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Introduction

Introduction

e An important issue in ecology is to find out
under which conditions a group of interacting species -
plants, animals, viral particles - can coexist.

e Classical approach to these questions has been the development
of Deterministic Models of Interaction ODEs, PDEs,
Difference equations, etc.

= Mathematical theory of Deterministic Persistence

e The theory began in the late 1970s and developed rapidly with
the help of the available tools from dynamical system theory (see
e.g the book by Smith and Thieme (2011)).
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Introduction

Introduction

e To take into account environmental fluctuations one need to
consider Stochastic Models of Interaction

= Mathematical theory of stochastic Persistence

The theory began to emerge with the work of Chesson, Ellner, and
others in the 80s but, from a "math perspective", is still in its
infancy

e Purpose of this mini-course : present some recent results on the
subject :(B, 2014), (B & Lobry, 2016) , (B & Strickler, 2017)
(Hening & Nguyen, 2017)

~~ based on previous works in collaboration with Hofbauer (Wien),
Sandholm (Madison), Schreiber (UC Davis)
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Outline

@ Examples

© Maths

© Back to examples
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Examples

Verhulst Model (1840)

Malthus T.R. 1798. An Essay on the Principle of Population.

"Yet in all societies, even those that are most vicious, the
tendency to a virtuous attachment is so strong that there
is a constant effort towards an increase of population
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Verhulst Model (18

Malthus T.R. 1798. An Essay on the Principle of Population.

"Yet in all societies, even those that are most vicious, the
tendency to a virtuous attachment is so strong that there
is a constant effort towards an increase of population.
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Verhulst Model (1840)

Verhulst. P.-F. 1838. Notice sur la loi que la population suit dans
son accroissement
On sait que le célébre Malthus a établi comme principe
que la population humaine tend a croitre en progression
géométrique, (...) Cette proposition est incontestable, si
I'on fait abstraction de la difficulté toujours croissante de
se procurer des subsistances lorsque la population a
acquis un certain degré d’agglomération. (...)
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Verhulst (or logistic) dynamics

S
g~ V¢

x > 0, abundance of the population,

— bx)

a = intrinsic growth rate,

b>0
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Verhulst dynamics

d
d—)t( = x(a — bx)
ea < 0 = x(t) — 0: Extinction

ea > 0= x(t) = v:= 4 Persistence
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Verhulst dynamics

d
d—)t( = x(a — bx)
ea < 0 = x(t) — 0: Extinction

a

ea > 0= x(t) = v:= 4 Persistence

Ok but what does it mean if there is (stochastic) variability ?
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Stochastic Variability

Variability of ecological processes may have different natures:

e Demographic Stochasticity

e Environmental Stochasticity
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Stochastic Variability

Variability of ecological processes may have different natures:

e Demographic Stochasticity

Even if all individuals in a population are identical, the birth/death
of each individual is a random event

— Fascinating questions (mean-field approximations, branching,
time to extinction, quasi-invariant measures, ) but not the subject
of this course

e Environmental Stochasticity

Light, precipitation, temperature, nutrient availability,
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Stochastic Variability

Variability of ecological processes may have different natures:

e Demographic Stochasticity

Even if all individuals in a population are identical, the birth/death
of each individual is a random event

— Fascinating questions (mean-field approximations, branching,
time to extinction, quasi-invariant measures, ) but not the subject
of this course see the works of N. Champagnat, S. Méléard, D.
Villemonais, ...

e Environmental Stochasticity

Light, precipitation, temperature, nutrient availability,
Subject of the course
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Environmental variability

p = x(a — bx)
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Environmental variability

e Assume Gaussian fluctuations of the intrinsic growth rate

a <+ a+ noise

dx
e x(a — bx)
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Environmental variability

e Assume Gaussian fluctuations of the intrinsic growth rate

a < a-+ noise

dx = x(a — bx)dt + xodB;
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Environmental variability

e Assume Gaussian fluctuations of the intrinsic growth rate

a < a-+ noise

dx = x(a — bx)dt + xodB; ( not \/xodB;)
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Environmental variability

e Assume Gaussian fluctuations of the intrinsic growth rate

a < a-+ noise

dx = x(a — bx)dt + xodB;
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e Elementary one dimensional SDEs theory ~~

° 2

a—%<0:>x(t)—>0
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e Elementary one dimensional SDEs theory ~~

o

2

a—%<0:>x(t)—>0

2]

