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Stochastic individual-based model of size-structured populations

Introduction

e We study a stochastic individual-based model of size-structured population
in continuous time where individuals are cells undergoing binary divisions.
(Illustration video: [®I)
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Introduction

e We study a stochastic individual-based model of size-structured population
in continuous time where individuals are cells undergoing binary divisions.
(Illustration video: [®I)

e Size-structured population: Individuals are characterized by their sizes, i.e.
variables that grow deterministically with time. Here we have in mind that
each cell contains some toxicities which play the role of the size.
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Introduction

e We study a stochastic individual-based model of size-structured population
in continuous time where individuals are cells undergoing binary divisions.
(Illustration video: [®I)

e Size-structured population: Individuals are characterized by their sizes, i.e.
variables that grow deterministically with time. Here we have in mind that
each cell contains some toxicities which play the role of the size.

e Population with age and size structure modelled by branching
process: Harris (1963), Jagers (1969), Athreya and Ney (1970), Tran
(2008), Bansaye et al. (2011), Cloez (2011), Hoffmann and Olivier
(2014), Bansaye and Méléard (2015) and Doumic et al. (2015).

e PDE models for size-structured population: Diekmann et al. (1998),
Michel (2006), Perthame (2007), Doumic et al. (2009) and Doumic
and Gabriel (2010).
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Motivation

Our model is motivated by the detection of the cellular aging in biology such as
the one put into light by Stewart et al. (2005).
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Figure : Cell division of E. Coli *.

*Figure and video are produced by Stewart el al. (2005)
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Microscopic model

e Genealogical tree:
e A cell divides at a rate R > 0 and the toxicity grows with rate o > 0.
e Along branches: the toxicity (X;, t > 0) satisfies
dX; = adt.

o When a cell divides, a random fraction I of the toxicity goes in the
first daughter cell and a fraction 1 — I in the second one. We assume
that I has a symmetric distribution on [0, 1] with a density A.
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Microscopic model

e Genealogical tree:
o A cell divides at a rate R > 0 and the toxicity grows with rate o > 0.
¢ Along branches: the toxicity (X, t > 0) satisfies
dX; = adt.

o When a cell divides, a random fraction I of the toxicity goes in the
first daughter cell and a fraction 1 — [ in the second one. We assume
that I has a symmetric distribution on [0, 1] with a density h.

e We describe the population of cells at time t by a random point measure
in Mp(R,)T:
N
Zy(dx) =) dxi(dx),
i=1

where Ny = (Z;,1) = |,

R, Z:(dx) is the number of cells living at time t.

TMF(R+): the space of finite measures on R} embedded with the topology of
weak convergence.
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Stochastic differential equation

e 7, is described by a SDE driven by a Poisson point measure.
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Stochastic differential equation

e 7, is described by a SDE driven by a Poisson point measure.

e For all test function f;(x) = f(x,t) € C;’l(R+ x Ry, R)*, the population
of cells is described by:

(Ze, ) =(Zo, o) + / (800 + a01£()) Zi( ) s
R+

b [ (500 B0~ 50 )R as + w1,

where M! is a square integrable martingale.

iC,i‘l(]R+ x Ry, R): the set of bounded functions of class C* in t and x with
bounded derivatives.
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Stochastic differential equation

e 7, is described by a SDE driven by a Poisson point measure.

e For all test function f;(x) = f(x,t) € C;’I(R+ x Ry, R)*, the population
of cells is described by:

(Ze, fe) =(2o, o) + /t Osfs(x) + a[)xfs(x))Zs(dx)ds

b [ (500 B0~ 50 )R as + w1,

where M! is a square integrable martingale.

iC;‘l(]l& x Ry, R): the set of bounded functions of class C* in t and x with
bounded derivatives.
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Stochastic differential equation

e 7, is described by a SDE driven by a Poisson point measure.

e For all test function f;(x) = f(x,t) € C;’I(R+ x Ry, R)*, the population
of cells is described by:

(Ze, ) =(Zo, o) + / (800 + a01£()) Zi( ) s
]R+

[ (R0 @02 00 )RR 65+

where M! is a square integrable martingale.

iC;‘l(]l& x Ry, R): the set of bounded functions of class C* in t and x with
bounded derivatives.
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Estimation of the division kernel: case of incomplete data

I ——
Goal: Nonparametric estimation of the density h ruling the divisions.
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Estimation of the division kernel: case of incomplete data

I ——
Goal: Nonparametric estimation of the density h ruling the divisions.

