Prop: for all k € N*,
1
]P’(K:k):EIP’(W +F Yk:k*‘]).
Proof: Consider the exploration process of the tree corresp. to (Yn)nen~:
» individuals are ranked in lexicographical order (see contour process),
» The offspring number of the n-th vertex is Y.
> Then: Hy = 1, Ho =1+ (Y= 1).
The tree is encoded by an excursion from 1 which returns at 0 when all
nodes have been explored.

To each excursion of length k, where the increments are > —1, we can
associate (by permutation of the Y;’s) k trajectories such that
1T+ X,(Yi-1) =0 X5, Vi=k—1.

To each sequence of k integers > —1 such that ZL Y; = k — 1, there exists

. ) ; 13
a single permutation that corresponds to an excursion,



Total size of the epidemy for Ry < 1
% K is the size of epidemic when it dies out.

Let (Yn)nen- bei.i.d. random variables with the distribution of Y
(generating function g).

% Prop: for all k € N*,

P(sz)z%ﬂ"(% +eok Y=k —1).

% Examples:
If Y follows a Poisson distribution of parameter «, Z. follows a Borel
distribution: .

P(K = k) = (alj()l e ok

If Y + 1 follows a Geometric distribution of parameter p, k + ZL Yi
follows a negative binomial, from which:
(2k — 2)!

P(K =k) = mpku —p) .



Stochastic Differential Equations
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Random point events

Def: A Poisson point process Q(ds, df) on R2 with intensity
measure g(ds, df) is a random point measure on R2 such that

» Forall A € B(R%), Q(A) is distributed as a Poisson random
variable with parameter g(A).

» For all finite family of disjoint measurable subsets (A))ic/,
(Q(Ai))ics is a family of independent random variables.



Counting processes
Let Q(ds, df) be a Poisson point measure with intensity ds do.
Assume that t € R — \(f) € R, is a measurable map.

Then
M; = / / 19<A dS d@)

is a cadlag counting process with the following properties on the
times of jump:

t
P(Tk+1 — Tk > t|Tk) = exp ( 7/ )\(Tk + S)dS)
0
Hence, conditionally to Ty, the distribution of Ty1 is

ATk + t)exp(—/ot)\(TkJrs)ds).



Integrating against Poisson processes
* Let (w, t,0) — H(w; t,0) be a predictable process. Then:

M,:/[ , H(t,e)O(ds,de)—/.[ | H(t,0)q(ds, do)

1) is a local martingale,



Integrating against Poisson processes
* Let (w, t,0) — H(w; t,0) be a predictable process. Then:

M,:/'t H(t,e)O(ds,dO)—/.[ " H(t,6)q(ds, d6)

0 JR.

1) is a local martingale,
2) it E( Jy [, [H(t,0)| q(ds, df)) < +oc, then (M) is a real martingale.

V0 < s < t, E(Mi|Fs) = Ms, E(M;) = E(My) =0 and

// H(t,6)Q(ds, db)) / ﬂ@Ht@)q(dsd@))



Integrating against Poisson processes
* Let (w, t,0) — H(w; t,0) be a predictable process. Then:

M,:/'t H(t,G)Q(ds,dO)—/.[ " H(t,6)q(ds, d6)

0 JR.

1) is a local martingale,
2) it E( Jy [, [H(t,0)| q(ds, df)) < +oc, then (M) is a real martingale.

V0 < s < t, E(Mi|Fs) = Ms, E(M;) = E(My) =0 and

// H(t,6)Q(ds, db)) / g H(t,6)q(ds, db)).

3) if IE(fO Je, IH(, (t,0)1 q(ds, df)) < +oo, then (M;) is a square integrable
martingale with previsible quadratic variation

(M), = /0 R H2(t,0) q(ds, d).

Var(M;) = E(M?) = E((M);) = E((M),) :]E(/Ot/p H?(t,0) q(ds, db)).

18



Stochastic differential equation

# Let us consider two Poisson point measures Q'(ds, df) et
Q?(ds, df) with intensity ds d6 sur R2.

St = So— fot f]R+ Ty<as, i Q'(ds, d9)
b+ Jo Jo Vo<ys, 1, Q'(ds db) - I Jo, Vo<, CP(ds, db)
Ro+ fy Ji, 1o<-1, Q3(ds, db).

o =
-



Stochastic differential equation

Let us consider two Poisson point measures Q' (ds, df) et
Q?(ds, df) with intensity ds d6 sur R2.

St = So— [y %Sslsds — M;
= o+ fy 3Sslsds — [y lsds + M} — M?
Ri = Ro+ [,~lsds+ M?

where

t t
M; Z/ / To<as, | 01(ds,d9)—/ / To<js.1,05 d0,
o Jr, TNTE- o Jr, TN
t t
M2 = / / 19, QP(ds,db) — / / 192, ds d6,
o Jr, o Jr,



Stochastic differential equation

Let us consider two Poisson point measures Q' (ds, df) et
Q?(ds, df) with intensity ds d6 sur R2.

St = So— [y %Sslsds — M;
= o+ fy 3Sslsds — [y lsds + M} — M?
Ri = Ro+ [,~lsds+ M?

where
t A
M; :/ / 16’<AS I CD.I(dS7 de)_/ *Sslsdsy
o Jr, TN o N

t -t
/\/It2 :/ / 19SV/57 Qz(ds, de) - / A/Isdsa
0 JR, 0



Stochastic differential equation

Let us consider two Poisson point measures Q'(ds, df) et
Q?(ds, df) with intensity ds d6 sur R2.

