ECOLE DE LA CHAIRE MMB

Temps d'extinction d'un CSBP avec compétition et en environnement aléatoire.

HÉLÈNE LEMAN, JUAN CARLOS PARDO, JOSÉ LUIS PÉREZ

Centro de Investigación en Matemáticas (CIMAT) Guanajuato, Mexique

Qu'est-ce qu'un CSBP?

Soit ψ telle que

$$\psi(z) = -bz + \gamma^2 z^2 + \int_0^{+\infty} (e^{-zu} - 1 + zu \mathbb{1}_{\{u \le 1\}}) \mu(du),$$

avec $b, \gamma \in \mathbb{R}$, $\int_0^\infty (u \wedge u^2) \mu(du) < +\infty$.

Définition

Un processus de Markov $(Y_t)_{t\geq 0}$ est appelé **CSBP** de **mécanisme** de branchement ψ si pour tout $t\geq 0$, :

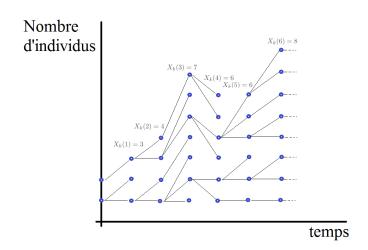
$$\mathbb{E}_x \left[e^{-\lambda Y_t} \right] = e^{-xv_t(\lambda)}, \quad \forall \lambda, x \ge 0,$$

où v est l'unique solution de

$$v_t(\lambda) = \lambda - \int_0^t \psi(v_s(\lambda)) ds, \quad \lambda, t \ge 0.$$

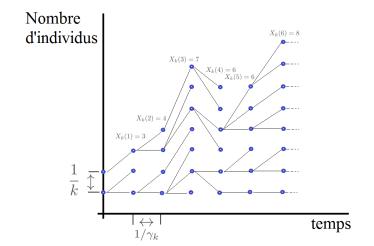
Modèle microscopique : Galton Watson

▶ Pour tout k, définissons $X_k(n)$ est le **nombre d'individus** à la n^{ième} génération d'un GW dont la fonction génératrice, caractérisant la reproduction, est g_k ,



Modèle microscopique : Galton Watson

- ▶ Pour tout k, définissons $X_k(n)$ est le **nombre d'individus** à la n^{ième} génération d'un GW dont la fonction génératrice, caractérisant la reproduction, est g_k ,
- ▶ soit une suite réelle γ_k telle que $\gamma_k \xrightarrow[k \to +\infty]{} +\infty$.



Modèle microscopique : Galton Watson

- ▶ Pour tout k, définissons $X_k(n)$ est le **nombre d'individus** à la n^{ième} génération d'un GW dont la fonction génératrice, caractérisant la reproduction, est g_k ,
- ▶ soit une suite réelle γ_k telle que $\gamma_k \xrightarrow[k \to +\infty]{} +\infty$.

On s'intéresse à :

$$\frac{X_k(\lfloor \gamma_k t \rfloor)}{k}$$

Théorème (Aliev, Shchurenkov (1982) et Li (2006))

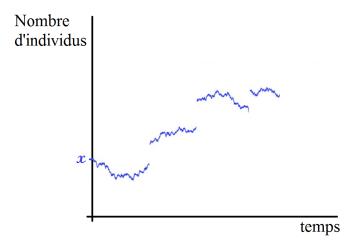
Sous certaines hypothèses, et si $(X_k(0)/k) \Rightarrow x(0)$ en loi, il existe un CSBP $(Y_t, t \ge 0)$, de condition initiale x(0), tel que

$$\left(\frac{X_k(\lfloor \gamma_k t \rfloor)}{k}, t \ge 0\right) \Rightarrow (Y_t, t \ge 0)$$

en loi dans $\mathbb{D}([0,\infty),\mathbb{R}^+)$

[→] Feller (1951), Jirina (1958), Lamperti (1967a).

Qu'est-ce qu'un CSBP?



→ Propriété de branchement (Individus indépendants)

$$\tilde{Y}_t^x + Y_t^{x'} \stackrel{\text{(loi)}}{=} Y_t^{x+x'}$$

SOLUTION D'EDS

Soit
$$Y_t = Y_0 + b \int_0^t Y_s ds + \int_0^t \sqrt{2\gamma^2 Y_s} dB_s^{(b)} + \int_0^t \int_{[1,\infty)} \int_0^{Y_{s-}} z N^{(b)} (ds, dz, du) + \int_0^t \int_{(0,1)} \int_0^{Y_{s-}} z \widetilde{N}^{(b)} (ds, dz, du),$$

avec

- \triangleright $B^{(b)}$ un mouvement brownien standard,
- ▶ $N^{(b)}$ un processus ponctuel de Poisson d'intensité $ds \otimes du \otimes \mu(dz)$
- $\triangleright \tilde{N}^{(b)}$ est la mesure compensée de $N^{(b)}$.