The interest of estimating h is to detect aging phenomena. (Stewart et al. (2005),
Lindner et al. (2008))
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Estimation of the division kernel: case of incomplete data

I ——
Goal: Nonparametric estimation of the density h ruling the divisions.

The interest of estimating h is to detect aging phenomena. (Stewart et al. (2005),
Lindner et al. (2008))

Observation scheme

The evolution of cells is observed at a fixed time T — the whole division
tree is not completely observed.
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Estimation of the division kernel: case of incomplete data

I ——
Goal: Nonparametric estimation of the density h ruling the divisions.

The interest of estimating h is to detect aging phenomena. (Stewart et al. (2005),
Lindner et al. (2008))

Observation scheme

The evolution of cells is observed at a fixed time T — the whole division
tree is not completely observed.

» When the whole division tree is observed (e.g. observation of the cell
population up to a fixed time T): Hoang, V. H. (2015). Estimating the

division kernel of a size-structured population. preprint arXiv:1509.02872.
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Estimation of the division kernel: case of incomplete data

e To estimate h, the idea is to approximate the evolution of the population
of cells when the initial population size is large by a growth-fragmentation
equation.
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Estimation of the division kernel

Estimation of the division kernel: case of incomplete data

e To estimate h, the idea is to approximate the evolution of the population
of cells when the initial population size is large by a growth-fragmentation
equation.

e Assume Ny = K, consider the following renormalized stochastic process:

NK
1 t

ZH () = ¢ > bxg(e),
i=1

where NX is the number of cells alive at time t.
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Estimation of the division kernel: case of incomplete data

e To estimate h, the idea is to approximate the evolution of the population
of cells when the initial population size is large by a growth-fragmentation
equation.

e Assume Ny = K, consider the following renormalized stochastic process:

NK
1 t

ZH () = 2 3 Gglo)
i=1

where NX is the number of cells alive at time t.

e The parameter K is related to the large population limit which corresponds
to K — 4o0.
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Estimation of the division kernel

Growth-fragmentation equation

e Following the works of Fournier and Méléard (2004) and Tran (2008), we
prove that (ZK)xen- converges to the (weak) solution of the following
PDE:

! x\ 1
8tn(t,x)—i—a@xn(t,x)—l—Rn(t,x):2R/O n(t,;);h(y)d% n(0,x) = no(x).
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Growth-fragmentation equation

e Following the works of Fournier and Méléard (2004) and Tran (2008), we
prove that (ZK)xen- converges to the (weak) solution of the following
PDE:

! x\ 1
atn(t,x)—i—a@xn(t,x)—l—Rn(t,x):2R/O n(t,;);h(y)d% n(0,x) = no(x).

e Setting y = x/, we obtain

+o0
O¢n(t, x) + adyn(t,x) + Rn(t,x) = 2R/ n(Ly)h(f) Q
0 yoy
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Growth-fragmentation equation

e Following the works of Fournier and Méléard (2004) and Tran (2008), we
prove that (ZK)xen- converges to the (weak) solution of the following
PDE:

! x\ 1
atn(t,x)—i—a@xn(t,x)—l—Rn(t,x):2R/O n(t,;);h(y)d% n(0,x) = no(x).

e Setting y = x/, we obtain
dy
-

e By the general relative entropy (GRE) (see Perthame and Ryzhik (2005)),
the division kernel h satisfies the assumptions for the existence (A, N) of
the following eigenvalue problem

