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Measurements of concentration at several times
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Repeated measurements of concentration at several times

= concentrations for each individual of the population is measured
at several times




Repeated measurements of concentration at several times

zoom on some individuals

model suggestion for each individual i y(t) = A; + Bjt meaning
that slope and intercept depend on individual i



Observations of growing process of orange trees

[Pinheiro and Bates (2000)]

T
500 1000 1500

age



Observations of growing process of five orange trees

Given : Tree
orangers




Observations of growing process of five orange trees

Pi1
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individual model suggestion y(t) =



Theophylline concentration along time
[Davidian and Giltinian (1995)]

12 subjects, same oral dose (mg/kg) times in hours theophylline
concentration in mg/L



Theophylline concentration along time

» Similarly-shaped concentration-time profiles across subjects
P> Peak, rise, decay vary considerably

> Attributable to inter-subject variation in underlying PK
processes (absorption, etc)



Some pharmacokinetic objectives

» Understanding intra-subject processes of drug absorption,
distribution, and elimination governing achieved
concentrations
= variabilities intra (within) subject and inter subject

» Understanding variations of these processes across subjects
= fundamental for developing dosing strategies and guidelines



Pharmacokinetic (PK) models

» One-compartment model for theophylline following oral dose
d at time 0 describing the evolution of drug concentration

over time.
d,-ka,- 7ﬂt —ka;
t) = ——— Vit — ajt
Y= Ve — [e €

where V;, ka; and C/; respectively denote the volume of the
central compartment, the drug's absorption rate constant and
the drug's clearance of individual i.

» ka;, Cl; and V; summarize PK processes underlying observed
concentration profiles for subject i



Some statistical objectives

» Determine mean/median values of ka;, Cl; and V; and how
they vary in the population of subjects

» Elucidate whether some of this variation is associated with
subject characteristics (e.g. weight, age, renal function)

» Develop dosing strategies for subpopulations with certain
characteristics (e.g. elderly, female)



General context

» Consider a response evolving over time (or other conditions)
within individuals from a population of interest

» Inference focuses on mechanisms that underlie individual
profiles of repeated measurements of the response and how
these vary in the population

» A model for individual profiles with parameters that may be
interpreted as representing such features or mechanisms is
available

= Common situations in agricultural, environmental, biomedical,
economical applications



General setting of repeated measurements

> Measurements are repeated on each of N individuals

» Y denotes the response at the jth measurement for individual
iforl<j<J

> X; covariates of individual /

Example of Theophylline dataset

» Y/ is drug concentration for subject / at time t;

> X; contains subject characteristics such as weight, age, renal
function, smoking status, etc for subject /



Individual-level model (Stage 1)
modelling the observations for 1 </ < N, 1 < < J

Yij = f(Xj, ¢i) + €jj

» f function governing within-individual behavior
» X; = (Xjj); covariates of individual /

> ; parameters specific to individual i

» cj;j centered random error term

Example: Theophylline pharmacokinetic model

f(di, tij, i) = ———- e V! — e hkaiti
( Iy 2 ) \/ikai o C/l |:
where ; = (ka;, Cl;, V;) absorption rate, volume, and clearance for
subject i
> E(Yj| Xy, ¢i) = f(Xij, pi) = f represents an average profile

» f may not capture all within-individual variations



Population model ( Stage 2)

Modeling the individual parameters for 1 </ < N
pi = Ui + Vib;

» U;, V; covariates of individual i
» [ fixed effects of size df
» b; centered random effects of individual i of size d,
= characterizes how elements of ¢; vary across individuals due to
P association with covariates modeled by £
» unexplained variation in the population represented by b;

Example: Theophylline pharmacokinetic model

kaj, Cl; and V; are individual random parameters such that
log kaj = log(ka) + bi1, bj1 ~ N(0,71)

