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Lotka-Volterra Invasion rates

(X’ Y) = Fﬁu(t)(X’ Y)

| xay(l —ayx — byy)
Fe.bey) = { ¥Bu(l — cux — duy)

o u(t) € {0,1} jump process with rates

M:0—=1; A :1—0.
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Lotka-Volterra Invasion rates

(X’ Y) = Fﬁu(t)(X’ Y)
xay(l —ayx — byy)
Fe (x,y) =
EU( y) { y/BU(l — CyX — du)/)
o u(t) € {0,1} jump process with rates

M:0—=1; A :1—0.

e Environments &g, &1 are both favorable to species x :

ay < ¢y and b, < d,.
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Lotka-Volterra Invasion rates
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Figure: Phase portraits of Fg, and Fg,
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Lotka-Volterra Invasion rates

e State space M ={x,y >0: x+y >n} x {0,1}

Back to Lotka Volterra



Lotka-Volterra Invasion rates

e State space M ={x,y >0: x+y >n} x {0,1}

e The process Z; = (X, Yt, u(t)) is a Piecewise Deterministic
Markov Process on M.
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Lotka-Volterra Invasion rates

Extinction set

e Extinction set My = M§ U M)
My ={(x,y,u) e M :y =0},

My = {(x,y,u) € M : x = 0}.
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Lotka-Volterra Invasion rates

Extinction set

e Extinction set My = M§ U M)
My ={(x,y,u) e M :y =0},

My = {(x,y,u) € M : x = 0}.
The process Z; restricted to MJ is given by a one dimensional

"logistic" PDMP

X = aymX(1 = ayeX),
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Lotka-Volterra Invasion rates

Extinction set

e Extinction set My = M§ U M)
My ={(x,y,u) e M :y =0},

My = {(x,y,u) € M : x = 0}.
The process Z; restricted to MJ is given by a one dimensional

"logistic" PDMP
X = aymX(1 = ayeX),

Easily implies ~~
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Lotka-Volterra Invasion rates

The process {Z;} restricted to M3 has a unique invariant
probability u given as :

wu(dx, 1) = h1(x)1[p1’p0](dx)dx,

p(dx, 0) = ho(x)1[p, pe)(dx)dx

where | | 1| |
_ ~Pix = pi" T po — x|
__polx — p1|"t|po — x|t
hO(X) =C aoleF’YOJF'Yl
Where
1 Aj
pi=—Yi=—.
aj Q;
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Invasion rate of species y

The invasion rate of y is the growth rate of y averaged over 4 :
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Lotka-Volterra Invasion rates

Invasion rate of species y

The invasion rate of y is the growth rate of y averaged over 4 :

A, = /50(1 ~ cox)(dx, 0) +/51(1 — cx)pldx, 1)

Back to Lotka Volterra



Lotka-Volterra Invasion rates

Invasion rate of species y

The invasion rate of y is the growth rate of y averaged over 4 :

A, = /50(1 ~ cox)(dx, 0) +/51(1 — cx)pldx, 1)

Po _ 71 — |1
B Polx — p1]"|po — x|
= (] o Fo(1 — cox) aox1totm dx
Po _ y1—1 _ y|0
a0 )P1|X P po — x| ]

1+v0+m
P1 QpxTeTy
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Lotka-Volterra Invasion rates

Properties of A,

Forall 0 <s <1, let & = (s, as, bs, s, cs, ds) be the
environment defined by

SFgl—‘r(l—S)Fgo:ng
Set
I={0<s<l:a>c¢},J={0<s<1: bs>ds}.
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Lotka-Volterra Invasion rates

Properties of A,

Forall 0 <s <1, let & = (s, as, bs, s, cs, ds) be the
environment defined by

SFgl—‘r(l—S)Fgo:ng
Set
I={0<s<l:a>c¢},J={0<s<1: bs>ds}.

o/ (respectively J) is either empty or is an open interval which
closure is contained in |0, 1[.
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Lotka-Volterra Invasion rates

Properties of A,

Forall 0 <s <1, let & = (s, as, bs, s, cs, ds) be the
environment defined by

SFgl—‘r(l—S)Fgo:ng
Set
I={0<s<l:a>c¢},J={0<s<1: bs>ds}.

o/ (respectively J) is either empty or is an open interval which
closure is contained in |0, 1[.