O¢n(t, x) + adyn(t,x) + Rn(t,x) = 2R/0+<>0 n(l:y)h(%)

adN(x) + (A + R)N(x) = 2R [;F N(y)h(§) & x>0,
N(@) =0, [N(x)dx=1, N(x)>0, X>0,

where X is the first eigenvalue and N is the first eigenvector.
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Asymptotic of the PDE

e By the use of the GRE, we have

/0+°° ’n(t, X)e At - <,,07¢>N(X)‘ o(x)dx 25 0,

for a non-negative function ¢ called the dual eigenfunction.
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Asymptotic of the PDE

e By the use of the GRE, we have

/0+°° ’n(t, X)e At - <n07¢>/\/(x)’ o(x)dx 25 0,

for a non-negative function ¢ called the dual eigenfunction.

e Since e n(t,x) ~ N(x) as t is large, we assume that we have n i.i.d
observations Xi, ..., X, where X;'s have probability distribution N(x)dx.

e We estimate h from the data Xi,..., X, and the eigenvalue problem:

y)y’

N(0)=0, [N(x)dx=1, N(x)>0, A>0,

adN(x) + (A + R)N(x) = 2R [, N(y)h(5> & x>0,
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Asymptotic of the PDE

e By the use of the GRE, we have

/0+°° ’n(t, X)e At - <n07¢>/\/(x)’ o(x)dx 25 0,

for a non-negative function ¢ called the dual eigenfunction.

e Since e n(t,x) ~ N(x) as t is large, we assume that we have n i.i.d
observations Xi, ..., X, where X;'s have probability distribution N(x)dx.

e We estimate h from the data Xi,..., X, and the eigenvalue problem:
_ +oo x\ d

ad N(x) + (A + R)N(x) = 2R | N(y)h(;)%, x>0,
N(@) =0, [N(x)dx=1, N(x)>0, X>0,

Estimation of h leads us to an inverse problem with a multiplication convolution
defined by the operator

(Fve)x)= /Om f(y)g(f)ﬂ-

Yoy
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Asymptotic of the PDE

e By the use of the GRE, we have

/0+°° ’n(t, X)e At - <n07¢>/\/(x)’ o(x)dx 25 0,

for a non-negative function ¢ called the dual eigenfunction.

e Since e n(t,x) ~ N(x) as t is large, we assume that we have n i.i.d
observations Xi, ..., X, where X;'s have probability distribution N(x)dx.

e We estimate h from the data Xi,..., X, and the eigenvalue problem:
_ +00 x\ d

ad N(x) + (A + R)N(x) = 2R | N(y)h(;) x>0,
N(@) =0, [N(x)dx=1, N(x)>0, X>0,
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Estimation of the division kernel

Estimation procedure: change of variable

e Setting x = e” and y = €Y, u,v € R and introduce the functions

g(u) = e’h(e"),

and
M(u) = e"N(e"), D(u)= &,(u — N(e”)).
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Estimation of the division kernel

Estimation procedure: change of variable

e Setting x = e” and y = €Y, u,v € R and introduce the functions

g(u) = e’h(e"),

and
M(u) = e"N(e"), D(u)= &,(u — N(e”)).

e Then the growth-fragmentation equation (asymptotic form)

adN(x) + (A + R)N(x) = 2R/O+OO N(y)he) %

becomes
aD(u) + (A + R)M(u) = 2R(M x g) (u).
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Estimation of the division kernel

Estimation procedure: assumptions

(A1) The density h is continuous on [0, 1].
(A2) There exists a positive constant C such that for any t € (0,1),

/th(x)dx < min (1, Ct*).
0

(A3) Forall £ € R, M*(£) # 0.
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Estimation procedure

Under Assumption (A1)-(A3), the Fourier transform of g is given by

_aD*() . A+R

Q) =srmr T 2R R
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Estimation procedure

Under Assumption (A1)-(A3), the Fourier transform of g is given by

_aD*() . A+R

Q) =srmr T 2R R

> We first propose an estimator for g*, then apply Fourier inversion to
obtain an estimator for g.
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Estimation procedure

Under Assumption (A1)-(A3), the Fourier transform of g is given by

_aD*() . A+R

Q) =srmr T 2R R

> We first propose an estimator for g*, then apply Fourier inversion to
obtain an estimator for g.