St = So— [, §Sslsds — M
I = I+ [i4Sslsds — [1ylsds + M} — M?
Ri = Ro+ [, lsds+ M?

where
D)
<M1>t:/0 Nsslst,

t
(M), = / 71y,
0
(M', M?), = 0.



Large population limit
* We consider the renormalized processes:

/ R

N?

’
S{V+l,’"+R,N:1+N.

For the susceptible individuals:
t
Si :SOf// Ty<as, o, Q'(ds, db)
o Jr, ~V 7
tro
- / T e ansy o Q'(du, d6)
0 Jr, N "= R

t
:S{,V—// ASNINdu — MmN,
Jo JR,

where M'-N is a square integrable martingale with

1t 1t
1,N\ N N _ N N
(M >f_W/O /\NSqudu_N/O ASNINdu .



Kermack McKendrick ODE

Assumptions:
; N N pN ;
NE}TOO (SO ) It 7Rt ) = (307 I07 rO)
with (sg, fp) € (0,1), € [0,1)and so+ip + rp = 1.

# Prop: When N — +oo, (SN, IN, RN) converges to the solution of

St = So— [y ASyiy du
i = +th (ASyiy — viy)du
o= rofyviydu.

21



Proof:
The process (S", IV, RV) takes its values in [0, 1+ 4]% € [0, 3]°.

Aldous criterion is satisfied for each component.
Let T > 0,e > 0andn > 0. Let (7n, on) be two stopping times such that
oy <7y < min(T, ™ + 5).
TNAT
E(|SY, - SN :]E(|/ ASY du+ MEN L — M;;VND
IN

TNAT

gA%HE(}M“N - M)

TNAT
Ao+ [(|M -~ M)
TNAT
:AZ(H—\/E(/ %sy/,c' o)
oN
9 A9 5
<\Z Ay <
D+ R0 <

for § sufficiently small and N sufficiently large.
By Markov inequality and because the upper bound does not depend on N:
36y > 0, HNO S N*,

sup ]P)(|SITVN - S(I:IN‘ > 77) < l]E(|S¢lN - S!J\‘IND< E.
N>Ny n



The limiting values satisfy the Kermack-McKendrick system:

S = Sp— fot ASyiy du
i = ot Jo (ASuly — ~iy)du
o= rofyviydu.

There is thus existence of the solution.

% The solution is of class C*° in t, and the system can be rewritten in
ODE form:

g — — St
o= AStiy — it
F? = ’ylt

Uniqueness of the solution is ensured by Cauchy-Lipschitz
theorem.

23



Kermack McKendrick ODE (2)

an

L? = —>\Stit
& = )\~'9t/t — it
dt = 7’?7

with initial conditions (so, io, o) € (0,1)? x [0, 1) with sg + ip + 1o = 1.
% s; is a decreasing function in time, r; is an increasing function.

* S, iy and r; take their values in [0, 1].

% The solution converges to a stationary value (S, i, f~) Where
iso = 0.



% Prop:

log (z—;) =—=(rr—rp).
Proof:

s . A,

S(t) = -\ = —;r (t)

% Prop: Assumethatsy=1—v —¢, jp = ¢ (small)and r,p = v.
Define the fraction of susceptible that are infected by the end of the
epidemic as

_SO_Soo_roo_rO roc — 1o

So So T l—v—¢

Ze

Then:
1-z = 679025(17'/76).

Proof: Note first that
Se _ So— (S0 — Sx)
s s
Taking the limit { — +o0 in the above Prop:

og () (( =log(1 ~2.) ) =Rl — 1) = ~Foze(1 — v —<).

=1-2z.

25



1— Z. = e*FfoZEU*V*E)'

* lfv=0ande — 0,then1 — zy = e P,
0 is always solution, but when Ry > 1 there is a second positive
solution in (0, 1).

% If v > 0 (vaccination), then 0 is the only solution if
R(1-v)<1iev>1-— H%O =: v, (critical vaccination coverage).

26



Central limit theorem

Define:
U;’N = \/N(S(N)t — S[), U?’N = \/N(IfN) — I[)

Assume that (3™, 75"N) converges in distribution to (3, 72) when
N — +oo.

Prop: Then for all T > 0, ("N, 72N> converges in distribution in
D([0, T], R?) to the Gaussian process characterized as the unique
solution of

dng = — )\(It’ﬂ; + S[nf)dt — )\StitdB;,
dnf =(im} + sef)dt + ynfdt + /AsiidB] — \/~irdBE,

where B' and B? are independent standard Brownian motions.

27



Course 2 : SIR model on a random graph

28



Motivations

s SIDA (données cubaines)

Cluster 9

»

% VHC chez les usagers de drogue (données australiennes, Rolls et
al.)

Sl Izmmnmn 1
:Mvavv ﬁ
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Random graphs

30



Random graphs
% Def: A random graph G = (V, E) is a set of vertices V and a set of edges
EcCcVxV.
The population size is |[V| = N. Forex.: V = {1,...N}.

If u, v € V are connected in the random graph, then (u, v) € E.
uis the alter and v the ego.