Iog Cl; = |Og(C/) + ,BBVV, + b,'72, b,‘72 ~ N(O,’Yg)

log Vi = log(V) + bi 3, biz ~ N(0,73)

where BW; is the body weight of individual 7



Mixed effect model: art of modeling variabilities 7
> Modeling the observations for 1 < i< N, 1 <j < J
Yii = f( Xy, ¢i) + €
» Modeling the individual parameters for 1 < i < N
i = Ui + V;b;

where
> X;, U;, V; covariates of individual i
> [ fixed effects
» b; random effects of individual /
» ; parameters specific to individual i
Usual assumptions:
» (b;); are independent identically distributed
» (Yjj|bi); are independent



Linear mixed effect models

[Davidian and Giltinian (1995)]

» Y; = (Yjj); is the observation vector for individual i
» X; and Z; are matrices of known covariates of individual i
» [ is the vector of fixed effects
> b N(0,T)

» ¢ is a random error vector, with ¢; %NJ(O,Z)

= Parameters of models: § = (3,T,X)



Example of concentrations with slope and intercept
depending on the individual

Yi=(A+a)+ (B+b)tj+ej, 1<i<N, 1<;<J

with a; S A(0,72) and b; X N(0,~2) and & % (0, 0?)



Nonlinear mixed effects model

[Davidian Giltinian (1995), Plnheiro Bates (2000), Lavielle (2014)]
= the function f is nonlinear in the individual parameter ;

{ ’/’J *f( IJ7SDI)+€IJ7 ]- JSJ

Pi _U/B+Vb17

l—‘l/\

N,
<i

I/\ —_
=V

where
» Y; = (Yjj); is the observation vector for individual i
> X; and U;, V; are matrices of known covariates of individual i

> [ is the vector of fixed effects
> b; is a random effect of individual i/, e.g. b; ’j\cj/\/'(O, )
» &; is a random error vector, e.g. &; ”.'I'\S{NJ(O,Z)

= Parameters of models: § = (5,1, X)



Example of the orange trees

Y; = Pil +ejj, with @, =8+ b;,

1+ exp <_7tj;,-fi2>

where 8 = (81, B2, B3) € R3, b; S N3(0,T) and &;;  N(0, 02).



Representation as hierarchical model

? link between mixed effects models and hierarchical models
= differents representations of the same model [Lavielle (2014)]
pi = UB+Vibj with bi~q(.;l) (stage2)
Y, = f(X,',(p,') +¢&; with g~ ( Z) (stage 1)
more generaly :

b,' ~ q(F)
\/i’bi;XhUi?\/i ~ q(

= latent variables model structure



Summary of the day

Yi = f(Xij,t,Oi)—l-E,'j, 1<i<N 1K<
pi = UB+ Vb, 1<i<N

iid

with b; ~ g(.;T) and ¢j i q(; X)
wth parameters of models: § = (3,T,X)

| 2

>
>
>

modeling observation level and individual level
combining fixed effects and random effects
possibly linear or nonlinear dependency of the response

possible with heteroscedastic error model:

5/i = f(Xia ‘P:) + g(Xh(;DI')EI' with g~ q(' Z)
i = Ui + Vb, with  bj ~q(;T)

representation as hierarchical modeling

latent variables model structure



Context of plant breeding

Figure: Mais en stress froid (INRA Mons)

P genotype by environment interaction
» Challenge : find the "best” variety for a given environment
» Opportunity : adaption to climate change



Data acquisition

phenotyping platform in controled condition
— measurement of biomass, height, yield

Figure: Phenoarch INRA Montpellier



Data acquisition

phenotyping platform in open field
— under semi controlled condition

Figure: Pheno3C INRA Clermont-Ferrand

— Using data to calibrate crop model
— Compute "good” values for parameters as root emergence
rate, leaf emergence rate



Modeling plant growth process

‘egetative Reproductive Seed
phase . phase developrrent

Flora Flowering
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= Many questions:

< St

P times of interest: floral transition, flowering time, leaf
appearance, root appearance

» covariables of interest

> genotypic effect

— Describe the growth process by ecophysiological model



Crop growth modeling

photosynthése
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= many unknown mecanistic parameters