> A natural estimator of g* is based on unbiased estimates of D*(¢) and

M= (8):
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Estimation procedure

Under Assumption (A1)-(A3), the Fourier transform of g is given by

£(6) = aD*(§) |, AR

= 2RmMre) T 2RSSR

> We first propose an estimator for g*, then apply Fourier inversion to
obtain an estimator for g.

> A natural estimator of g* is based on unbiased estimates of D*(¢) and

M= (8):

Due to the change of variables, we consider the i.i.d random variables
Ui, ..., U, where U; = log(X;) having density M(u) = e“N(e").
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Estimation of the division kernel

Estimation procedure

e Let K a kernel function in L?(R) such that its Fourier transform K* exists
and is compactly supported. Define Ky(-) := ¢~1K(-/¢) for £ > 0, we set

g =Kixg.
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Estimation procedure

e Let K a kernel function in L?(R) such that its Fourier transform K* exists
and is compactly supported. Define Ky(-) := ¢~1K(-/¢) for £ > 0, we set

g =Kixg.

I ——
Following Neumann (1997), Comte, Samson and Stirnemann (2009) and Comte
and Lacour (2011), we propose an estimator g; of g is such that its Fourier
transform takes the following form:

— 1 —
SN aD*(&) “{IM*@)=n—2} A4 R
& (&) = K/ (§) x o e + 55
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Estimation procedure

e Let K a kernel function in L?(R) such that its Fourier transform K* exists
and is compactly supported. Define Ky(-) := ¢~1K(-/¢) for £ > 0, we set

g =Kixg.

I ——
Following Neumann (1997), Comte, Samson and Stirnemann (2009) and Comte
and Lacour (2011), we propose an estimator g; of g is such that its Fourier
transform takes the following form:

— IL .
SN pon aD*(&) " {IM@Izn2} A4+ R
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Estimators of g and h

________________________________________________________________________|
Taking the inverse Fourier transform of g; to obtain the estimator g; of g, then
the estimator of the division kernel h as follows:

flo) = 5 [ EOdE hin) =1 (log(), 7€ (0.1)
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Estimation of the division kernel

Estimators of g and h

Taking the inverse Fourier transform of g; to obtain the estimator g; of g, then
the estimator of the division kernel h as follows:

flo) = 5 [ EOdE hin) =1 (log(), 7€ (0.1)

Suppose Assumptions (A1), (A2) and (A3) are satisfied and the kernel
bandwidth ¢ which depends on n satisfies IiT ¢ = 0. Provided that
n——+oo

e (T

lim B [||gz - g||§] =0, lim E [||/“w - hll%] =

n—+o00

we have
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Numerical simulations

Bandwidth selection rule:

We apply resampling techniques inspired from the principle of cross-validation:
we divide the observations Xi, ..., X, into two sub-samples XE := (X;);cg and
XE = (Xi)icec where E C {1,..., n} such that such that |E| = n/2 and
E¢={1,...,n} \ E.

Let (E;, EJ-C)1<J-§V, V < Vipax = C,;’/z be the sequence of subsets selected from
{1,...,n}. Let £ be a family of bandwidths possible, define

~x(Ej ,\*(E-C)
je.ey =5 Z 161 - 205, 5]
The the final estimator of g is obtained by putting & := g; where

ley = J, v
cv aregengln{gneln j(e, )}
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Numerical simulations

Reconstruction of the density of Beta(2,2): h(x) = Cx(1 — x)1 g 1j(x).

7| — Truefuncg —— True func h
---- Reconstructed g - = Reconstructed h

1.0 12

0.8

0.6

0.4

0.2

Left: Reconstruction of g(x) = e*h(e*). Right: Reconstruction of
h=1(h(x)+ h(1 - x)).
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Numerical simulations
Reconstruction of the density of Beta(2,2): h(x) = Cx(1 — x)1 g 15(x).
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Left: CV bandwidths vs Oracle bandwidths. Right: L?-risk of & over M = 100 samples
of size n = 30000.
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