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A mathematical model is a mathematical structure
with an interpretation

Purpose of a model: predict & understand
What to understand: the population behaviour in terms of individual behaviour
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o State of an individual (i-state)
(structured population)

» Behaviour of an individual (as change of the
-state)

* Interacting particles, chemical reactions

L4

ALIVE | ——» | DEAD

84
ALIVE |+ | ALIVE |——| ALIVE | 4| DEAD

4 - probability per unit time that the reaction occurs (1/time)
wh + O(hZ) . probability of a reaction within h units time
T > 0 : waiting time till a reaction occurs

P(t) = P(T > t)

P(t+h) = P(t) — (uh + O(h?))P(¢)

Wit = —uP(t) = Pt)=e"

Large population of A and B particles independently
undergoing:

7

Al — B

Strong law of large numbers: in an infinitely large population, P(t)
can be interpreted as the proportion of the initial A particles that

have not reacted yet.

A(t): population density of A
A
P(t) = 4%
o = A0)GY = —A)P(t) = —pA(t)

A|l4 B i, products

Empirical law of mass action: the probability per unit of time of one
reactant undergoing a reaction is proportional to the concentration of

the other reactant. aB(t)
A | — products

P4 (t): probability that A has not undergone a reaction yet

{ Pa(t 1) = Pa(1) aBORPAD) { 42— abPy()

P4(0) = Py(0) =1
(t (Strong law of large numbers & repeat

Pa(t
alt) = (0) the same passages for B) 5
A0 — o A(t)B(t) %

—
o = —aA(t)B(t) LSRR e
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A typical predator-prey model consists of a description of
how the predator and prey populations develop in the
absence of the other species and, most importantly, of a
description of the interaction between the two species.
(S.A.H.Geritz, M. Gyllenberg, 2012)

A basic predator-prey model is (Gause, 1934)

g(X) : prey numerical response, i.e. per capita growth rate of the prey if the predator is absent

f(X) : functional response, i.e. average number of prey caught per predator per unit of time
7y :conversion constant of prey caught into predators

0 . predator death rate

vf(X) — 0 : predator numerical response

HEL!
U




* Birth, death are slow processes.

¢ The total prey density (X) and total predator density (Y) are constant in the fast
time scale and change in the slow time.

** Mechanistic derivation of Holling type Il functional response (Metz, Diekmann, 1986)
cX

I-states: | X | individual prey - (fast) S| —— H
. processes: d
g | searching predator H . | S
H = handling predator
p-equations (fast dynamics): functional response (slow dynamics):

** Mechanistic derivation of DeAngelis-Beddington functional response (Geritz, Gyllenberg, 2012)

. _ . bY
i-states: | x.| available prey - (fast) X, < > X,
- processes: a
X,/ hiding prey | Xy |
S | searching predator S| y "
H | handling predator

functional response (slow dynamics): .

FXY) = cX1S cX &
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By considering a certain number of predator and prey interacting states, we

{W\E* are able to give a more general formulation of the functional response,
\%})fl? including the types which have already been studied, and to derive the
e : ]
<L corresponding numerical response.

Z

m

T = (2;)i%, y = (yi)iq

dj—tk(t) = > Apai(t) + >0, (2?21 Bfijyj (t)) (1), k=1,..
We(t) =Y, (Z}Ll CFix; (t)) yi(t) + S0 Dyayi(t), k=1,...

Ap;: rate at which the prey move from state j to state k, k,7 =1,...,m

ij: rate at which the prey move from state ¢ to state k, by interacting with
the predator state 7, 1, k=1,....m,7 =1,....n

Dy.;: rate at which the predators move from state ¢ to state k£, i,k =1,....n

ij: rate at which the predators move from state ¢ to state k£, by interacting
with the prey state 5, 1,k =1,....n,9=1,....m
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Lk (1) = Soiy Axaa(t) + S0y (S By () ilt), k=1,...,m
D

dcglth (t) — n:1 (2?21 C’I{fjxj (t)> yi(t) T Zi:l Dk,iyi (t)v k=1,...,n
dX
A =" Ay, for all k € [1, ‘G =9(X, V)X - f(X,Y)Y
T S ol BT B Iy s

— Dy = Z?:l itk D, for all £ € [1 n]

BY = S0y B, forall s € 1l € 1

—ij) =3 cfj ) for alli € [1,n], 7 € [1,m] FXY) = S Z;T;:l biid i
x; = X (constant) _ 2Nl 3

Z 9(X,Y) 5% <

Zyz’ =Y (constant)

=1 ’y(X Y) f(X, Y) 5(X, Y) =
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Application: f.r. type lll and corresponding predator numerical responses

Individual level reactions and population equations

01X . .