Ecophysiological modeling: Greenlab model
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Figure: Overview of the Greenlab model

—> estimate many unknown mechanistic parameters

— modeling the different levels of variability

— identify which parameters depend on the genotype
— reduce the number of parameters to estimate




Mixed effects model for crop model analysis

— modeling observations conditionaly to individual paramater
yik = f(pise) +ej, 1<i<N, 1<;<J, 1<k<K

with y;i measurement of plant kth of genotype i in
environnemental condition j

@i parameter of genotype /

e; environnemental covariates

> population parameters vector

= modeling genotypic variability of crop model parameter using
individual parameter meaning that for genotype i model parameter

are modeled by:

;i = B+ bj with b; ~ N(0;T), 1<i<N,

— model parameters § = (5,I,X) € ©



Inference in mixed effects models

e Linear mixed effects models

Yi=XjB+Zjbi+e; 1<i<N, 1<;<J
e Nonlinear mixed effects models

Yi = f(Xjpi)+e; 1<i<N, 1<j<J
pi = U+ Vib, l1<isN

with U;, V; and Z; design matrices,

B population parameters also called fixed effects,
b S q(.;T) random effects

e q(.; X) noise term independent of b;

f a nonlinear function of ;.

Parameters of models: 6 = (5,1, X)



Statistical issues

Consider the following mixed effects model:

Yi = f(Xj,pi)+ej 1<i<N, 1<j<J
pi = UB+ Vib;, 1<i<N

with b; q(.;T) random effects
and ¢j; i q(.; X) noise term independent of (b;)

Objectives:
» estimate model parameters § = (5,I,X) € ©
» predict individual output as @; or Y;
> test if some fixed effects [ are significant
> test if some random effects (b;) are fixed

> ...



Likelihoods in mixed effects model

Consider random variables (Y;, b;); following the model given by:

Yi = f(Xj,pi)+te; L1<i<N 1<j<J
i = Uip+ Vibi, 1<i<N

with b; % g(;T) and £ < q(.;X) with 6 = (3,T,5) € ©
Define the complete likelihood:

N
Leomp(0; Y1',Y) =[] Leomp(8: Vi, bi)

1

N
=[] (p(Yilbi; 8,5)p(bi;T))
1

= the random effects (b;) are non observed
= integrate over the random effects b;



Likelihoods in mixed effects model
Define the observed (or marginal) likelihood:

N
Lmarg(e; YlN) = H Lmarg(e; Yl)
1

N
- 1 [ Leoms(6: Yio )
- H/ (Yilbi; 3. E)p(bii)db

Define the maximum likelihood estimate (MLE) by:
On = Lmarg (6; Y{"
N arg g‘eae))( marg( v I )

» 7 theoretical properties of MLE? as N goes to infinity?
consistency 7 asymptotic normality ?

> computational aspects



Maximum likelihood estimator: consistency

[Nie, Metrika (2006)]
Oy = arg max Lmarg (6; YY)

Under regularity and moment conditions on the model, the MLE
estimator Ay exists almost surely and

lim Oy =0y Py — p.s.
N:I»+oo N 0 Fgp — P

= Example of logistic model for orange trees satisfayes these
conditions.



Maximum likelihood estimator: convergence rates

» in general regular parametric models MLE is v/ /N consistent

» what is the role of J in mixed effects model?

Example of balanced ANOVA model with one way:
Yi=a+b+e;j, 1<i<N, 1<<J

with b; %N(O,vz), € iicj/\/}(O,az), e; independent of (b;)

= & —ag = Op(N~1/?)

= A — 8 = Op((N)/?)

= 6%, — 05 = Op((NJ)71/?)



Maximum likelihood estimator: convergence rates

» in general regular parametric models MLE is v/ consistency

» what is the role of J in mixed effects model?