* Def: The adjacency matrix is a matrix G € My v(R) such that Vu,v € V,

Guw =1if(u,v) € E,
Gw =0if(u,v) ¢ E

If the matrix is symmetric, the graph in non-oriented.
If we consider weighted graphs, we can generalize the entries to real
numbers.

% Def: The degree of avertexu e Vis D, =5 ., Gu-

veV

For an oriented graph, we can define the in-degree as } ., Gv and the
above sum defining D, is the out-degree.

31



Examples of random graphs

% Erdds-Rényi: (Guy, u,v € V) arei.i.d. random variables with
Ber(p) distribution, p € (0, 1).

% Bollobas-Molloy-Reed or Configuration model (CM):
(Bollobas (80), Molloy Reed (95), Durett (07), van der Hofstad (in prep.))
» The degrees of the individuals are realizations of i.i.d. random
variables with distribution (px, k € N)
» This defines half-edges (stubs). If the number of stubs is odd,
add or remove one stub arbitrarily.

» Stubs are paired at random: associate with each stub an
independent uniform random variable on [0, 1] and sort the stubs
by decreasing values. Pair each odd stub with the following even
stub.

Notation:

m=> ko, o® =) (k—m)Pp

keN keN

32



% Link between both models:

A Configuration model with a Binomial distribution B(N, p) looks like

an Erdds-Rényi graph with multiple-edges and self-loops.

If oy = 5, then

p(o, =) (M )@ - "
(N-1)! an,a N |k
_k!(N—1—k)!( _N) (NN—a)
1 1 a)Nak(N—1)...(N—k) ake_a

=N N o) K

Other models: Household models, Stochastic block model,
Exponential random graph model.

33



SIR on a random graph

% To each 7 individual is associated an exponential random clock
with rate ~ to determine its removal.

% To each edge with an infectious alter and a susceptible ego, we
associate a random exponential clock with rate .

When it rings, the edge transmits the disease and the susceptible
ego becomes infectious.

34



SIR on a configuration model graph

% Computation of Ry.

% Approximations in a large population:
» Andersson (1999)

» Infinite system of denumberable equations, Ball and Neal
(2008)).

» 5 ODEs, Volz (2008), Miller (2011).

» Recently: Barbour Reinert (2014), Janson Luczak Winridge
(2014)

35



SIR on Configuration models (1): Ry
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Ro
Let us consider a single first infective in a large population N, of
degree d;. Before the first ghost:

» The number of neighbours that this individual infects follows a
Binomial distribution Bin(d. Aiw ).

» Each individual of the following generations is of degree k with
probability .

* Let v be the offspring number of one of these individuals. Then:

X kpi [k — 1 A o\b, Y k-1t
P(”Zg)zk;m( ) 6

The mean offspring number of these individuals is thus:

A o> —m
(

=507 +m).

+oo
Ro = E(v) =) (v =1¢)
£=0
If (ox, k € N) is a Poisson distribution with parameter «, then

m= o2 =aand
a\

A+

Ro =



SIR on Configuration models (2): Moment
closure

38



Moment closure
% For u € V, denote S,(t) = 1,es, and I,(t) = 1ye7,.

St=>Y_Su(t), k= L.

ueV ueV
Assume that limy_ o0 (SY, ') = (S0, lo) and that RY = 0.

* Let A, B,Cbe Sorl.

. 1 . 1
@l = lim S Ai=a  [ab]= Jim > AsGuBy,

—+00 —+o0
ueV u,veV

. 1
[abC] = NhToo N Z AuGuvavacw.

u,v,weV
% Andersson proposes the following system of ODEs.

d ) di; . . d :
% = —A[stht], Fltt = A[sti] — i, % = —2X[ststit]
d[;;h] = )\([StStiz] — lirstir] — [Stit]) — [sti]

d[iti] _

A(4lirstir] + [sesti]) — 2[irit]

at

39



These equations are not closed.
d[StSt] _

dl‘. = —2)\[81511';]
% = )\([Stsfit] - [itSti[] - [S(it]) — 'V[Stit]

% Let A, B, Cbe Sor .
P(A,B,.Cw =1)=P(A, =1]|B/,Cy =1)P(B,Cy = 1).
If {u,w} ¢ E, we can assume that

P(Ay=1]B,Co=1)=P(Ay=1|B, =1) = "Au=1 B =1)

P(B, =1)
which amounts to assuming
[ab][bC]
abs] ~ .
[abs] [b]
% Then:
d[StSt] _ [StSt] [Stit]
dt 2A St
d[Stit] N [StS[][Szit] _ [Stit]z _ . _ .
at )\( St St [Szlt]) ’Y[St/t]-

The equation for [iit] is not needed any more. 40



dlsis] [stsdl[seir] ~ dlstit] _ | ([sestllstie]  [stir]? , :
i - N s Tar A s s i) = lsii]
Notice that
d(s? ds St
(dtt) =25; dtt = —2)\31[3111] = _ZAQSt

(s?) and [s;s;] satisfy the same ODE and we deduce that there exists
C > 0 such that [s;s{] = Cys?.

* Let us define by i; = /I the mean number of edges toward Z; for
individuals in S; (selectlon pressure).
diy _dlsi] 1 [sti] dst

at St St 32 at

1 ~ 1 ~ 1 ~ 7[St ~
=—(A(C18? x iySt x — — i’S%2 x — — s +—></\/s>
st((1t tot St t ot St tt) 312 tot
=(CiAst — A — 7).

