Mesoscopic analysis of ecological networks using Hill numbers
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Aim : assess the diversity of one or several ecological
communities that are interacting through an ecological network

a-diversity : richness of a community

B-diversity : “the extent of change in community composition,
or degree of community differentiation, in relation to a
complex-gradient of environment, or a pattern of
environments” Whittaker 1960

Classic diversity index omit interactions
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s S pocock et al., 2012



set of organisms
colours are species

Suppose that (E) is composed of N individuals,
belonging to S distinct species, with relative
abundances: (py,...,p;)
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Dy =15 Species richness

S
D, = e:cp(z pilog(p;))  Shannon entropy (exp)
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Dy =15 Species richness

S
D, = e:cp(z pilog(p;))  Shannon entropy (exp)
i=1

1

D> = ZS 2 Inverse of Simpson index - a-diversity
i=1Pi




community 1 community 2



v(q)

Bla) = { @@=+ ea(@) = T
exp(wlog(ai(q))+(1—w)log(a2(q)))
W= n;rb-|1—n
1< B(q) <2
B(q) + Bg) —1
0<8(q) <1

ratio of generalised means in
presence of two classifications
(species and space)

cf Tuomisto, 2010, Ecography
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Interaction network




G a mnetwork ,A its adjacency matrix,
V(G) set of nodes, [V(G)| =n
E(G) set of edges, |E(G)| = L

Q set of classes(e.g. species, functional groups)




G a mnetwork ,A its adjacency matrix,
V(G) set of nodes, [V(G)| =n
E(G) set of edges, |E(G)| = L

Q set of classes(e.g. species, functional groups)

Connectance does not
take into account
species identity

Not a measure of diversity,
since there is only one group




G a mnetwork ,A its adjacency matrix,
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G a mnetwork ,A its adjacency matrix,
V(G) set of nodes, [V(G)| =n
E(G) set of edges, |E(G)| = L

Q set of classes(e.g. species, functional groups)

scale (size of Q)

T35 = PT(Z —>]|,Z c Sq,,j c Sj)
i = Aij € {0,1}
L= Zl<i i<n Ai,j

Macroscopic scale

Microscopic scale
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Mesoscopic scale ?




G a network ,A its adjacency matrix,
V(G) set of nodes, |V(G)| =n

E(G) set of edges, |E(G)| = L
Q={L..,IQ}} 1<|Q<n
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T = P?“(i —>j|?, = k,] c l)

~ n_ | A(i—j,i€k,j€l)
kol = Sor L M(GER) Yo b, T(GED)

‘ group proportion

- link proportion (connecting group k and )

‘ connectance between class k and |

If there is only one class, then it's a scalar
equal to connectance




V(G) set of nodes, |V(G)| =n
E(G) set of edges, |E(G)| = L
“fLQl 1<1Ql<n

G a network ,A its adjacency matrix,
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H Hill number on group proportion
mmsss»>  Hill number on links proportion

mmmmm»>  Hill number on connectance matrix




The network dissimilarity problem

G1 a network, Ay its adjacency matrix Go a network, As its adjacency matrix
V(Gh) set of nodes, |V(G1)| = n1 V(Gs) set of nodes, |V (G2)| = na
E(G) set of edges, |E(G1)| = Ly E(Gs2) set of edges, |E(G2)| = Lo

Charles Elton (1900-1991)



Microscopic comparison

What already exists : Poisot, 2012
Q1 ={51,.,5n, }

Q2 =1{51,..-,Sn,}
Qmeta — Ql U Q2

Qinter = Q1 N Q2 Burn = 1 A © As
(|A1] +]A2])/2
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Microscopic comparison

What already exists : Poisot, 2012
Q1 ={51,.,5n, }

Q2 = {S1,..-, 50, }

Qmeta — Ql U Q2
Qinter = Q1 N Q2 3 | A1 © Ay
wWwN = 1—
. (1A1] + [Az2]) /2
o - M
| e Both species turnover and plasticity of
P | féf interactions (at a species level) contribute
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Microscopic comparison
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Ginte” = induced.subgraph(G1, Qinter)

Atter - adjacency matriz
Gyter = induced.subgraph(Ga, Qinter)

AT - gdjacency matriz

Total
dissimilarity
5 , A?Lnter ® Az2nte7" (IjDissitmiIarity
os=1— : . ue to
(|Ainter| 4 |Ainter|) /20T plasticity of
interactions
due to
species

turnover



Microscopic comparison
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Mesoscopic comparison ?