2
a— % > 0= Law (x(t)) = (1 — 02/2a, 02/2b)

o
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P Rosenzweig Mac-Arthur

Lotka-Volterra

e Elementary one dimensional SDEs theory ~~
o 2
a—7<0jx(t)%0

o
2
a— "7 > 0= Law (x(t)) = [(02/2a — 1,02/2b)

Looks like a sensible definition of Stochastic Extinction/Persistence

Michel Benaim Neuchatel University Stochastic Persistence



Logistic
Rosenzweig Mac-Arthur
Lotka-Volterra

Examples

e Elementary one dimensional SDEs theory ~~

2

a—%<0jx(t)%0

2]

2
a— "7 > 0= Law (x(t)) = [(62/2a — 1,02/2b)

Looks like a sensible definition of Stochastic Extinction/Persistence

Ok, BUT what if the model is more complicated or the noise non
gaussian 7
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| : Some motivating examples
© A simple historical model : The Verhulst (or logistic) dynamics
@ Prey-Predator model (Rosenzweig Mac-Arthur)
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Prey-Predator

x = preys (or resources) abundance
y = predators abundance

dx

E:X(l—

)

X
Y

dy _
da Y
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Prey-Predator

x = preys (or resources) abundance
y = predators abundance

dx X
i x(1 - ;) — xyh(x,y)

dy
P xyh(x, y)

xh(x,y) = Per predator kill rate = predator reproduction rate
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Prey-Predator

x = preys (or resources) abundance
y = predators abundance

dx X
i x(1 - ;) — xyh(x,y)

dy
P xyh(x, y)

xh(x,y) = Per predator kill rate = predator reproduction rate
e h(x,y) = c Lotka-Volterra
@ h(x,y) =1/(1 + x) Rosenzweig Mac-Arthur
e h(x,y) = h(y/x) Arditi Ginzburg, ...
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Rosenzweig Mac-Arthur (1963)

dx X y
GO )
d

T =y(-a+ )

dt 14 x

"http:/ /experiences.math.cnrs.fr/simulations/matheco-
RosenzweigMcArthur"
"http://www.espace-turing.fr/Sur-les-modeles-proie-predateur-

en.html?artpage=5-6"
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Rosenzweig Mac-Arthur (1963)

e o > — = Extinction

e o < —— = Persistence
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Rosenzweig Mac-Arthur (1963)

o > = Extinction

i
1+~

o < = Persistence

0
1+

Ok, but what if a or/and ~ fluctuate (randomly) ?
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Rosenzweig Mac-Arthur in fluctuating environment

dx ' y
e
gl +x
dy X
dt y(= 1+x)
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Examples

Rosenzweig Mac-Arthur in fluctuating environment

One day is fine, the next is Black

dx ' y
P i
dy X
E_)/(_Uct—i_ 1—|—x)
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Rosenzweig Mac-Arthur in fluctuating environment

One day is fine, the next is Black

dx ' y
(1= 2~
dt X v 1 +x)
dy X
dt y(=ae+ 1 —l—x)
a; Markov process € {a1,...,am}
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| : Some motivating examples
© A simple historical model : The Verhulst (or logistic) dynamics
@ Prey-Predator model (Rosenzweig Mac-Arthur)
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Examples

| : Some motivating examples

© A simple historical model : The Verhulst (or logistic) dynamics
@ Prey-Predator model (Rosenzweig Mac-Arthur)

© Lotka-Volterra
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Examples

Lotka-Volterra (based on B & Lobry 2016)

e 2 species x and y characterized by their abundances x,y > 0.
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Lotka-Volterra (based on B & Lobry 2016)

e 2 species x and y characterized by their abundances x,y > 0.
e Lotka Volterra ODE

(va) = Fg(X,y)

[ ax(1 —ax — by)
R
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Lotka-Volterra (based on B & Lobry 2016)

e 2 species x and y characterized by their abundances x,y > 0.
e Lotka Volterra ODE

(va) = Fg(X,y)

[ ax(1 —ax — by)
R

e £ =(a,a,b,3,c,d) is the environment:

a,a,b,B,¢c,d >0

Michel Benaim Neuchatel University Stochastic Persistence



Logistic
Rosenzweig Mac-Arthur
Lotka-Volterra

Examples

e Environment & is said favorable to species x if
a<cand b<d.

e Env, = set of environments favorable to x.
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e Environment & is said favorable to species x if
a<cand b<d.

e Env, = set of environments favorable to x.

