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Context

Context
I Chemotherapies are toxic even to non-tumor cells
I Targeted therapies can focus on a specific mutation
I Unfortunately, emergence of resistance is very common

Traditional biopsies
Sequencing DNA of tumor cells from extracted tissues:
I Cannot be performed very often
I Only reflects some part of the tumor

Liquid biopsies
Sequencing plasma cell-free DNA (cfDNA) from blood samples:
I Can be performed much more often
I Potentially reflects the full heterogeneity of the tumor
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Emergence of resistance
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The lost genome

Liquid biopsy data
Very short DNA fragments (≈ 150 bp) aligned with a reference
sequence: each genome is lost and must be inferred from a model.
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“Poor man’s phylogenetics”

Traditional phylogenies
Clustering cells by
mutational composition

New wave phylogenies
Clustering mutations by
cellular frequencies

Objectives
I Directly reconstruct a phylogenetic tree
I Exploit the time structure using a dynamical model
I Detect and characterize resistant populations

Hypotheses
1. All observed mutations have already appeared at t = 0
2. A mutation only appears once and then never disappear
3. All cfDNA fragments are degraded faster than cell death
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Recap
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Getting even worse

Cellular frequencies are latent variables:

 Variant
Population

Normal Population

Reference Population

Chromosome
Mutation

Supplementary Figure 2: PyClone population structure assumptions | Simplified structure of a sample
submitted for sequencing. Here we consider the sample with respect to a single mutation (stars). With
respect to this mutation we can separate the cells in the sample into three populations: the ’normal popula-
tion’ consists of all normal cells (circular), the ’reference population’ consists of cancer cells (irregular) which
do not contain the mutation and the ’variant population’ consists of all cancer cells with the mutation. To
simplify the model we assume all the cells within each population share the same genotype. For example
all cells in the variant population in this case have the genotype AABB i.e. two copies of the reference allele,
A, and two copies of the variant allele, B. Note that the fraction of cancer cells from the variant population is
the cellular prevalence of the mutation which is 6

10 = 0.6 in this example. Due to the effect of heterogeneity
and genotype the expected fraction of reads containing the variant allele (variant allelic prevalence) in this
example would be 6·4· 24

2·2+4·3+6·4 = 0.3.

2

Nature Methods: doi:10.1038/nmeth.2883

Roth et al. (2014). PyClone: statistical inference of clonal
population structure in cancer. Nature Methods, 11(4):396–398.
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Basic model for cfDNA dynamics

Mutations {1, . . . ,m} and corresponding populations P1, . . . ,Pm.

• The size Ci(t) of Pi at time t is described by

Ċi(t) = λiCi(t)− µiCi(t)

• The amount of mutation j circulating in the blood is given by

Ṁj(t) =
m∑

i=1
[aijµiCi(t)] − dMj(t)

where aij > 0 if and only if j ∈ Pi , that is, Pi is a subclone of Pj .

Quasi-steady-state approximation for d � µi

Mj(t) = 1
d

m∑
i=1

[aijµiCi(t)] = a1jc1eb1t + · · ·+ amjcmebmt
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Statistical model
Parameters:
• a = (aij) ∈ Nm×m scaled tree-structure matrix
• b = (bi) ∈ Rm birth rate of each population
• c = (ci) ∈ (R∗+)m initial size of each population

Random variables for t = (tk) ∈ RN observation times:
• Y = (Yik) hidden: size of population i at time tk
• X = (Xjk) observed: amount of mutation j at time tk

L(Y ) =
⊗
i ,k

Gamma(ci exp(bi tk), 1)

L(X |Y ) =
⊗
j,k

Poisson(a1jY1k + · · ·+ amjYmk)

Inference
•We need to infer θ = (b, c) and the nonzero structure of a
• By Cayley’s formula there are (m + 1)m−1 possible models...
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Variational trick
Idea:
• each a corresponds to a rooted tree z ∈ T0 on {0, 1, . . . ,m}
• we can regularize the tree structure by making z random
For any distribution q(z) > 0, Jensen inequality gives:

log pθ(x) = log
[∑

z
pθ(x , z)

]
= log

[∑
z

pθ(x , z)
q(z) q(z)

]

>
∑

z
log
[pθ(x , z)

q(z)

]
q(z)

=
∑

z
[log pθ(x , z)− log q(z)]q(z)

Remarks
I [left] − [right] = KL[q(·)‖pθ(·|x)] > 1

2‖q(·)− pθ(·|x)‖21
I Hence the optimal choice is q(z) = pθ(z |x)
I This choice is nothing more than the EM algorithm
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Variational distribution over trees
An interesting distribution for z ∈ T0 is given by

qα(z) = 1
C(α)

∏
(i ,j)∈z

αij where C(α) =
∑

z ′∈T0

∏
(i ,j)∈z ′

αij

Matrix-tree theorem
Let n ∈ N and A = (Aij) be the n × n matrix defined by

Aij =
{
−αij if i 6= j∑n

k=1 αkj if i = j

Then for any v ∈ {1, . . . , n} we have

det(A{v}) =
∑

T∈Tv

∏
(i ,j)∈T

αij

where Tv is the set of all trees on {1, . . . , n} that are rooted at v .
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Thanks!
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