G1 a network, Ay its adjacency matrix, ®
V(G1) set of nodes, |V(G1)| = n1 . Memag %
E(G1) set of edges, |E(G1)| = L1 — .
Qr={1,..|Q:} 1<|Qi<n ™ 7\

G5 a network, As its adjacency matriz,
V(G2) set of nodes, |V (G2)| =n

E(Gs) set of edges, |E(G3)| =L Gl G2
Q2 =1{L,..,|Q2} 1<|Q2] <n

Qintefr — Ql M QQ




G1 a network, Ay its adjacency matriz,
V(G1) set of nodes, |V (G1)| = nq
E(G1) set of edges, |E(G1)| = Ly
Q1 ={1,...,1Q1} 1Z]Q:<n

Go a network, As its adjacency matrix,
V(G3) set of nodes, |V (Gs2)| =n
E(Gs) setof edges, |E(G2)| = L
Q2=11,..,1Q=2|} 1<]Q2/<n

Qz’nter - Ql M QZ
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Dameta (q)

T (@(DS (@)1= 14+(1—w)(DE? (q)1-0) T4
Dfmeta (q)

 (w(DC ()1~ 9+ (1—w)(DS2 (q)1—4) T4




Dameta (q)

(@(DE1 (@)} =+ (1-w) (DE? (q)1 =) T
DLmeta (q)

(w(DS (g))1=9+(1—w)(DS? (q)1—9) T=a

1< Ba,n.(q) <2
Ba,£(q) < Bar(q) — 1
0<Barlg) <1




Dameta (q)

T (w(DS1 (g)) a4 (1-w)(DE? (q)1—) Ta
Dfmeta (Q)

(@D (g)) -1+ (1-w) (D2 (q)1-9) T4

A particular case : Tim Poisot case (microscopic turnover)

Ql = {1,...,711}
QQ = {1,...,7’1,2}
w=1/2

Easy to show that :

Ba (O) = Bs
BL(0) = Bwn
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A particular case : Tim Poisot case (microscopic scale)

Ql = {1, ...,nl}
@y B.(0) = Bos




Macroscopic scale

C=0.19




Forbidden links between species ?

1 At individual level :
Pr(i— jlic A,j € B) =1
Pr(t—jlieC,7€D)=0




= Frequency B

Frequency

Forbidden links between species ?

Totally forbidden link

Partially forbidden link

Allowed
interaction

|

.ucon sumer

Sp. A

Matching trait

(e.g., size, phenology)

Trends in Ecology & Evolution

Tt

> Sp. B

Sp. D

Figure 1. Frequency Distribution of
Matching Traits (e.g., Body Size or
Phenology) in a Consumer and a
Resource Species. Interaction is pos-
sible whenever Xconsumer = Xresource: (A
Mismatching between both trait means
and intraspecific variability prevent inter-
action, leading to a totally forbidden link.
(B Mismatching occurs between trait
means but intraspecific variabiity allows
interaction, leading to a partially forbidden
link. The difference between (A) and (B) -
thus, our ability ta infer interactions - may
depend on how broadly intraspecific trait
variability has been assessed in space and
time (Box 1).

> Sp.B

Pr(i—jlte A,je B)=1
Pr(t—gjlteC,je€D)=0

These binary relations neglect the
intraspecific trait variability compared
to interspecific trait variability

Taken from :
The labile limit of forbidden interactions

Gonzalez-Varo
Trends in Ecology and Evolution, 2016

Pr(i—jlie A,jeB)=m



Can we neglect intra-specific traits variability ?

(b)

—

Grasses | T o
' A mono-trophic view of traits intra/interspecific
variability

Taken from :

A multi-trait approach reveals the structure and the relative
importance of intra- vs. interspecific variability in plant traits
Albert et al., Functionnal Ecology, 2010
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Can we neglect intra-specific traits variability ?

(b)

Grasses | -~
A mono-trophic view of traits intra/interspecific
variability

Taken from :

Amulti-trait approach reveals the structure and the relative
importance of intra- vs. interspecific variability in plant traits
Albert et al., Functionnal Ecology, 2010




A Vulnerability trait




4 Pr(io jlic A,je P)=1

Vulnerability Trait Pr(i—jlie B,je P)=m
Pr(i—jlieC,jeP)=m
Pr(i—jlie D,je P)=m

Foraging trait




(b)

Grasses | -~
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d=2

Taken from :

Amulti-trait approach reveals the structure and the relative
importance of intra- vs. interspecific variability in plant traits
Albert et al., Functionnal Ecology, 2010
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T ? high plasticity of
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- high plasticity of interactions
- environment slightly modifying the between class
connectivity but not the global connectance
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Macroscopic scale : no variations
Microscopic scale : too much variations

Mesoscopic scale : strong pattern




Aim : Test the robustness of mesoscopic metrics to incomplete sampling

Using a model of food web : e
the niche model (Williams and Martinez, 2000) — |

Inferring classes of nodes using Stochastic Block Model
( @ model of community detection)

Taken from :
Simple rules yield complex food webs,
Williams and Martinez, 2000, Nature

¥ 9 Groups inferred using SBM are
¢ almost functionnal groups

mean and sd of the niche parameter




Rarefaction curves : how robust are our metrics to incomplete species sampling ?
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A framework using Hill numbers that allows network comparison at different
scales, from macroscopic scale to microscopic scale

Ecological networks might evolve at different Elton niches scales, especially if
you're interested in microbial/soil ecology

Mesoscopic analysis is more robust to incomplete sampling

Key question : how to determine Elton niches ?
Using network topology ?
Traits ?
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