Théorème (Fu, Li 2010)

Il existe une unique solution forte de l'EDS précédente, qui est un CSBP de mécanisme de branchement

$$\psi(z) = -bz + \gamma^2 z^2 + \int_0^{+\infty} (e^{-zu} - 1 + zu \mathbb{1}_{\{u \le 1\}}) \mu(du).$$

MODÈLE CBLRE AVEC COMPÉTITION

Un tel processus a été introduit par Palau et Pardo (2016) comme la solution de l'EDS

$$Z_{t} = Z_{0} + b \int_{0}^{t} Z_{s} ds + \int_{0}^{t} \sqrt{2\gamma^{2} Z_{s}} dB_{s}^{(b)}$$

$$+ \int_{0}^{t} \int_{[1,\infty)} \int_{0}^{Z_{s-}} z N^{(b)} (ds, dz, du) + \int_{0}^{t} \int_{(0,1)} \int_{0}^{Z_{s-}} z \widetilde{N}^{(b)} (ds, dz, du),$$

où

 $ightharpoonup B^{(b)}$ et $N^{(b)}$ représente le **mécanisme de branchement**,

MODÈLE CBLRE AVEC COMPÉTITION

Un tel processus a été introduit par Palau et Pardo (2016) comme la solution de l'EDS

$$\begin{split} Z_t &= Z_0 + b \int_0^t Z_s \mathrm{d}s + \int_0^t \sqrt{2\gamma^2 Z_s} \mathrm{d}B_s^{(b)} - \int_0^t g(Z_s) \mathrm{d}s \\ &+ \int_0^t \int_{[1,\infty)} \int_0^{Z_{s-}} z N^{(b)}(\mathrm{d}s, \mathrm{d}z, \mathrm{d}u) + \int_0^t \int_{(0,1)} \int_0^{Z_{s-}} z \widetilde{N}^{(b)}(\mathrm{d}s, \mathrm{d}z, \mathrm{d}u), \end{split}$$

où

- ▶ $B^{(b)}$ et $N^{(b)}$ représente le **mécanisme de branchement**,
- g représente la **compétition**, g est croissante et g(0) = 0,

 \hookrightarrow Compétition : Logistic Feller diffusion, Lambert (2005)...

⇒ Plus de propriété de branchement

MODÈLE CBLRE AVEC COMPÉTITION

Un tel processus a été introduit par Palau et Pardo (2016) comme la solution de l'EDS

$$\begin{split} Z_t &= Z_0 + b \int_0^t Z_s \mathrm{d}s + \int_0^t \sqrt{2\gamma^2 Z_s} \mathrm{d}B_s^{(b)} - \int_0^t g(Z_s) \mathrm{d}s + \int_0^t Z_{s-} \mathrm{d}S_s^{(e)} \\ &+ \int_0^t \int_{[1,\infty)} \int_0^{Z_{s-}} z N^{(b)} (\mathrm{d}s, \mathrm{d}z, \mathrm{d}u) + \int_0^t \int_{(0,1)} \int_0^{Z_{s-}} z \widetilde{N}^{(b)} (\mathrm{d}s, \mathrm{d}z, \mathrm{d}u), \end{split}$$

où

- $ightharpoonup B^{(b)}$ et $N^{(b)}$ représente le **mécanisme de branchement**,
- g représente la **compétition**, g est croissante et g(0) = 0,
- $ightharpoonup S^{(e)}$ représente l'environnement extérieur.
- \hookrightarrow Compétition : Logistic Feller diffusion, Lambert (2005)...
- → Environnement : Smith-Wilkinson (1969), Bansaye et al (2013)...