Theorem ("competitive exclusion")

If € € Envy every solution to (x,y) = Fe(x,y) with initial condition

(x,y) € R% x R, converges to (5,0) ast — oo.
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e Environment & is said favorable to species x if
a<cand b<d.

e Env, = set of environments favorable to x.

Theorem ("competitive exclusion")

If € € Envy every solution to (x,y) = Fe(x,y) with initial condition

(x,y) € R% x R, converges to (5,0) ast — oo.

i.e € € Envy = Extinction of y and Persistence of x.

Michel Benaim Neuchatel University Stochastic Persistence



Logistic

Examples Rosenzweig Mac-Arthur

Lotka-Volterra

e Environment & is said favorable to species x if
a<cand b<d.

e Env, = set of environments favorable to x.

Theorem ("competitive exclusion")

If € € Envy every solution to (x,y) = Fe(x,y) with initial condition

(x,y) € R% x R, converges to (5,0) ast — oo.

i.e € € Envy = Extinction of y and Persistence of x.

Proof is classical (see e.g J. Hofbauer and K. Sigmund’s book
(1998))
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Lotka-Volterra
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Figure: Phase portrait of F¢ with & € Envy.
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Lotka Volterra in fluctuating environment

Ok but what if the environment fluctuates 7
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Examples

Lotka Volterra in fluctuating environment

Ok but what if the environment fluctuates 7

(X, Y) = Fe,y (X, Y)

where {€,(;)} is a time-dependent environment
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e Old works by Koch (74), Cushing (80, 86) de Mottoni and
Schiaffino (81) + recent work by T. Sari, show that

when t — &) is periodic around € € Envy the system may have
periodic persistent orbits x(t) > 0, y(t) > 0.
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Lotka-Volterra

e Old works by Koch (74), Cushing (80, 86) de Mottoni and
Schiaffino (81) + recent work by T. Sari, show that

when t — &) is periodic around € € Envy the system may have
periodic persistent orbits x(t) > 0, y(t) > 0.

e This provides "some math interpretation" of a well known fact in
ecology :
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e Old works by Koch (74), Cushing (80, 86) de Mottoni and
Schiaffino (81) + recent work by T. Sari, show that

when t — &) is periodic around € € Envy the system may have
periodic persistent orbits x(t) > 0, y(t) > 0.

e This provides "some math interpretation" of a well known fact in
ecology :

temporal fluctuations of the environment can reverse the trend of
competitive exclusion

Hutchinson’s paradox (61), Work of Chesson and co-authors in the
80s, ...
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Random switching

Our Goal here will be to investigate the behavior of

(X7 Y) = Fﬁu(t)(X7 Y)
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Random switching

Our Goal here will be to investigate the behavior of
(X7 Y) = Fﬁu(t)(X7 Y)

e&o, &1 are two favorable environments
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Random switching

Our Goal here will be to investigate the behavior of
(X7 Y) = Fﬁu(t)(X7 Y)

e&o, &1 are two favorable environments

eu(t) € {0,1} is a jump process
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Random switching

Our Goal here will be to investigate the behavior of
(X7 Y) = Fﬁu(t)(X7 Y)
e&o, &1 are two favorable environments

eu(t) € {0,1} is a jump process

P(u(t +s) = 1|u(t) = 0, (u(r), r < t)) = Aos + o(s),
P(u(t +5) = 0u(t) = 1, ((u(r), r < 1)) = A5 + os),
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Lotka-Volterra
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Figure: Phase portraits of Fg, and Fg,
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Figure: Phase portraits of Fg, and Fg,

Different values of A\g, A1 can lead to various behaviors...
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Simulations
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Figure: extinction of 2

Persistence
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Rosenzweig Mac-Arthur

Lotka-Volterra
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Figure: Persistence
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Rosenzv eig Mac-Arthur
Lotka-Volterra
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Figure: Persistence

Persistence
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Rosenzweig Mac-Arthur

Lotka-Volterra
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Figure: Extinction of 1 or 2
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ig Mac-Arthur

Lotka-Volterra

[l : Some Math
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Framework

Canonical models
Stochastic Persistence
H-persistence

Abstract Framework

e (X;) a "good" (Feller, cad-lag, good behavior at oo, etc. )
Markov process on some "good" (Polish, locally compact) space