The system can be reformulated as a system with three ODEs in s;, i; and A

41



dS( dl{ ~ .
—\stit, — = ASty — it

dt dt
dI ~
dtt (C1 ASt — )\—v)lt.

* If Cy — +o0o and X — 0 with C; X constant, then ’in the limit’:

dis O
— = \Cy Stiy — iy
at 1 Stht — Yt

We see that j; and j; satisfy the same ODE. Thus, i; = Cyi.

(more rigorously: consider f(t) :71 — Cyl;, compute the derivative and
apply Gronwall inequality).

The system becomes

das;

= —Ci St
ot 1 AStt
dlt

= Ci Sty — i
at 1ASH: — Yt

which is Kermack-McKendrick with infection rate C; . S



Total size from the moment closure

di .~ 1 4, ds 147
E—)\Stlt(701+sft+)\73t)—dt( C1+ s
T T - l ﬁ
it — o = —C1(s¢ so)+(1+)\)logsO.
Since iy, = 0:
—7o+C1(Soo—so):(1+l)logsi°
A So

and
Z:=8 —5 =5 (1—exp(—

A
A+

)
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SIR on Configuration models (3): Volz and Miller
approach

44



Generating function of the degree distribution

% Consider a CM graph G = (V, E) with degree distribution
(pk7 k € N).

Define the generating function of the degree distribution:
+oo
V(x) =Y x"px
k=0

Remark: W/(1) = 2,25 kpk = m.

* Examples:
» Poisson with parameter a: W(x) = e*(*~1),
> Geometric with parameter p: ¥(X) = —/7—;-

» Binomial with parameters (n, p): V(x) = (xp+ 1 — p)".

45



% The population is ’infinite’.

s Define 6(t) as the probability that an oriented edge picked
uniformly at random at t has not transmitted the disease.

% Let u € V be a vertex of degree k. Then the proportion of
susceptibles is

St—ZOOQ “or =W (6(1)).

46



Dynamics of 6(t)
Define ¢(t) as the probability that a random edge has not
transmitted the disease and that its alter is infectious.
do
5 = ()
% Evolution of ¢(1):
» An edge stops satisfying the definition of ¢ if it transmits the
disease or if the alter is removed.
» An edge starts satisfying the definition of ¢ if its alter becomes
infectious.
J Let h(t) be the probability that the alter is susceptible

do dh
- —(A+7)e(t) - o

% Since: h(t) = ZZZ L{ikg)kf%t) _ W\;}(fzgf)))7

dh _ w"(0(t)) do v (6(t))
@~ v a0y
% Thus: )
& W
Fi) = — (A +7)o(t) + Ap(t) w(/?gg)) .



do

& = (1)
do wr(o(t))
gt —(A+7)e(t) + /W(UW

* We have:
dp A+~ do V'(0(t)) db

a  \ dt v(1) dt
which gives for a constant C:

Aty v'(6)
= - w(1)

% Using that ¢(0) = 0 and 6(0) =1,

o(t) +C.

o) = 0(t) — (1 - 0(1) - V' (6(1)

V(1)
% We deduce:
do w'(6(1))
i =) +~(1—0(8) + X TR




Miller's equations
% As a consequence:

st = V(0(1))
ar ,
ar = Vit
i[ =1- St — It
di , VAUO) N
ot =~ VEm)(= 200 + (1 - 0(1) + A OB
9 — (1) + (1~ 0() + A"’W(,H(gt)))

Volz’equations: Introducing the proportion of edges Z — S that
have not transmitted the disease yet

pi(t) = Z)Eg

and the proportion of edges S — S that have not transmitted the

disease
w'(6(t))

Ps(D) = Goywr()

49



Volz’ equations

P =i ps) = il
The equations become: (Volz(2008))

0(t) = exp (- )\/Otp,(s) o), s= (o),

g = Ap(0P(V(O(1) i
dpi _ vr(0(1))
& = APPSO gt = AP = pi(D) -
B = p0ps(D (1~ 8 )
Recall the limit for mixing models:
Eff)\si gf)\sif i
dt = tlt, dt - tlt Yt

vpr(1).

50



Volz’ equations

_ () _v(e()
pi(t) = a0 ps(t) = aOw()

The equations become: (Volz(2008))

0(t) = exp (- )\/Otp,(s) o), s= (o),
di

E =AX N{SI — ’Yit
% = Api(t)ps(t)0(t) \I\IJJ’,/((g((tt)))) —Api()( = pi(1) = vpr (D).
dps v (0(1))

gt = PiBps(t)(1 - 6(t) v (4(t)) )

Recall the limit for mixing models:

i . .
ds g = A\ Stly — vylt.

E :*)\Stlt, at
Here:
/ do , . L
% =W (6(0) % = N (O()AOPI() = ~AREPI(t) = AR,
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SIR on Configuration models (4):
Measure-valued processes
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Stochastic model for a finite graph with N vertices
Two sources of randomness.
% Only the edges between the Z and R individuals are observed.
The degree of each individual is known.

% To each 7 individual is associated an exponential random clock
with rate ~+ to determine its removal.

% To each open edge (directed to S), we associate a random
exponential clock with rate .

When it rings, the edge of an S is chosen at random. We
determine whether its remaining edges are linked with S, Z or R-type
individuals.
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Edge-based quantities
% The idea of Volz is to use network-centric quantities (such as the
number of edges from Z to S) rather than node-centric quantities.