S1| —— | Hyi| the satiated predator enters the handling state ( % — —¢1 XS + dySs
So X, Hs | the starving predator enters the handling state ) d—f = —2 XSy +di (Hy + Hz) — daH
H| (s he handli he satiated i =aXSi —diH

1 — |91 from the handling to the satiated state \ dZQ — XS5 — di Hy
H, LN Sh from the handling to the satiated state
S1 2, So |  from the satiated state to the starving state
Functional response
f(X) B Cngl—l—CQXgQ _ c1 X (d2+CQX)

Y dy (1+ 1) + X (1+ed-X)
aX + bX? 1 11 C1Co

X) = , a=c, b=b=cc c=c1|—+—|, d=
f< ) 1+CX+dX2/ ! ! ng 1(d1 d2>/ d1d2
Predator numerical response

X Different reproduction rates:

FX}A[ —|—FXH CldX PldQ—I-FQ CQX-I-dQ—de

1 1Y 2 2: ( ( 1 )) :’V(X)f(X) I‘1>I‘2

b (1+eik) + e X (14 ck-X)
|
5(X) — 5151 + 0255 B 01d2 + 02c1 X Ditterent death rates: &
|

1
d (1 —I_ “lay d1 ) + ClX <1 —|_ 2 dy X) HELSINGIN YLIOPISTO
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Application: sort of anti-DeAngelis-Beddington f.r. and corresponding numerical response

Individual level reactions and population equations

E| 3| P| the exposed prey finds a refuge (

4L (t) = bSP — aE
bS dP _
P| — | E| the protected prey leaves the refuge < %(t) : —bgg + ;LEI
S| Elm| the searching predator enters the handling state %(t) - ¢ T
d X W(t) — —|—CES — dH
H — | S the handling predator quits handling
Functional response
cES cq a d 5
_ _ _ — = — 2 A= 2 2X)Y 2
fXY) == 2(q+X)Y(pq+qY+2XY \/Z), p=3, ¢=-, ¢ (P*q+2p(q+2X)Y +qY?)
cX cXY
p%oa f(X7Y)21+§X q — 00, f(va):p_;_—Y

Predator numerical response

A

H ()é Y) _ f ();, Y) Predator per capita birth rate

01

5 i Diff h ;
S(X,Y) H(X,Y) _ 5, (1 [, y)) +52f(X, Y) ifferent death rates

+ 4
Y 2y d d do > 01

Prey numerical response

A

PX.Y) _, _ _ dfXY) Prey per capita birth rate .

X cX(d—- f(X,Y)) .
Different death rates: %
E(X,Y) ~ PX)Y) df (X,Y) df (X,Y)

X pr—

1 — . -
Ty M X A= X, 7)) ( X (d— f(X, Y)) pa # o
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Existence and uniqueness of the fast dynamics equilibrium

Linear case:

{ r = Ax
y = Dy
The matrices A and D correspond to the

transition rate matrices of a continuous time
Markov chain, that is irreducible and aperiodic.

There exists a unique stationary distribution.

The convergence to the limit distribution is
exponentially fast.

A similar argument is used in the triangular
case, when the transitions of one of the two
species are not affected by the other population
densities.

Non-linear case:

{i=M+B@WU
y=(C(z) + D)y

Proposition: Under the following conditions:

A, B s.t. the linear system has a unique stable
equilibrium

* B, C irreducible matrices for every y,x>0

« A B,C,D transition matrices

* the conservation laws on total populations hold

the system has at least one equilibrium.
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Existence and uniqueness of the fast dynamics equilibrium

the exposed prey finds a refuge

P
E | the protected prey leaves the refuge
H

the searching predator enter the handling state

= & L= |5

| || |9 |

S the handling predator quits handling

b ~ number of refuges in the environment

Two cases:

“ if b is small: convergence of the fast dynamics to a unique steady state
» if b is large, no general result : no uniqueness if some conditions are relaxed (negativity
of the diagonal coefficients of A, D)
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Conclusions

** | have introduced a method for the derivation of the functional and numerical response, in
contrast with the phenomenological approach which focuses on the population behaviour.

** The bottom-up approach, from the individual level reactions to the population equations, allows
the interpretation of all the parameters involved in the population level equations.

** From the literature examples, we have derived a system of prey-predator states’ interactions
which gives a more general formulation for the functional response and allows also the
mechanistic derivation of the numerical responses, if we suppose different birth and death rates for
each state.

* An issue arises: the uniqueness of the fast dynamics steady state beyond the perturbative
regime.
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