M= M, U M,
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Framework

Canonical models
Stochastic Persistence
H-persistence

Abstract Framework

e (X;) a "good" (Feller, cad-lag, good behavior at oo, etc. )
Markov process on some "good" (Polish, locally compact) space

M= M, U M,

e My is a closed set = extinction set
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Abstract Framework

e (X;) a "good" (Feller, cad-lag, good behavior at oo, etc. )
Markov process on some "good" (Polish, locally compact) space

M= M, U M,

e My is a closed set = extinction set

o My = M\ My = coexistence set
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Abstract Framework

e (X;) a "good" (Feller, cad-lag, good behavior at oo, etc. )
Markov process on some "good" (Polish, locally compact) space

M= M, U M,

e My is a closed set = extinction set
o My = M\ My = coexistence set

e Both My and My = M\ My are invariant:
x € My = X;( S Mo,

X€M+:>X;(€M+
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Two (canonical) Models

Persistence
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H-persistence

Model I. Ecological SDEs

dxj = xi[Fi(x)dt + > ol(x)dBl], i=1...n
j=1
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Model I. Ecological SDEs

dxj = xi[Fi(x)dt + > ol(x)dBl], i=1...n
j=1

e x; > 0 = abundance of species i.
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Model I. Ecological SDEs

dxj = xi[Fi(x)dt + > ol(x)dBl], i=1...n
j=1

e x; > 0 = abundance of species i.

e /| C{1,...,n} a given subset of species,
eg I={1},1={1,...,n}
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Model I. Ecological SDEs

dxj = xi[Fi(x)dt + > ol(x)dBl], i=1...n
j=1

e x; > 0 = abundance of species i.

e /| C{1,...,n} a given subset of species,
eg I={1},1={1,...,n}

e State space M = R|

e Extinction set My = {x € M : [];c, xi = 0}
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H-persistence

Model I. Ecological SDEs

di = xilFi(x)dt + > _ol(x)dBl, i=1...m
ji=1

e x; > 0 = abundance of species i.

e /| C{1,...,n} a given subset of species,
eg I={1},1={1,...,n}

e State space M = R|

e Extinction set My = {x € M : [];c, xi = 0}

The dynamics on My is an ecological SDE
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H-persistence

Model Il. Ecological random ODEs

dx; .
— = X(OF(x(8).u(t)), i=1...n

u(t) € {1,...,m} is a Markov process controlled by x
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H-persistence

Model Il. Ecological random ODEs

P _ xi(£)Fi(x(t),u(t)), i=1...n
dt
u(t) € {1,...,m} is a Markov process controlled by x

P(u(t +s) = v]u(s), s < t,u(t) = u) = Ay (x(t))s + o(s)

for all u # v
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Model Il. Ecological random ODEs

P _ xi(£)Fi(x(t),u(t)), i=1...n
dt
u(t) € {1,...,m} is a Markov process controlled by x

P(u(t +s) = v]u(s), s < t,u(t) = u) = Ay (x(t))s + o(s)

for all u # v
e State space M =R x {1,...m}
e Extinction set My = {(x,u) € M : [];c,x; = 0}
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H-persistence

Model Il. Ecological random ODEs

dx; .
— = X(OF(x(8).u(t)), i=1...n

u(t) € {1,...,m} is a Markov process controlled by x

P(u(t +s) = v]u(s), s < t,u(t) = u) = Ay (x(t))s + o(s)

for all u # v
e State space M =R x {1,...m}
e Extinction set My = {(x,u) € M : [];c,x; = 0}

The dynamics on My is an ecological random ODE
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Stochastic Persistence

t .. .
o M:(.) =1 [ 0x,ds = empirical occupation measure

M:(A) = proportion of time spent in A up to t
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Stochastic Persistence

t .. .
o M:(.) =1 [ 0x,ds = empirical occupation measure

M:(A) = proportion of time spent in A up to t

Definition
We call the process stochastically persistent if for all € > 0 there
exists a compact K C M. such that

liminfM;(K) >1—¢

t—o00

whenever x = x(0) € My
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Stochastic Persistence

Definition
We call the process persistent in probability if for all € > 0 there
exists a compact K C M, such that

liminf Py (X € K) >1—¢

t—o0

whenever x = x(0) € M
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Stochastic Persistence