Example of with "intercept and slope”:

Yi=a+8Xj+b+ej, 1<i<N, 1<j<J
with b; % N'(0,72), ei & N(0,02), &; independent of (b;)
= & —ag = Op(N~1/2)

= B — Bo = Op((NJ)~1/2)



Maximum likelihood estimator: convergence rates
[Nie, JSPI (2007)]

Yi = f(Xj,pi)+e; 1<i<N, 1<j<J
pi = UB+ Vb, 1<i<N

with b; q(.;T) and ¢j i q(.; X) with parameters 0 = (5,1, %)

Ao CUN
On = arg gweag Lmarg(0; Y1)

Under regularity assumptions and moment conditions on the model

» For fixed J, éN is /N consistent when N tends to infinity.
> the MLE ﬁAN for 8 is v/ NJ consistent and
the MLE IA_N for I is /N consistent when N and J tend to
infinity
Moreover the asymptotic covariance matrix is equal to the inverse
of the Fisher matrix information.



Maximum likelihood estimation: computational aspect

Recall the definition of observed (or marginal) likelihood:

Lmarg (0 Y') = = H/p(Y,-b,-;B,Z) p(bi;T) db;
i stagel stage2

and of the maximum likelihood estimator (MLE):
0, = arg max Linarg(6; YY)

Example of gaussian linear mixed effects model:

Yi=XiB+ Zibi+ei, 1<i<N,

with b; 'ZCJ]N(O, M), & 'jg/\/'J(O, Y), €; independent of (b;)

= Yi~N(XiB,ZITZi + X)



Maximum likelihood estimation: computational aspect

» Exact likelihood methods: Maximize likelihood " directly”
using deterministic or stochastic approximation to the
integrals

» Deterministic approximation (Quadrature, Adaptive Gaussian
quadrature)
> Stochastic approximation (Importance sampling, brute-force
Monte Carlo integration)
= computationaly expensive in particular in high-dimensional
setting

» inference based on linearization of the likelihood
=> no guarantee of convergence

> iterative procedure based on individual estimates
=- no guarantee of convergence

» tools for maximum likelihood estimation in latent variables
model



Some existing approximate methods (non exhaustive)

> Methods based on approximations of the likelihood
» First order methods (FO, Beal and Sheiner, 1982)
» First order conditional methods (FOCE, Lindstrom and Bates,
1990)
» Laplace-EM (Vonesh, 1996) also called mode approximation
No convergence property or with non realistic assumptions,
default of convergence.

» Methods based on the exact likelihood

» MCEM algorithm (Walker, 1996 ; Fort and Moulines, 2004)
» SAEM algorithm (Delyon, Lavielle and Moulines, 1999)

Convergence property



Estimation in latent variables model

Heuristic of approach in latent variables models
Yi = f(Xj,eoi)+e; 1<i<N 1<j<J
wi = UB+ Vibj, 1<i<N
with b; q(.;T) and ¢j i q(;X)
» Observed data (Y;) = observed vectors
» Random effects (b;) = latent variables

= if (b;) were observed,
then consider as objective function log Leomp(8; Y1V, bYY)

= instead consider the quantity E[log Leomp(0; Y1V, b)) YV, 6].

= iterative approach: maximize in 6 the quantity
Q(mecurrent) = E[|0g Lcomp(e; YlNa b{\l))| YlN; ecurrent]-



The EM algorithm [Dempster et al. (1977), Wu (1983),
Vaida (2005)]

Iteration k of the algorithm:
> Expectation step :

Q(awk—l) = E[|Og Lcomp(Y, b; 9)| Y, 6)k—l]
> Maximization step :

0, = 010, _
K = argmax Q(0)0k-1)

Proposition

If Q(Ok—1|0k—1) < Q(Ok|Ok—1),
then log Lmarg(ek—l; YlN) <log Lmarg(ek; YlN)

Proposition
Under regularity condition on the model, the sequence (0y)
converges toward a critical point of the observed likelihood Larg.