\Rightarrow Plus de propriété de branchement

Modèle CBLRE avec compétition

 $\rhd S^{(e)}$ est un processus de Lévy indépendant de $B^{(b)}$ et $N^{(b)}$ qui s'écrit comme suit

$$\begin{split} S_t^{(e)} &= at + \sigma B_t^{(e)} + \int_0^t \int_{(-1,1)^c} (e^z - 1) N^{(e)}(\mathrm{d}s, \mathrm{d}z) \\ &+ \int_0^t \int_{(-1,1)} (e^z - 1) \tilde{N}^{(e)}(\mathrm{d}s, \mathrm{d}z), \end{split}$$

avec

- $a \in \mathbb{R}, \, \sigma \ge 0,$
- ▶ $B^{(e)} = (B_t^{(e)}, t \ge 0)$ est un mouvement Brownien standard
- ▶ et $N^{(e)}$ est un processus ponctuel de Poisson sur $\mathbb{R}_+ \times \mathbb{R}$ d'intensité d $s \otimes \pi(\mathrm{d}z)$ telle que

$$\int_{\mathbb{R}} (1 \wedge z^2) \pi(\mathrm{d}z) < \infty \quad \text{et} \quad \int_{(-1, +\infty)} |z| \pi(\mathrm{d}z) < +\infty.$$

Modèle CBLRE avec compétition

 $\rhd S^{(e)}$ est un processus de Lévy indépendant de $B^{(b)}$ et $N^{(b)}$ qui s'écrit comme suit

$$\begin{split} S_t^{(e)} &= at + \sigma B_t^{(e)} + \int_0^t \int_{(-1,1)^c} (e^z - 1) N^{(e)}(\mathrm{d}s, \mathrm{d}z) \\ &\quad + \int_0^t \int_{(-1,1)} (e^z - 1) \tilde{N}^{(e)}(\mathrm{d}s, \mathrm{d}z), \end{split}$$

avec

- $a \in \mathbb{R}, \, \sigma \ge 0,$
- ▶ $B^{(e)} = (B_t^{(e)}, t \ge 0)$ est un mouvement Brownien standard
- ▶ et $N^{(e)}$ est un processus ponctuel de Poisson sur $\mathbb{R}_+ \times \mathbb{R}$ d'intensité $\mathrm{d} s \otimes \pi(\mathrm{d} z)$ telle que

$$\int_{\mathbb{R}} (1 \wedge z^2) \pi(\mathrm{d}z) < \infty \quad \text{et} \quad \int_{(-1, +\infty)} |z| \pi(\mathrm{d}z) < +\infty.$$

• But : Etude du temps d'extinction du CBLRE avec compétition

TEMPS D'EXTINCTION

 \triangleright On suppose que ψ satisfait la condition de Grey, i.e.

$$\int^{\infty} \frac{\mathrm{d}\lambda}{\psi(\lambda)} < \infty,$$

Important: La condition de Grey est une condition nécessaire et suffisante pour qu'un CSBP en environnement aléatoire s'éteigne en temps fini avec une probabilité positive (He et al. (2016)).

TEMPS D'EXTINCTION

 \triangleright On suppose que ψ satisfait la condition de Grey, i.e.

$$\int_{-\infty}^{\infty} \frac{\mathrm{d}\lambda}{\psi(\lambda)} < \infty, \quad \text{et} \quad \int_{(0,\infty)} (1 \wedge z^2) \mu(\mathrm{d}z) < \infty.$$

 \triangleright (H1) Il existe $\theta \ge 0$ tel que pour tous $z, y \ge 0$,

$$g(z) - g(z+y) \le (\theta - b)y.$$

 \triangleright (H2) Il existe $a_0 > 0$ pour lequel g(y) > 0 dès que $y \ge a_0$ et

$$\int_{a_0}^{+\infty} \frac{\mathrm{d}y}{g(y)} < +\infty.$$

Théorème

Soit $T_0^Z = \inf\{t \ge 0, Z_t = 0\}$, sous les hypothèses précédentes

$$\sup_{x>0} \mathbb{E}_x \Big[T_0^Z \Big] < +\infty.$$

 \hookrightarrow Le (2014), Le et Pardoux (2015) (sans environnement)

Cas logistique et environnement brownien

On s'intéresse maintenant au cas particulier suivant :

▶ d'une Compétition logistique, i.e.

$$g(z) = cz^2$$
, avec $c \ge 0$,

• et d'un **environnement brownien**, i.e.

$$S_t^{(e)} = \sigma B_t^{(e)},$$

avec $\sigma \geq 0$ et $B^{(e)}$ un mouvement brownien standard.

CHANGEMENT DE TEMPS

Soit Z un CSBP avec compétition logistique dans un environnement aléatoire **brownien** avec $Z_0 = x$. Posons $\forall t > 0$,

$$C_t = \int_0^{t \wedge T_0^2} Z_s ds, \quad \text{et} \quad \eta_t = \inf\{u \ge 0, C_u \ge t\},$$

l'inverse continu à droite de C.