Definition
We call the process persistent in probability if for all € > 0 there
exists a compact K C M, such that

liminf Py (X € K) >1—¢

t—o0

whenever x = x(0) € M

e This definition goes back to Chesson (1978) "stochastic
boundedness criterion"
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How can we prove / disprove
stochastic persistence 7
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How can we prove / disprove
stochastic persistence 7

e For simplicity | will now assume that M is compact !
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Stochastic Persistence
H-persistence

How can we prove / disprove
stochastic persistence 7

e For simplicity | will now assume that M is compact !

e If not, one need to assume that there is a "good" Lyapunov
function which control the behavior at oo
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H-persistence

e Pin (M) = the set of invariant probabilities for (X;)
® Perg(M) = the subset of ergodic probabilities
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H-persistence

e Pin (M) = the set of invariant probabilities for (X;)
® Perg(M) = the subset of ergodic probabilities
.:Pinv(MO)yiperg(Mo) idem but on My
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H-persistence

e Pin (M) = the set of invariant probabilities for (X;)
® Perg(M) = the subset of ergodic probabilities

®Piny (Mo), Perg(Mo) idem but on My

e L generator of (P;) with domain D C C(M)

e D2 ={feD,f?e D}

oD% Ry, I'(f) = L(f?) — 2fL(f)
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St stic Persistence
H-persistence

Suppose there exist V : My — R4, H : M — R with the following
properties:
o V(x) w00 x— M

e For all compact set K ¢ M., 3V € D? such that
(a) V=Vkxand LVx =Hon K
(b) sup{P:(I'(Vk))(x) : K compact't > 0} < oc.
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Stochastic Persistence
H-persistence

Suppose there exist V : My — R4, H : M — R with the following
properties:
o V(x) w00 x— M

e For all compact set K ¢ M., 3V € D? such that
(a) V=Vkxand LVx =Hon K
(b) sup{P:(I'(Vk))(x) : K compact't > 0} < oc.

Definition (H— Exponents)

A~(H) = —sup{uH : 1 € Perg(Mo)},
AT(H) = —inf{uH : 1 € Perg(Mo)}.
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Stochastic Persistence
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Suppose there exist V : My — R4, H : M — R with the following
properties:
o V(x) w00 x— M

e For all compact set K ¢ M., 3V € D? such that
(a) V=Vkxand LVx =Hon K
(b) sup{P:(I'(Vk))(x) : K compact't > 0} < oc.

Definition (H— Exponents)

A~(H) = —sup{uH : 1 € Perg(Mo)},
AT(H) = —inf{uH : 1 € Perg(Mo)}.

Definition (H— persistence)

The process is said H-persistent if there exist (V/, H) as above such
that

AN (H) >0
Michel Benaim Neuchatel University Stochastic Persistence
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DEMES

Example (Ecological SDE)
dxi = xi[Fi(x)dt + > ol(x)dBl], i=1...n
j=1
Invasion rate of species |

M) = Filx) = 5 3 (0F ()

k
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oMo = {x [je; xi = 0}

Proposition

The following are equivalent and imply H-persistence

(i) There exist weights p1,...,pn > 0 such that for every
we :Perg(MO)
M(Z p,'/\,') > 0.
i€l

(i) For every u € Pin,(Mo) 3i € I such that puX; > 0.
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Stochastic Persistence
H-persistence

oMo = {x [je; xi = 0}

Proposition

The following are equivalent and imply H-persistence

(i) There exist weights p1,...,pn > 0 such that for every
we :Perg(MO)
M(Z p,'/\,') > 0.
i€l

(i) For every u € Pin,(Mo) 3i € I such that puX; > 0.

Hence (i) means that in environment p at least one species can
"invade"
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Example (Random Ecological ODE)

dX,' .
o = Xi(OFi(x(t),u(t)), i=1...n
P(u(t + s) = v]u(s), s < t,u(t) = u) = Ao (x(t))s + o(s)

Invasion rate of species |

Ai(x, u) = Fi(x, u)
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St stic Persistence
H-persistence

oMo = {(x,u) [[;c; xi = 0}.

Proposition

The following are equivalent and imply H-persistence

(i) There exist weights p1,...,pn > 0 such that for every
€ Perg(Mo)

p(Y_ pidi)) > 0.

iel

(ii) For every u € Piny,(Mp) 3i € I such that u\; > 0.
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Stochastic Persistence
H-persistence

oMo = {(x,u) [[;c; xi = 0}.