Limits of EM algorithm

Iteration k of the algorithm:
» Expectation step :

Q(0|0k—1) = Eflog Leomp(Y, b; 0)|Y'; O0x—1]
> Maximization step :
0, = arg réneaé( Q(0|0k-1)

= Limits of EM algorithm:
theory in exponential model
nature of the limit point

convergence depends on the initial guess

vvyyypy

expression of Q(6]0’) often analytically intractable
= approximate the quantity Q(6/0') ?



Heuristics of the stochastic approximation
Quantity of interest in the EM algorithm:

0(0‘0/) = E(|Og Lcomp(Yv b; 0)’)/; 0/)

= build a sequential approximation of this quantity: at iteration k

» simulate a realization by of the random effects
> compute
Q(0) = Qk—1(0) + vk (log Leomp(y, bk; 0) — Qk—1(8)) where
(7k) is a positive decreasing step size sequence.
Then, we have:

Qk(9) — Qk—1(0)
Yk

= E[log Leomp(y, b; 0)y; 0] — Qu—1(0)

+ IOg f(y, by; 9) - E[|Og Lcomp(}/a b; 9)

y; 0]

Qk(0) — Qk-1(9)
Yk
If b ~ p(:|y,8) then e, =~ 0

~ E[IOg Lcomp()/a b; 9)|)/; 9] - Qk—l(e) + ek



Stochastic Approximation of the EM algorithm

[Delyon, Lavielle, Moulines (1999) AS]

Iteration k of the algorithm:
> Simulation step : b* ~ mp, (.|y)
where 7y is the distribution of b conditionaly to y

» Stochastic approximation :

Qk(0) = Qi—1(0) + [10g Leomp (v, b*,0) — Qk—1(0)]
where (7¢) is a decreasing sequence of positive step-sizes.

» Maximisation step : 0 = arg maxgeo Qx(60)

+ converges almost surely toward a stationary point 0 of Linarg
— theory in exponential model

— nature of the limit point

— convergence depends on the initial guess



Extension of SAEM algorithm using MCMC procedure
[K. Lavielle (2004) , Allassonniere, K., Trouvé (2010) ]
> Simulation step : bX ~ My, . (b*71,")
where [y is a transition probability of an ergodic Markov

Chain having the posterior distribution p(-|y, ) as stationary
distribution,

» Stochastic approximation :
Qk(0) = Qu—1(0) + 7« (108 Leomp(y b*, 0) — Qu—1(0))
» Maximisation step : 0 = arg maxgeo Qx(0)
Simulation step : one step of a Metropolis Hastings algorithm
» simulate a candidate from a proposal distribution
b ~ qg,_,(|/b*1)
P> accept or reject this candidate with probability

B . p(b°ly,0)qs,_, (B*71(b°)
(b1, ) =min [ 1, =
(B, 5) ( p(65 Iy, B)as, , (5765 )




Estimation of parameters of theophylline model
= use saemix R package [Comets et al (2017)]

Example of R code

library(saemix)

#data creation

data("theo.saemix")

theo.data <- saemixData(name.data = theo.saemix,

header = TRUE,sep = " ", na = NA,

name.group = c("Id"),

name.predictors = c("Dose", "Time"),
name.response = c("Concentration"),
name.covariates = c("Weight", "Sex"),

units = list(x = "hr",y = "mg/L", covariates =
c("kg", "-")),

name.X = "Time")

plot(theo.data,type = "b", col = "DarkRed", main =
"Theophylline data")



Estimation of parameters of theophylline model

Theophylline data

Time (hr)



Estimation of parameters of theophylline model

#model definition

modellicpt <- function(psi, id, xidep) {
dose <- xidepl[, 1]

tim <- xidep[, 2]

ka <- psilid, 1]

V <- psilid, 2]

CL <- psilid, 3]

k<-CL/V

ypred <- dose * ka / (V *x (ka - k)) * (exp( -k * tim)
-+ exp( - ka * tim))

return(ypred)