* St, It, Rt, St, I, Ry, di, 0i(St)...
1 finite measure on N and f bounded or > 0 function:

(1 £) = > ke F(K) (k).
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% The idea of Volz is to use network-centric quantities (such as the
number of edges from Z to S) rather than node-centric quantities.

* St, It, Rt, St, I, Ry, di, 0i(St)...
1 finite measure on N and f bounded or > 0 function:
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Edge-based quantities
% The idea of Volz is to use network-centric quantities (such as the
number of edges from Z to S) rather than node-centric quantities.

* St, It, Rt, St, I, Ry, di, 0i(St)...
1 finite measure on N and f bounded or > 0 function:

(1 £) = > ke F(K) (k).

We introduce the following measures:

k)= dq,(dk) p (k) =) Sa,s(dk)
UES: ueZ;
pi ™ (dk) = Z Od,(s;) (k)
UER

This sums up the evolution of the epidemic (but does not allow the
reconstruction of the complicated graph on which the illness
propagates).

o= (), NET = (ug k) = du(Sh)

UeZ; 53



Dynamics
#* Global force of infection: ANj~.

% Choice of a given susceptible of degree k: k/N; .
So that the rate of infection of a given susceptible of degree k is:

Akpi(t-).
The probability that its kK — 1 remaining edges are linked to Z or R
is:
' ¢
| (st 1) () (25)
p(,¢, mk—1,t) = Viporm=rk—11jcnszcns=

(v 1)
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Dynamics
#* Global force of infection: ANj~.

%* Choice of a given susceptible of degree k: k/N? .
So that the rate of infection of a given susceptible of degree k is:

Akpi(t-).
The probability that its kK — 1 remaining edges are linked to Z or R
is:
' ¢
| (st 1) () (V)
pU, ¢, mk—1,1) = — (& Viporm=rk—11jcnszcns=
NS —1

% To modify the degree distributions p$Z (idem for $7):

We draw a sequence e = (ey)ucz, Of integers.
e ¢, is the number of edges to the infectious individual u at {_.
e not all sequences are admissible.

The probability of drawing the sequence e is

dy
(e| ) SI) . HUEI{_ (eu) ) o
pulll),ut") = TNST, {Zes=j+1, € is admissible}
(j+1) 54



Renormalization

* We are interested in increasing the number of vertices N without
rescaling the degree distribution.

* We now consider pN-S, xN5T and pN-SR where for ex:
1
NS 1 s : - NS _ -5
e (dk) =N (dk) with NLITOC o~ = fig in Mg(N)

(idem for uo)"5% with N5 > = and ;0" with N§7 > <)
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Renormalization

* We are interested in increasing the number of vertices N without
rescaling the degree distribution.

* We now consider pN-S, xN5T and pN-SR where for ex:

S (dk) = dk) with  lim =[5 in Mg(N)

’
ke (
(idem for uo)"5% with N5 > = and ;0" with N§7 > <)

% 3 SDE:
< N,ST f> < NSI7f>+A;V,$I,f+MtN,SI,f

)

where MN-ST.f is a square integrable martingale started from 0 and
with previsible quadratic variation in 1/N.
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N),ZS,f.
ANVZS T,

t
AT = [T s

b [ SRS Y R mk 1.0

keEN JHAH1<k

x 3 puleli + 1,485 (f(m) + 3 (f(du — eu) — f(d)) ) ds,

ecU uezl
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N),ZS,f.
ANVZS T,

t
AT = [T s

b [ SRS Y R mk 1.0

keEN JHAH1<k

X ZPU (elj+ 1, ug SI)(f(m) + Z (f(du —ey) — f(du))) ds,

ecU uezl

Th: Under appropriate moment conditions, (ur, 5%, V5% )icp,

converge to a deterministic limit (g, ig %, @™ )ier,
t
@0 = (5570~ [ 2757 nes
[y by M\ _ iy, —
s e 2 (BT e

keN* je+m=k—1

1 =ST( !
x (Fm)+G+1) > (fK 1)~ f(k’))%)ﬁf(k)ds

Kk’ €N~ (s
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Sketch of the proof

Assumption: supy.y- ((pQ”SJ + K5 4 (T 1+ k5>> < 400,

Tightness: topology on M£(N). Roelly’s criterion.
Aldous-Rebolledo criterion.

(‘AN SZ.f A(I;I’ZISI,fl > E) <e

P([(MNSTIY | — (MNST > e) <e.

% Convergence of the generators.
e The identification of the limitis OK on [0, T] IF T < 7V where

N = inf{t > 0, N"T < ¢}

Uniqueness:
e Gronwall’s lemma gives that solutions of the limiting equation
have same mass and same moments of order 1 and 2.
 Uniqueness of the generating function of i~ which solves a

transport equation. 57



Deterministic limit
% Limit equations:

i (k) = i (k)ok, 0, = e M Jopios
<ﬂ}SI’ f> — ...

t
(SR f) = /0 (ST, Fds

+ 52 Bk = B (1K~ 1)~ f(K)

keN k’eN

K uSR(K)

)

% This allows us to recover Volz’equations:
» Choosing f = 1 gives S;, 1,
» Choosing f(k) = k gives N5, N57, N5%, from which we can
deduce p* = NS /NS...
> Let g(2) = > ,on [i5 (k)2 be the generating function of fi§, Volz
equations hold with g instead of V.
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Degree distribution of the “initial condition”

Assumption: supy.y. (g, 1+ k%) < +o0

800 1000

400 600

200

0

Time

Prop: For e > 0, when N — +o0, the degree distribution when after
[eN] infections converges to:

1
ﬁ Zpk(1 - Zg)k(Sk
k>0

where z¢ is the solution of 1 — ¢ = f(1 — z), f being the generating
function of the original degree distribution.
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Proof: (size-biased ordering)
We start with 1 infective in a population of size N + 1.
Dy, ... Dy are the degree of the susceptible individuals.

