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Lotka-Volterra Invasion rates

(Ẋ , Ẏ ) = FEu(t)
(X ,Y )

FEu
(x , y) =

{
xαu(1− aux − buy)
yβu(1− cux − duy)

• u(t) ∈ {0, 1} jump process with rates

λ0 : 0 7→ 1;λ1 : 1 7→ 0.

• Environments E0,E1 are both favorable to species x :

au < cu and bu < du.
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,

Figure: Phase portraits of FE0
and FE1
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Lotka-Volterra Invasion rates

• State space M = {x , y ≥ 0 : x + y ≥ η} × {0, 1}

• The process Zt = (Xt ,Yt , u(t)) is a Piecewise Deterministic

Markov Process on M.
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Lotka-Volterra Invasion rates

Extinction set

• Extinction set M0 = Mx

0 ∪My

0

My

0 = {(x , y , u) ∈ M : y = 0},

Mx

0 = {(x , y , u) ∈ M : x = 0}.

The process Zt restricted to My

0 is given by a one dimensional

"logistic" PDMP

Ẋ = αu(t)X (1− au(t)X ),

Easily implies  
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Ẋ = αu(t)X (1− au(t)X ),

Easily implies  

Back to Lotka Volterra



Lotka-Volterra Invasion rates

Proposition

The process {Zt} restricted to My

0 has a unique invariant

probability µ given as :

µ(dx , 1) = h1(x)1[p1,p0](dx)dx ,

µ(dx , 0) = h0(x)1[p1,p0](dx)dx

where

h1(x) = C
p1|x − p1|γ1−1|p0 − x |γ0

α1x1+γ0+γ1
,

h0(x) = C
p0|x − p1|γ1 |p0 − x |γ0−1

α0x1+γ0+γ1

Where

pi =
1

ai
, γi =

λi
αi

.
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Lotka-Volterra Invasion rates

Invasion rate of species y

The invasion rate of y is the growth rate of y averaged over µ :

Λy =

∫
β0(1− c0x)µ(dx , 0) +

∫
β1(1− c1x)µ(dx , 1)

= C [

∫ p0

p1

β0(1− c0x)
p0|x − p1|γ1 |p0 − x |γ0−1

α0x1+γ0+γ1
dx

+

∫ p0

p1

β1(1− c1x)
p1|x − p1|γ1−1|p0 − x |γ0

α1x1+γ0+γ1
dx ]
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Lotka-Volterra Invasion rates

Properties of Λy

For all 0 ≤ s ≤ 1, let Es = (αs , as , bs , βs , cs , ds) be the

environment de�ned by

sFE1 + (1− s)FE0 = FEs

Set

I = {0 < s < 1 : as > cs}, J = {0 < s < 1 : bs > ds}.

•I (respectively J) is either empty or is an open interval which

closure is contained in ]0, 1[.

•s ∈ I c ∩ Jc ⇒ Es ∈ Envx

•s ∈ I ∩ J ⇔ Es ∈ Envy
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Lotka-Volterra

Λx > 0, Λy < 0

Λx < 0, Λy < 0

Λx > 0, Λy > 0

Conjecture

If I =]s0, s1[6= ∅ the set

{(p, λ) ∈]0, 1[×R∗+ : Λy(pλ, (1− p)λ) = 0}

is the graph of a smooth function

I 7→ R∗+, p 7→ λ(p)

with limp→s0 λ(p) = limp→s1 λ(p) =∞.
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Figure: Zero set of Λy(pλ, (1− p)λ)
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Λx > 0, Λy < 0

Λx < 0, Λy < 0

Λx > 0, Λy > 0

Proposition (Malrieu and Zitt, Arxiv February 2016)

If I =]s0, s1[6= ∅ the set

{(p, λ) ∈]0, 1[×R∗+ : Λy(pλ, (1− p)λ) = 0}

is the graph of a continuous function

I 7→ R∗+, p 7→ λ(p)

with limp→s0 λ(p) = limp→s1 λ(p) =∞.
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Λx > 0, Λy < 0