}

= correspond to model equation defined above:

d;ka; _ G N
1) = gy & 1 et



Estimation of parameters of theophylline model

# model structure definition

theo.model <- saemixModel (model = modellcpt,
description = "One-compartment model with first-order
absorption",

psiO = matrix(c(l, 20, 0.5), ncol = 3,

byrow = TRUE, dimnames list (NULL, c("ka", "V",
"CL"))), transform.par = c(1, 1, 1),
covariate.model = matrix(c(0, 0, 1, 0, 0, 0),
ncol = 3, byrow = TRUE))

#option definition

opt <- list(save = FALSE, save.graphs = FALSE)
#fitting model with data

theo.fit <- saemix(theo.model, theo.data, opt)



Estimation of parameters of theophylline model: results

Fixed effects

Parameter Estimate SE  CV(%) p-value

[1,] ka 1.5786 0.2947 18.7 -
(2,1 V 31.6605 1.4322 4.5 -
(3,1 CL 1.5521 0.9683 62.4 -
(4,1 Bw(CL) 0.0082 0.0089 108.3 0.18
(5,] a 0.7429 0.0569 7.7 -

Parameter Estimate SE  CV(%)
ka omega2.ka 0.368 0.1668 45
V omega2.V 0.017 0.0096 57
CL omega2.CL 0.065 0.0324 50



Estimation of parameters of theophylline

model
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Q-Q plot versus N(0,1) for npde
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Estimation of parameters of theophylline model

npde
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Estimation of parameters of theophylline model

Statistical criteria

Likelihood computed by linearisation

-2LL= 343.427

AIC = 359.427

BIC = 363.3063

Likelihood computed by importance sampling
-2LL= 344.8205

AIC = 360.8205

BIC = 364.6997



Prediction in mixed effects model

Consider a mixed effects model:

Yi = f(Xjei)+e; 1<i<N, 1<j<J
pi = UB+ Vb, 1<i<N

with b; % g(;T) and £ < q(.; ¥)

= predicted values for random effects for 1 < i < N :
b; = E(b;]Y;) or bj = argmax q(b;|Y;)

= ;= U+ Vibj and Y; = f(X;, ;)



Prediction of individual profiles of theophylline model
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Comparision between population predictions and individual
predictions in theophylline model

Observations
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List of toolboxs (non exhaustive)

» R package nlme [Pinheiro, J., Bates, D., DebRoy, S., Sarkar,
D., and R Core Team (2019)].

» R package Ime4 [Bates et al. (2019)]

» R package saemix [Comets, E., Lavenu, A., and Lavielle, M.
(2017)]

» SPSS (2002). Linear mixed-effects modeling in SPSS. An
introduction to the MIXED procedure.

> SAS Proc NLMIXED
» MONOLIX (2013)



Summary of the day

Yi = f(Xj ) +ey 1<i<N, 1<j<J
pi = U,‘ﬂ‘f‘vibia 1<i<N

with b; " q(.;T) and ¢j e q(;X) with 6 = (B8,T,X)
» Define the complete likelihood: Leomp(8; Y7V, b))

» Define the observed likelihood:
Lmarg(G; YlN) = f Lcomp(G; Y1N7 b{\l)dbj{v
» Define the maximum likelihood estimate (MLE) by:

h oo N
Oy = arg ?eag Limarg (6; Y1)

» good properties for O

efficient convergent stochastic algorithm to evaluate O

v

» corresponding toolbox and R packages



Extension of SAEM algorithm using MCMC procedure
[K. et al. (2004), Allassonniere et al. (2010)]
> Simulation step : bX ~ My, . (b*71,")
where [y is a transition probability of an ergodic Markov

Chain having the posterior distribution p(-|y, ) as stationary
distribution,

» Stochastic approximation :
Qk(0) = Qu—1(0) + 7« (108 Leomp(y, b*, 0) — Qu—1(0))
» Maximisation step : 0 = arg maxgeo Qx(0)
Simulation step : one step of a Metropolis Hastings algorithm
» simulate a candidate from a proposal distribution
b ~ gg,_,(|/b*1)
P accept or reject this candidate with probability