* We associate with each stub e an independent uniform random variable
Ue.

We associate with each initially susceptible vertex u:
Z, = min{Ue, eis a stub of u}.

u is infected before v is Z, < Z,.
Introduce the order statistics Z1) < -+ < Z).

Prop: The distribution of Z, is characterized by:

IP(ZU§Z|DU):1—(1—Z)D”

M(z):=P(Z, > z)= Zpk1—z V(1 - 2).
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% The empirical degree survival function is

Mu(2) = &S Nzoe e M(2) =3 pil1 — 2)°

ueV

a.s. where the convergence is uniform on R, (Kolmogorov-Smirnov
theorem).

* Define:
*=inf{z € (0,1), M(z) > ¢}.

Prop: For ¢ > 0 such that z¢ is a continuity point of M,

lim Z _zE a.s.
N—+cc

Proof: If z° is a continuity point, M(z°) = ¢
Letd > 0 and
n =min (|M(z° = 6) — M(z%)|,IM(z° + 8) — M(z)|)
By Kolmogorov-Smirnov, 3Ng(w), YN > No(w), [[My — M|l < 2.
|M(Zeny) — €| <|M (=) = Mu(Ziemy) | + [Mn(Zen) — €

L RCA o



* If (B
then

Thus:

M en is the degree distribution after the [=] first infections,

e, N 1 _ e\k
S R e

k>0

: 1 e N 1 o\k
m 72 <5 772 1 — 258§,
Nall+ooNk>0pk & 1—¢ Pk( Z) “

k>0
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Course 3: Statistical estimation for a compartmental SIR model
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Cuban HIV data: descriptive statistics and
clustering
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Cuba CT graph

HIV: in Cuba since 25
years. A database
contains detections since
1986 with information for
contact-tracing.

» 5389 ind., 4073 edges
» Giant component:

2386 ind. (44%), 3168
edges (78%)

Second largest
component has 17
edges.

almost 2000 isolated
ind. or couples.
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Cuba CT graph

HIV: in Cuba since 25
years. A database
contains detections since
1986 with information for
contact-tracing.

» 5389 ind., 4073 edges

Giant component:
2386 ind. (44%), 3168
edges (78%)

Second largest
component has 17
edges.

almost 2000 isolated
ind. or couples.
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Some literature on sexually transmitted diseases on
networks

Keeling and Eames (2005), Liljeros et al. (2003)

% Data-based studies: usually smaller populations and/or smaller
giant components and/or few infected indviduals

» Bearman et al. (2004): study on the american teenage sexuality
(without STD) ; 573 persons, giant=288.

» Wylie and Jolly (2001): Manitoba study ; 4544 individuals, but
giant=82 persons

» Rothenberg et al. (1995): Colorado Springs study ; 2200
individuals, giant=965 persons with only a very small number of
HIV positive individuals

For statistics on graph data, see the review of Newman (SIAM
Review, 2003) and the igraph R-package.

Clémencon et al. 2015.
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Joint distribution of the degrees of two neighbors

Degree distribution in the Detection graph

25

— 20

15

Degree of the alter

10

Degree of the ego

Figure: Joint degree distribution of alter and ego for the population of MSM.

If we restrict to the subgroup of individuals with less than 10
contacts, the independence assumption is accepted thanks to a x?
test.
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A tree-like graph

Indicators show an apparent weak resilience:
+ 1157 articulation points

+ 187 cliques (among them 177 triangles)

+ low assortative mixing coefficients:

Ego Alter is Alter is Alter is Total

isa awoman a heterosexual man an MSM
Woman 77 (1.9%) 157 (3.9%) 408 (10.0%) 642 (15.8%)
HT man | 282 (6.9%) 4(0.1%) 20 (0.5%) 306 (7.5%)

MSM 800 (719.6%) 25 (0.6%) 2300 (56.5%) | 3125 (76.7%)

Total 1159 (28.5%) 186 (4.6%) 2728 (67.0%)

2
(M) — M|
T— (M2

where M = (m; ;); ; and m; ; is the fraction of edges linking group
i to group j. r=0.0512 for sexual orientation.



Degree distribution

probability

2e-04 1e-03 5e-03 2e-02 1e-01

Ko Qx, | Mean Stddev. Min Max
Whole population | 7 3.06 | 6.17 5.54 1 82
Women 6 271 | 5.88 5.03 1 39
Heterosexualmen | 7 3.36 | 4.98 4.11 1 30
MSM 7 3.02 | 643 5.84 1 82
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Degree distribution

probability

0.00 0.02 0.04 0.06 0.08 0.10 0.12

0

.............................................................
T
2

Ko Qx, | Mean Stddev. Min Max
Whole population | 7 3.06 | 6.17 5.54 1 82
Women 6 271 | 5.88 5.03 1 39
Heterosexualmen | 7 3.36 | 4.98 4.11 1 30
MSM 7 3.02 | 643 5.84 1 82
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Degree distribution

Prop: there is a giant component in a configuration model with i.i.d.
degree distribution (px)x>o if

E(D(D-1))/E(D)>1 & > k(k—2)pc>0

k>2

where D is a r.v. with distribution (py).

