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Epidemiology:

Evolution:
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Outline

1. Two examples :

Myxomatosis 

Smallpox

2. Epidemiological dynamics

3. Adaptive dynamics

4. Evolutionary epidemiology 



Myxomatosis

Poxviridae virus (DNA virus, ~161kb)

Indirect life cycle (rabbit-insect vector)

Pathology :

Variable, depends on both the virus type and its host  

History :

Old rabbit disease in south america

1859 introduction of rabbits in Australia

1950 introduction of myxomatosis in Australia

1952 introduction in France and Europe 



Rabbit invasion
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Myxomatosis invasion
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Smallpox (variole)

Poxviridae virus (DNA virus, ~200kb)

Direct life cycle (only human-human transmission)

Pathology :

Variable (~30% mortality case for Variola major) 

Depends on both the virus type and its host  

History :

Old human disease (at least 3000 years old)

Major role in human history (new world colonization)

1796: Vaccination

1980: Eradication



Vaccination:
an empirical science

1700: reports reach the Royal Society (England) about a Chinese procedure 

(variolation) in which dried matter from smallpox lesions is soaked into a 

moistened cotton swab and inserted into the nostrils of persons who had 

not had the disease and that this creates resistance to the disease

1798: Edward Jenner demonstrates vaccination with cowpox

1860: Louis Pasteur’s germ theory

1880: Virulence attenuation (Pasteur)

1880-85: Attenuated vaccines against anthrax, rabies… (Pasteur)

1967: WHO eradication campain of smallpox

1980: smallpox is officially eradicated…(stocks in US and Russian labs)

Now: Development of new vaccines (HIV, Malaria, Flu…)

Ethical constraints limit progress but increase safety



Perfect Vaccines

Edward Jenner, 1796



conclusion

• Epidemiology:

- both host and parasite density can change

- human interventions can affect epidemiology

(vaccination and eradication)

• Pathology:

- depends on both the parasite and the host

• Evolution:

- both the parasite and its host can evolve

- human intervention may affect evolution

(virulence management)



Epidemiological models
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Epidemiological models
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SI epidemiological model
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Simulations: SIS
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Equilibria
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Stability analysis of S*, I*

• First equilibrium:   IS
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Stability analysis of S*, I*
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Interpretation: R0
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R0 (the basic reproductive ratio) is the expected number of secondary 

infections due to a single infected host in a susceptible host population:

Per generation (R0) and instantaneous (r0 ) growth rates:

01 00  rR



Modelling vaccination
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Bernoulli’s model (1760)
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Bernoulli’s model (1760)

Table de Hallay

Expected lifespan without variolation= 26.5 years

𝑙𝑉 𝑎 =
𝑙 𝑎

𝑐𝑒−ℎ𝑎+1−𝑐
1 − 𝑣

Expected lifespan with variolation = 29.5 years
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(1-v)
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Modelling vaccination
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Vaccination threshold

Before vaccination:
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After vaccination:

Vaccination threshold ?:



Vaccination threshold

Parasite basic reproductive ratio

before vaccination,     .
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1- Draw pathogen life cycle as a set of compartments

2- Write down epidemiological dynamics as a system of ODEs

3- What is the disease-free equilibrium: S0?

4- Is it possible to reduce dynamics in one dimention with a 

separation of time scale?

5- Matrix formulation:

- derivarion of instantaneous growth rate r0

- derivation of per-generation growth rate R0
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1- Draw pathogen life cycle as a set of compartments



2- Write down epidemiological dynamics as a system of ODEs



2- Write down epidemiological dynamics as a system of ODEs

3- What is the disease-free equilibrium?



4- Is it possible to reduce dynamics in one dimension with a 

separation of time scale?

The separation of time scale simplifies the dynamics:



5- Matrix formulation: derivarion of instantaneous growth rate r0

𝐓 =
0 𝛽𝑆0

𝐵𝛼 0

𝚺 =
− 𝛿 + 𝛼 + 𝛾 0

0 −𝑚 − 𝛽𝑆0

𝐀 = 𝐓 + 𝚺 =
− 𝛿 + 𝛼 + 𝛾 𝛽𝑆0

𝐵𝛼 −𝑚 − 𝛽𝑆0

𝐗ሶ = 𝐀 𝐗

𝑟0 =
𝛿 + 𝛼 + 𝛾 + 𝑚 + 𝛽𝑆0 + 𝛿 + 𝛼 + 𝛾 − 𝑚 − 𝛽𝑆0
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5- Matrix formulation: derivarion of per-generation growth rate R0

𝐓 =
0 𝛽𝑆0

𝐵𝛼 0

𝚺 =
− 𝛿 + 𝛼 + 𝛾 0

0 −𝑚 − 𝛽𝑆0

𝐗ሶ = 𝐀 𝐗



- Compartments models are used to describe many

different pathogen life cycles.

- R0 is an important epidemiological quantity that

summarizes the influence of many epidemiological

parameters of both the pathogen and its host.

- When there is data, inference can be used to predict

epidemiological dynamics.

- But these models assume that the pathogen population 

is monomorphic…

Conclusion



Definitions
• R0 (the basic reproductive ratio): expected number of secondary 

infections due to a single infected host in a virgin host population (i.e., 
where the parasite is absent)

• Epidemiology: study of the dynamics of diseases and other health 
related issues (e.g., infectious diseases, genetic diseases, pollutants)

• Virulence: (1) Induced host mortality or (2) ability to infect the host

• Case mortality: probability of dying once infected

• Morbidity: Incidence of disease in a population, including both fatal and 
nonfatal cases 

• Prevalence: Proportion of infected hosts. In a SIR model: 

• Force of infection: Rate at which uninfected hosts become infected

• Superinfection: when a secondary infection occurs and when the new 
parasite strain does not coexist with the resident strain in the host

• Multiple infection: when a secondary infection occurs and when the new 
parasite strain coexists with the resident strain in the host

 RISI ++

Ih 

 g +