es € /°NJ° = &, € Envy

esclInJd <« & € Envy
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Conjecture
If I =]sp, s1[# 0 the set

{(p, A) €]0,1[xRY : Ay(pA, (1 — p)A) = 0}
is the graph of a smooth function
I—=R%, p—= Ap)

with limp_s, A(p) = limp_s, A(p) = o0.
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Figure: Zero set of Ay(pA, (1 — p)A)
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If I =]sg, s1[# 0 the set

{(p.Y) €10, 1[xR} : Ay(pA, (1 — p)A) = 0}

is the graph of a continuous function

I' =R, p Ap)

with limp_s, A(p) = limp_ss; A(p) = o0.
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Ax > 0,Ay <0
Ax < 0,Ay <0
Ax > 0,Ay >0

Good may be good
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Ax >0,Ay <0
Ax <0,Ay <0
Ax > 0,Ay >0

Good may be good

Assume that Ny < 0,Ax >0 and Zy =z € M\ My. Then, the
following properties hold with probability one:

(a) limsup, o, B < A,

(b) The limit set of {X;, Y:} equals [po, p1] x {0},

(c) {N¢} converges weakly to u, where p is the invariant
probability of Z on M}
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Ax > 0,Ay <0
Ax < 0, Ay

0
Ax > 0,Ay >0

5e-01 -

4.5e-01 -

4e-01

3.5e-01 -

3e-01 -

2.5e-01 4

2e-01 -

1.5e-01

1e-01

5e-02 -

0e00 T T T T T T T T T T 1

Figure: extinction of 2
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Good may be bad

Assume that Ny < 0,Ay >0, and Zy =z € M\ My. Then, the
following properties hold with probability one:
(a) limsup;_ Ioggxt) < Ay,
(b) The limit set of {X¢, Y¢} equals {0} x [,60 p1l,
(c) {N¢} converges weakly to [i, where p; = F and [i is
the probability on M defined analogously to v (by
permuting «; and (i, and replacing (a;, ci) by

(di, bi))-
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Figure: Extinction of 1
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Ax > 0,Ay <0
Ax <0,Ay <0
Ax > 0,Ay >0

Good may be fair (Persistence)

Theorem

Suppose that Ax > 0, Ay > 0 Then, there exists a unique invariant
probability (for the process {Z;}) M on M\ My
ie M(M\ My) = 1. Furthermore,

(i) N is absolutely continuous with respect to the
Lebesgue measure dxdy ® (dp + 01);

(i) There exists @ > 0 such that

1 1

(iii) For every initial condition z = (x,y,i) € M\ My

lim M, =11

t—00
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Figure: Persistence
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Ax > 0,Ay < O
Ax < 0,Ay < O
Ax > 0,Ay >0

Good may be fair : Exponential convergence

Theorem

Suppose that Ax > 0,y > 0. Then for all (but possibly a positive
codimension set of environments) there are constants C,~,0 > 0
such that for every Borel set A C M\ My and every
z=(x,y,i) € M\ My

1 1. _
P(Ze € AlZo = 2) = N(A)| < CL+ 5+ 5)e ™
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Ax > 0,Ay <0
Ax < 0,Ay <0
Ax > 0,Ay >0

Good may be fair : Properties of the support
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Figure: Extinction of 1 or 2
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Ax > 0,Ay <0
Ax < 0,Ay <0
Ax > 0,Ay >0

Good may be fair : Properties of the support

Let W = {W,} the set valued dynamical system induced by

U(t) S COHV(FgO, F€1)(77(t)) (1)

VW, (x,y) = {n(t) : n is solution to (1) with initial condition 1(0) = (x,y)]

w\IJ(Xa.y) = ﬂ w[t,oo[(x7.y)
t>0

Back to Lotka Volterra



Ax > 0,Ay <0
Ax <0,Ay <0
Ax > 0,Ay >0

Good may be fair : Properties of the support

Under the previous assumptions the topological support of Il writes
supp(M) =T x {0,1} where
(i) T =wu(x,y) for all (x,y) € R% x R% . In particular,
I" is compact connected strongly positively invariant
and invariant under V;

(i) T equates the closure of its interior;

(i) TRy x {0} = [po, p1] x {0};

(iv) IfINnd #0 then T N {0} x Ry = {0} X [po, p1]-
(v) T\ {0} x [po,p1] is contractible (hence simply
connected).
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