Théorème
• Le processus $R_t = \begin{cases} Z_{\eta_t}, & \text{si } 0 \le t < C_{\infty} \\ 0, & \text{si } C_{\infty} < \infty \text{ et } t \ge C_{\infty}, \end{cases}$

est l'unique solution forte de l'EDS

$$dR_{t} = \mathbb{1}_{\{R_{r-}>0:r\leq t\}} dX_{t} - \mathbb{1}_{\{R_{r-}>0:r\leq t\}} cR_{t} dt + \mathbb{1}_{\{R_{r-}>0:r\leq t\}} \sigma \sqrt{R_{t}} dW_{t},$$

avec W un mouvement brownien standard, et X un processus de Lévy.

Changement de temps

Soit Z un CSBP avec compétition logistique dans un environnement aléatoire **brownien** avec $Z_0 = x$. Posons $\forall t > 0$,

$$C_t = \int_0^{t \wedge T_0^2} Z_s ds, \quad \text{et} \quad \eta_t = \inf\{u \ge 0, C_u \ge t\},$$

l'inverse continu à droite de C.

Théorème
• Le processus $R_t = \begin{cases} Z_{\eta_t}, & \text{si } 0 \le t < C_{\infty} \\ 0, & \text{si } C_{\infty} < \infty \text{ et } t \ge C_{\infty}, \end{cases}$

est l'unique solution forte de l'EDS

$$dR_{t} = \mathbb{1}_{\{R_{r-} > 0: r \le t\}} dX_{t} - \mathbb{1}_{\{R_{r-} > 0: r \le t\}} cR_{t} dt + \mathbb{1}_{\{R_{r-} > 0: r \le t\}} \sigma \sqrt{R_{t}} dW_{t},$$

avec W un mouvement brownien standard, et X un processus de Lévy.

- \hookrightarrow Avantage: Si X est un subordinateur, alors R est un CSBP avec immigration (bien connu : Li (1996),...).
- \hookrightarrow **Déduction**: extinction de Z en temps fini?, existence d'une mesure invariante?...

TEMPS D'ATTEINTE D'UN NIVEAU

But : donner une formule explicite de la transformée de Laplace de

$$T_a^Z := \inf\{t \ge 0, Z_t \le a\},\$$

Supposons de plus que $c > 0, \sigma > 0$ et que

$$\int_0 \frac{\psi(z)}{cz} \mathrm{d}z < +\infty.$$

Théorème

Si la condition de Grey est vérifiée $(\int_{-\infty}^{\infty} \psi^{-1}(z) dz < +\infty)$, alors il existe une fonction $(z, u) \mapsto h(z, u)$ positive, telle que

$$f(\lambda, x) := 1 + \lambda \int_0^{+\infty} \frac{e^{-xz}}{cz + \frac{\sigma^2}{2}z^2} \int_0^z h(z, u) du dz$$

est bien définie pour tout $x, \lambda \geq 0$ et pour tout $x \geq a \geq 0$,

$$\mathbb{E}_x \left[e^{-\lambda T_a^Z} \right] = \frac{f(\lambda, a)}{f(\lambda, x)}.$$

TEMPS D'ATTEINTE D'UN NIVEAU

But : donner une formule explicite de la transformée de Laplace de

$$T_a^Z := \inf\{t \ge 0, Z_t \le a\},\,$$

Supposons de plus que $c > 0, \sigma > 0$ et que $\int_0 \frac{\psi(z)}{cz} dz < +\infty$.

Théorème

Si la condition de Grey est vérifiée $(\int_{-\infty}^{\infty} \psi^{-1}(z) dz < +\infty)$, alors il existe une fonction $(z, u) \mapsto h(z, u)$ positive, telle que

$$f(\lambda, x) := 1 + \lambda \int_0^{+\infty} \frac{e^{-xz}}{cz + \frac{\sigma^2}{2}z^2} \int_0^z h(z, u) du dz$$

est bien définie pour tout $x, \lambda \geq 0$ et pour tout $x \geq a \geq 0$,

$$\mathbb{E}_x \left[e^{-\lambda T_a^Z} \right] = \frac{f(\lambda, a)}{f(\lambda, x)}.$$

 \hookrightarrow Lambert (2005) (temps d'extinction sans environnement), Duhalde et al (2014) (sans environnement, sans compétition)...