Proposition

The following are equivalent and imply H-persistence

(i) There exist weights p1,...,pn > 0 such that for every
€ Perg(Mo)

p(Y_ pidi)) > 0.

iel

(ii) For every u € Piny,(Mp) 3i € I such that u\; > 0.

Hence (ii) means that in environment 4 at least one species can
"invade"
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Persistence Theorem

H-Persistence = Stochastic Persistence
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Persistence Theorem

H-Persistence = Stochastic Persistence l

Generalizes previous results obtained in collaboration with Hofbauer
& Sandholm 2008, Schreiber 2009, Atchade & Schreiber 2011
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Persistence Theorem

If furthermore, the process is irreducible, there exists a unique
invariant probability N(dx) = m(x)dx on M, such that for all

X€M+
My — M
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Persistence Theorem

Corollary

If furthermore, the process is irreducible, there exists a unique
invariant probability N(dx) = m(x)dx on M, such that for all
X € M+

My —

Theorem

If furthermore, the process is strongly irreducible then 3\, 0 > 0

—At

P(X: € X0 = x) = ()| < Cote—"—os

for all x € M.
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Persistence Theorem

Corollary

If furthermore, the process is irreducible, there exists a unique
invariant probability N(dx) = m(x)dx on M, such that for all
X € M+

My —

Theorem

If furthermore, the process is strongly irreducible then 3\, 0 > 0

—At

P(X: € X0 = x) = ()| < Cote—"—os

for all x € M.

"Irreducible" and "strongly irreducible™ need to be defined !
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Persistence Theorem

e For the Ecological SDE model, a sufficient condition for strong
irreducibility is given by the non degeneracy of the diffusion matrix

o(x)o(x)*
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Persistence Theorem

e For the Ecological SDE model, a sufficient condition for strong
irreducibility is given by the non degeneracy of the diffusion matrix

o(x)o(x)*

Weaker conditions = (Hormander type conditions + controllability)
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Persistence Theorem

For the Ecological Random ODE model, a sufficient condition for
irreducibility is given by :

© Accessibility There exists an accessible point xp € M :
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Persistence Theorem

For the Ecological Random ODE model, a sufficient condition for
irreducibility is given by :
© Accessibility There exists an accessible point xp € M :

One can go from every x € M™ to every
neighborhood of xy by integrating the fields
F(ou), u=1,....m
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Persistence Theorem

For the Ecological Random ODE model, a sufficient condition for
irreducibility is given by :
© Accessibility There exists an accessible point xp € M :

One can go from every x € M™ to every
neighborhood of xy by integrating the fields
F(ou), u=1,....m

@ Weak Bracket The Lie algebra generated by
{F(-,u),u=1,..., m} has full rank at xg
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Persistence Theorem

For the Ecological Random ODE model, a sufficient condition for
irreducibility is given by :
© Accessibility There exists an accessible point xp € M :

One can go from every x € M™ to every
neighborhood of xy by integrating the fields
F(ou), u=1,....m

@ Weak Bracket The Lie algebra generated by
{F(-,u),u=1,..., m} has full rank at xg

Follows from recent results by (Bakthin, Hurth, 2012); (Benaim,
Leborgne, Malrieu, Zitt, 2012, 2015)

Michel Benaim Neuchatel University Stochastic Persistence



Framework

Canonical models
Stochastic Persistence
H-persistence

Persistence Theorem

For the Ecological Random ODE model, a sufficient condition for
strong irreducibility is given by :
© Accessibility There exists an accessible point xg € My :
One can go from every x € M to every
neighborhood of xy by integrating the fields
F(,u), u=1,...,m

@ Strong Bracket Go = {F(-,u) — F(-,v) :u,v=1,...n}
Giki1 = G U{[F(-,u), V] : V € Gi} has full rank at xq for
some k.

Follows from recent results by (Bakthin, Hurth, 2012); (Benaim,
Leborgne, Malrieu, Zitt, 2012, 2015)
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Persistence Theorem

For the Ecological Random ODE model, a sufficient condition for
strong irreducibility is given by :
© Accessibility There exists an accessible point xg € My :

One can go from every x € M to every
neighborhood of xy by integrating the fields
F(,u), u=1,...,m

@ Strong Bracket Go = {F(-,u) — F(-,v) :u,v=1,...n}
Giki1 = G U{[F(-,u), V] : V € Gi} has full rank at xq for
some k.