Λx < 0, Λy < 0

Λx > 0, Λy > 0

Good may be good

Theorem

Assume that Λy < 0,Λx > 0 and Z0 = z ∈ M \M0. Then, the
following properties hold with probability one:

(a) lim supt→∞
log(Yt)

t
≤ Λy,

(b) The limit set of {Xt ,Yt} equals [p0, p1]× {0},
(c) {Πt} converges weakly to µ, where µ is the invariant

probability of Z on My

0
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Λx > 0, Λy < 0
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Λx > 0, Λy > 0

Figure: extinction of 2
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Λx > 0, Λy < 0

Λx < 0, Λy < 0

Λx > 0, Λy > 0

Good may be bad

Theorem

Assume that Λx < 0,Λy > 0, and Z0 = z ∈ M \M0. Then, the
following properties hold with probability one:

(a) lim supt→∞
log(Xt)

t
≤ Λx,

(b) The limit set of {Xt ,Yt} equals {0} × [p̂0, p̂1],

(c) {Πt} converges weakly to µ̂, where p̂i = 1
di

and µ̂ is

the probability on Mx

0 de�ned analogously to µ (by

permuting αi and βi , and replacing (ai , ci ) by

(di , bi )).
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Λx > 0, Λy < 0
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Figure: Extinction of 1

Back to Lotka Volterra



Lotka-Volterra

Λx > 0, Λy < 0

Λx < 0, Λy < 0

Λx > 0, Λy > 0

Good may be fair (Persistence)

Theorem

Suppose that Λx > 0,Λy > 0 Then, there exists a unique invariant

probability (for the process {Zt}) Π on M \M0

i.e Π(M \M0) = 1. Furthermore,

(i) Π is absolutely continuous with respect to the

Lebesgue measure dxdy ⊗ (δ0 + δ1);

(ii) There exists θ > 0 such that∫
(
1

xθ
+

1

yθ
)dΠ <∞;

(iii) For every initial condition z = (x , y , i) ∈ M \M0

lim
t→∞

Πt = Π

weakly, with probability one.Back to Lotka Volterra
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Figure: Persistence
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Λx > 0, Λy < 0

Λx < 0, Λy < 0

Λx > 0, Λy > 0

Good may be fair : Exponential convergence

Theorem

Suppose that Λx > 0,Λy > 0. Then for all (but possibly a positive

codimension set of environments) there are constants C , γ, θ > 0

such that for every Borel set A ⊂ M \M0 and every

z = (x , y , i) ∈ M \M0

|P(Zt ∈ A|Z0 = z)− Π(A)| ≤ C (1 +
1

xθ
+

1

yθ
)e−γt .
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Λx > 0, Λy < 0

Λx < 0, Λy < 0

Λx > 0, Λy > 0

Good may be fair : Properties of the support

Figure: Extinction of 1 or 2
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Λx > 0, Λy < 0

Λx < 0, Λy < 0

Λx > 0, Λy > 0

Good may be fair : Properties of the support

Let Ψ = {Ψt} the set valued dynamical system induced by

η̇(t) ∈ conv(FE0 ,FE1)(η(t)) (1)

Ψt(x , y) = {η(t) : η is solution to (1) with initial condition η(0) = (x , y)}

ωΨ(x , y) =
⋂
t≥0

Ψ[t,∞[(x , y)
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Λx > 0, Λy < 0

Λx < 0, Λy < 0

Λx > 0, Λy > 0

Good may be fair : Properties of the support

Theorem

Under the previous assumptions the topological support of Π writes

supp(Π) = Γ× {0, 1} where
(i) Γ = ωΨ(x , y) for all (x , y) ∈ R∗+ × R∗+. In particular,

Γ is compact connected strongly positively invariant

and invariant under Ψ;

(ii) Γ equates the closure of its interior;

(iii) Γ ∩ R+ × {0} = [p0, p1]× {0};
(iv) If I ∩ J 6= ∅ then Γ ∩ {0} × R+ = {0} × [p̂0, p̂1].

(v) Γ \ {0} × [p̂0, p̂1] is contractible (hence simply

connected).
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