Ko Qx, | Mean Stddev. Min Max
Whole population | 7 3.06 | 6.17 5.54 1 82
Women 6 271 | 5.88 5.03 1 39
Heterosexualmen | 7 3.36 | 4.98 411 1 30
MSM 7 3.02 | 643 5.84 1 82




Degree distribution

Based on Clauset, Shalizi and Newman, we minimize the dissimilarity

measure c
_ Pr o " Pk
Ki (P, ) = log < e k_a> ;

where Co,ky = Zkzko px and C, = Zkzkg 1/ka'

Qo = argmin Ky, (pn, ).

ko ay | Mean Stddev. Min Max
Whole population | 7 3.06 | 6.17 5.54 1 82
Women 6 271 | 5.88 5.03 1 39
Heterosexualmen | 7 3.36 | 4.98 4.11 1 30
MSM 7 3.02 | 6.43 5.84 1 82




Methodology

Clustering:
» maximization of the modularity (Girvan and Newman, 2004) :

R

I=1ijeC

+ favor dense clusters and produces interesting partitions for
visualization (Fortunato 2010)

+ the optimisation is an NP-hard problem but high quality
sub-optimal solutions can be obtained by annealing (Rossi
Villa-Vialaneix 2010) or other methods (Noak Rotta, 2009)

» Clustering significance:
+ compute the modularity of the partition that is obtained

+ simulate configuration models with same degrees and compute
modularity.
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Density

100 simulations of random graphs

15

10
|

‘
0.25 0.30 0.35 0.40

Modularity
The partition that is obtained is statistically significant.
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Hierarchical clustering:

» If the first clustering is relevant, and if the classes have large
sizes, we can refine the partition.

+ Reiterate the clustering for each element of the partition, without
taking inter-cluster connections.

+ Test the significativeness of the cluster’s partition
+ Test the significativeness of the global clustering of the graph.
% Coarsening:

» merge clusters that induce the least reduction in modularity as
long as we remain above the original graph.

% Visualization

» Fruchterman Reingold algorithm to display the network of
clusters
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= 37 classes (89.5% of
internal links)
= modularity ~ 0.85

wwwwwww

= random modularity
<0.74




= 37 classes (89.5% of
internal links)
= modularity ~ 0.85

MMMMMMMMMM

= random modularity
<0.74

= hierarchical visualization
of the sexual orientation
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= 37 classes (89.5% of
internal links)
= modularity ~ 0.85

= random modularity
<0.74

= hierarchical visualization
of the sexual orientation
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Role of sexual orientation in the history of the
transmission

population GCC

women 0.21 0.20
HT men 0.11 0.05
MSM 0.69 0.76
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Maximum likelihood
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Maximum likelihood in the SIR case

Assume that we observe the whole trajectory (SN, IV, RN)c(o,77-

The successive times of events are (7;)1<;<x,(r), Where Ky(T) is the
number of events.

At each event, E; = 0 if we have an infection and E; = 1 if we have a
remission.

% The likelihood is the density of (SN, IV, RN)c(0, 7 With respect to
the SIR process where intervals between events follow independent
exponential distributions of parameter 2n and where each event is an
infection with probability 1/2 and a remission with probability 1/2.

LS 1Y, B, i A7)
Kn(T)

i
_ exp (nT—/ (ASVIY — 4 )ds) T (ASY_ Ay =E(yi)_)E
0 i=1
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Taking the log:

T T
log £(X,7) :nT—/ (AssN/sN_w;V)der/ ASY 1 1, nev v Q'(dS, d6)
0 0 —_ S_'s__

;
+ / YAy QF(ds, db)
0 <Nigl
% The MLE are:

10D 1xMDE

/):N =7 ) UN = .
N fy syivds N Jg s

% These estimators are convergent and asymptotically Gaussian:

m( e ) = N (O, 71 (1,7).

YN —7
where the Fisher information matrix is:
S suiudu 0
/()\7’}/) = ( 8 M ) .
Y

(see Clémencon et al. 2008)

77



MCMC estimation
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MCMC
O’Neill Roberts 99.

* Pop. size N, minfections at times o = (01 < 0,...0m)
(unobserved), nremovals at times 7 = (4 =0, ... 7).

We observe N, nand 71 =0,... 7.

% Bayesian estimation.
A priori distributions:

A
N ~ r(aA’ V)\)a s r(a’yv V’)’)a g1~ oees1s<0ds-

Then the posterior distributions are:
> oy|T, 0, 7~ (0+ AN = fy)e(‘g“"\/:w(”?*y)1y<(72
> %|7’7 0,y ~> r(aA + f; Seslsds,m—1+ V)\)
> |70, A~ T(a, + f; lsds,n+ v.)

» it remains to simulate o conditionally to 7, o1, A, 7.
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Metropolis-Hastings algorithm

We use a Metropolis-Hastings with three moves to simulate o
conditionally to 7, o1, A, 7.