Follows from recent results by (Bakthin, Hurth, 2012); (Benaim,
Leborgne, Malrieu, Zitt, 2012, 2015)

for other results on "PDMP" see also (Cloez, Hairer 2013); (Lawley,
Mattingly Reed 2013), (Bakthin, Hurth, Mattingly: 2014); (BLMZ-2014
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Persistence Theorem

For the general model, a sufficient condition for irreducibility is
given by :
© Accessibility There exists a point xg € M, accessible from
M. : For every neighborhood U of xg and x € M 3t > 0
such that P¢(x, U) > 0.
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Persistence Theorem

For the general model, a sufficient condition for irreducibility is
given by :

© Accessibility There exists a point xg € M, accessible from
M. : For every neighborhood U of xg and x € M 3t > 0
such that P¢(x, U) > 0.

@ Weak Doeblin There exists a neighborhood Uy of xg and a
nonzero measure v such that for all x € Uy

Q(x,dy) = no(dy)

where

Q(x,dy) = /OO e 'Pi(x, dy)dt.
0
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Persistence Theorem

For the general model, a sufficient condition for strong
irreducibility is given by :

@ Accessibility There exists a point xg € M, accessible from
M, : For every neighborhood U of xg and x € M 3t >0

such that P¢(x, U) > 0.
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Persistence Theorem

For the general model, a sufficient condition for strong
irreducibility is given by :

@ Accessibility There exists a point xg € M, accessible from
M, : For every neighborhood U of xg and x € M 3t >0
such that P¢(x, U) > 0.

@ Strong Doeblin There exists a neighborhood Uy of xg, a
nonzero measure g, and a interval 0 < tg < t; such that for
al xeUand tp <t <ty

Pe(x, dy) > vo(dy)
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Extinction Theorem

N~ (H) > 0 = Stochastic Persistence
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Extinction Theorem

Theorem (Extinction)

Suppose that
AT (H)<0

and that My is accessible. Then Xy — My almost surely
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Extinction Theorem

For the ecological SDE or random ODE model

Theorem (Extinction)
Suppose that there exists weights p; > 0 such that for each

we 9)erg(lwo)
M(Z piAi)<0
i€l
and that My is accessible. Then X; — My almost surely
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[l : Back to examples
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Back to examples

Example: Rosenzweig Mac-Arthur with environmental
stochasticity

dx X y
Pl Sl e
dy X
Eiy(_ 1+x)
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Back to examples

Example: Rosenzweig Mac-Arthur with environmental
stochasticity

One day is fine, the next is Black

dx X y
P Gl g
dy X
ar Vet )
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Back to examples

Example: Rosenzweig Mac-Arthur with environmental
stochasticity

One day is fine, the next is Black

dx X y
(1= 2 =
dt X 5 1+x)
dy X
dt =y(mart 1+x)
a; Markov process € {a1,...,am}
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Back to examples

Example: Rosenzweig Mac-Arthur with environmental
stochasticity

e Ergodic measures supported by My =

pl =800 @V > =0dy0®@v

v = invariant probability of {a;}.
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Back to examples

Example: Rosenzweig Mac-Arthur with environmental
stochasticity

e Ergodic measures supported by My =
1 _ 2 _
po=100p0 @V = 0y0 RV
v = invariant probability of {a;}.

Persistence condition

A(p1)  M(pe2) ) -0

le,pQ >0 (P17P2) ( )\2(/1/1) AQ(M2)
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Back to examples

Example: Rosenzweig Mac-Arthur with environmental
stochasticity

e Ergodic measures supported by My =
1 _ 2 _
po=100p0 @V = 0y0 RV
v = invariant probability of {a;}.

Persistence condition

A(p1)  M(pe2) ) -0

le,pQ >0 (P17P2) ( )\2(/1/1) AQ(M2)

54

S qive = (a,v) < 1
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Back to examples

Example: Rosenzweig Mac-Arthur with environmental
stochasticity

e Furthermore, for some «; the corresponding RMA model has an
attracting periodic or equilibrium T';. T; is accessible and the
strong Bracket condition holds at T;

Y
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Back to examples

Example: Rosenzweig Mac-Arthur with environmental
stochasticity

e Furthermore, for some «; the corresponding RMA model has an
attracting periodic or equilibrium T';. T; is accessible and the
strong Bracket condition holds at T;

Y

Corollary (Persistence)

If (o, v) < ﬁ both the empirical occupation measure and the law
of X; converge, as t — oo to [(x)dx supported by M.
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Back to examples

Example: Rosenzweig Mac-Arthur with environmental
stochasticity

e Furthermore, for some «; the corresponding RMA model has an
attracting periodic or equilibrium T';. T; is accessible and the
strong Bracket condition holds at T;

Y

Corollary (Persistence)

If (o, v) < 1+ both the empirical occupation measure and the law
of X; converge, as t — oo to [(x)dx supported by M.

Corollary (Extinction)
If (o, v) Xe = My

> e

4
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Back to examples

Stochastic Persistence
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Back to examples

Example: Predator-Prey with Brownian perturbations

dx X y
e T

dt X vy 1+x)
dy X
Eiy(_ +1+x)
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Back to examples

Example: Predator-Prey with Brownian perturbations

General prey growth rate

dx y
gt ) —)
dy X
dt y(—a+1+x)
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Back to examples

Example: Predator-Prey with Brownian perturbations

General prey growth rate + Brownian perturbations

dx = x(f(x) — J_ix)dt + xodB;

X

dy = y(—
ly = y( ot

)dt + yodB;

o<<1
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Back to examples

Example: Predator-Prey with Brownian perturbations

ef(0) < 0 = Ergodic measures on My = {do 0}
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Back to examples

Example: Predator-Prey with Brownian perturbations

ef(0) < 0 = Ergodic measures on My = {00} = Extinction
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Back to examples

Example: Predator-Prey with Brownian perturbations

ef(0) < 0 = Ergodic measures on My = {00} = Extinction

Allee effect promotes extinction
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Example: Predator-Prey with Brownian perturbations

ef(0) < 0 = Ergodic measures on My = {00} = Extinction

Allee effect promotes extinction

Per capita

growthrate  Density

(dNINd  dependence

Inverse density
dependence (Allee effect)

®
PRYAS e\
> Population
o/ k_ K &) size (N)
(unstable) (stable)

in Ecology & Evolution

brds
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Back to examples

¢f(0) > 0 = Ergodic measures on My = {09 0, fto },

fio (dxdy) = by (dx)do(dy)
with (Laplace principle)

x* = argmax/ 2f(u) du
1

u
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Back to examples

¢f(0) > 0 = Ergodic measures on My = {09 0, fto },

fio (dxdy) = by (dx)do(dy)
with (Laplace principle)

x* = argmax/ L(u)du
1

u

X*

persistence condition < >«
14 x*
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Back to examples

Another example : May Leonard (1975)

e 3 species A, B, C
x=x(1—-x—ay — [2)
y=y(l—px—y—az)
z=2z(1-ax— By —z2)

0<fB<l<a.
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May Leonard (1975)
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May Leonard (1975)

C beats B
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May Leonard (1975)

A beats B
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May Leonard (1975)

—

B beats A
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Side-blotched lizards

Orange (rock)

Blue (scissors)

Usurp territories from
blue mate-guarders

Cooperativaly
exclude yellow
Sneak copulations sneakers

from orange usurpers

Figure: picture from Lisa C. Hazard (UC Santa Cruz) homepage
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May Leonard (1975)

@

a+ 5 < 2 = Persistence
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May Leonard (1975)

&

a+ > 2 = The boundary is an attractor (weak form of
extinction)
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May Leonard (1975)

@ @

What if a and 3 fluctuate randomly ?
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Example: May Leonard with environmental stochasticity

x =x(1—x—ary — Biz)
y=y(l=Bex —y —uz)
z=2(1—aix — ey — z)

(cve, Br) Markov process € {(a1,51) ..., (am,Bm)}

with invariant measure v.

gﬂ?‘.:
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Example: May Leonard with environmental stochasticity

Ergodic measures on My :

,uo:5(070’0)®V,;u’.:5ei®1/,i:1,...3

Y

<

&
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Example: May Leonard with environmental stochasticity

Persistence condition <

0 1—(a,v) 1—{(B,v)
3p1,p2,p3 > 0: (p1,p2,p3) | 1—(B,v) 0 1—A(a,v) | >0
1—{a,v) 1—{(B,v) 0

=

(o) + (B,v) < 2
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Persistence
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