% Move an infection time chosen at random by sampling the
candidate uniformly in [0, T].
Acceptance probability:

L(oc—{s}+{t})
E(U)

A1

% Removing an infection time chosen at random:

L(oc—{s})m

[,(a)(T— o1) M

% Adding a new infection at a time f drawn uniformly on [0, T]:

£(U+{t})(7—f 0'1)

[@ymen "
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ABC estimation
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Approximate Bayesian Computation

MCMC methods can be very costly (ex. Chis Ster et al. 09)

* Let x be the data and 6 the parameter. Let 7(6) be the density of
the prior distribution of 6.

* Instead of estimating 7 (0 | x), we focus on the partial posterior
p(0 | S(X) = sops) where S(x) is a descriptive statistic and sqps the
observed value in the data.

* The estimation is then based on simulations.
N simulations —  (0i)icq1,.ny = (Xi)ieqr,ony = (Si)ieqt,...N}

Zf\; WI'(SH,’
N K
Z/q W
07 is a correction of 6; taking s; and sps into account.

If g = G(s, ) = Gs(e), then 67 = Gs.\.(Gs (61))-
Ex: if G(s,e) = a+ s!B + ¢, then 07 = 0; — (Si — Sops)! -

W, = K(S(Si - Sobs)

+ Beaumont et al. 02, Marin et al. 12.
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ABC on the Cuban HIV data

Choice of summary statistics: cumulated removal curve, duration
between detection and remission...

% Validation: RMSE, predictions...
% ABC Estimation (Blum-Tran 10).

— estimated coverage at 62% (36-66%), (Arazoza et al. 83%
(75-87%))
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Sensitivity analysis
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HCV in IDU populations

Déces lie 3
linfestion par
leVHC

b T
S Susceptibles  risque élevé (nouveaux injecteurs) CDnL : Hépatite C Chronigue Diagnostiquée non-Liée aux soins FO/1- F2/3- F4 Avancée de la fibrose hépatique (score Métavir)
S iblos  risque faible inj ériments GO - Hépaiie G Chronique Diagnastiquée Lice aux soins Décompensation - Décompensation de la cirhose
A Hépalite C Aigle T Trailement CHC : Carcinome hépalocelulaire
CnD : Hépatite C Chronique non-Diagnostiquée Non-RVS : Pas de Réponse Viralogique Soutenue

Parameters are estimated from the literature and from ABC
procedures when not available (ex: infection rate between partners,
linkage rate to the health system).
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Sobol indices
* Measure robustness of outputs Y with respects to inputs
X=(X1,..., Xp). nreplications (Y, X{,... Xp,... Xp).

% Sobol indices of order 1:

Var(E(Y | X¢))  E(E(Y | X)?) —E(Y)?
Var(Y) N Var(Y) ’

* Write Y = f(X) 4+ n where f(x) = E(Y | X = x).

Ve {1,...p}, S =

In the literature, SA is mainly treated for deterministic model.

+ Jansen estimator:

S/ =555 > (FXE . XD —# (X X X XE L XS0 )

% Nadaraya-Watson estimator (Solis et al., Cousien)

1 3 (Zf—w Y/Kh()_(ﬁ.*xé))z _ye2
_n =TS Kn(X—X))
¢ = ~2
Ty
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Wavelet estimator

E(E(Y | X)?) — E(Y)?
Var(Y)
Denote G/(x) = P(X; < X), (¢jx)j>—1.kez Wavelet basis. Then:

f(X) = 25 1 kez Bitic(Ge(x))
Ve = E(E(Y | X)? Z

S =

* Afirst linear estimate of S is:
N 1 .
B =~ > Y (Ge(X)))
i=1
Adaptative estimators é\g of V, are available (cf. Laurent Massart 00)

 Elbow effect:

hEBS((ljgﬁoc)E[(ae - VZ)Z] = c(nwfﬁ * ;7) 88



Sobol indices for SIR models

Densty

Density

150

100

180

10

Beta

—— Jansen - stoch
—— MNW - stoch
—— Wvawve. - stoch
--- Jansen-det
---  NW-det

- - - Wave. - det

0.35 0.40

camma

—— Jansen - stoch
—— MNW - stoch
—— Wwave. - stoch
--- Jansen-det

et
- == Wave. - dst

0.40 0.42 044 0.486 0.48 0.50 0.52 0.54
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Sobol indices for Prevalence

Infection rate/partner  0.003ylpart! 0.02ytpartt!
FO/F1 > F2/F3 0074yt 0.031yt
Linkage to care/LTFU rates 4y [/ 20%/y 0.5y / 5%y
Average time to diagnosis 0.5y 7.8y
Initial fibrosis score distribution 35%-51%-14% 50%-40%-10%
Average time to cessation 9.5y 17y
Relative risk of infection (1st year) x1 x10
Mortality (active PWID) M /W 0.0058/0.0097y ! 0.0041/0.0068y*
F2/F3 > F4 0101y Wi 0.025y!
Number of injecting partners 3 15

18% 20% 22% 24% 6% 8% 30% 32%

Infection rate/partner

FO/F1 > F2/F3

Average time to cessation
Average time to diagnosis
Linkage to care/LTFU rates
Relative risk of infection (1st year)
HCC = death

Mortality (inactive PWID) M/F
F2/F3>F4

Decompensation > death

F4 > HCC

Mortality (active PYWID) M/F
F4 > Decompensation

0
01

02
03
04
05 -
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