_ . p(b°ly,0)qs,_, (B*71(b°)
(b1, ) = min [ 1, =
(B, 5) ( p(65 Iy, B)as, , (5765 )




Additional comments and discussions on maximum
likelihood estimation in mixed effects models

vVvyYyyvyy

tuning of the parameters in stochastic algorithms
tuning of the MCMC procedure

computation of the likelihood

computation of the Fisher information matrix
identifiability of the model



Alternative approach: bayesian inference

» consider 6 as a random variable

» choose a prior distribution for # denoted by 7

0 ~ T
iid
b; ~ q(;I)
Yilbi; Xi, U, Vi A~ q(8,%)

» simulate a (quasi) sample of the distribution of (6, b)
conditionaly to the observation Y

= use intensive computational tools as MCMC, importance
sampling, ABC



Testing fixed effects in mixed effects model

oi = UB+ Vb, 1<i<N

with b; % g(;T) and £ < q(.;¥) with 6 = (3,T, %)

> test whether the covariate effect 3 is significant or not

Example: Theophylline pharmacokinetic model

kaj, Cl; and V; are individual random parameters such that
|Og ka,- = Iog(ka) + b,‘71, b,'71 ~ N(O, ’)/1)

Iog C/,' = Iog(C/) + ,BBVV, + b,'}g, b,"2 ~ N(O,’Yz)

log V; = log(V') + bj3, biz ~ N(0,73)

where BW; is the body weight of individual i



Likelihood ratio test statistic

Let (Y1, ..., Yn) be a sample having density fp, § € © C RY

Consider the test defined by
Hyo:"60 € ©p" against H; : "0 € ©1"

Then the likelihood ratio test statistic equals to

SUPgeo, LN(G) A A
—_— — 2 —
LRTy 2|0g <sup96 1 LN(H) = (KN(QH;[) KN(QHO))

with Ly(0) = [TV (Y7



Asymptotic distribution of the LRT statistic
for linear hypotheses defined by equalities
when © is open

Consider the test defined by
Hyp :" RO = 0" against Hy : "RA # 0"

where R is a full rank matrix of size rxp.

Then, assuming regularity conditions, under Hp:

SUpgggo LN(G) R A E )
N og (Supeeel LN(H) (gN(HHl) KN(HHO)) =X (r)



Application to testing the effect of one covariate

Consider the test defined by
Ho :"B=0" against H; : "B # 0"

Then, assuming regularity conditions, under Hp:

SuPgco, Ln(9)

LRTny = —2lo
" & <supeeel Ln(0)

) — 2O —tn(Br)) S P(1)

= require to evaluate numerically the likelihood

=> asymptotic distribution



Test for variance components in mixed effects model

Objective: test that r random effects among p have null variances.

Yi = f(Xj,ei)+ej 1<i<N 1<j<J
@i U3+ Vib;, 1<i<N

with b; 'rl\cjj\/'p(O; ) and ¢ i q(;X)

Let I — ( rrtl rr12 > where [ € S, and I € S}
12 2

eOZ{GERq‘5€Rp,r1€S+ 2—0r12—0268+}
O1={0cRIBeRP.T eSS eS8}

— test Hp : 0 € ©g against H; : 0 € Oy



Asymptotic distribution of the LRT statistic
for testing that one variance equal zero
in mixed effects model with one single random effect

[Self and Liang (1987) Annals of Statistics]

Yi=XjB+bit+ej, 1<i<N 1<j<J
with b; ';@/\/’(0,72), € %NJ(O,O'Z), e; independent of (b;)

Consider the test defined by
Ho :"~% = 0" against Hy : "2 # 0"

Then, assuming regularity conditions, under Hp:

A A 1.1
LRTy = 2(ta(Bp;) = £a(Br)) = 500+ 5x°(1)



Asymptotic distribution of the LRT statistic
for linear hypotheses defined by inequalities
when © is open

Consider the test defined by
Hop :" RO = 0" against H; : "RO > 0"

where R is a full rank matrix

Denote by 6y the true value being in Hy
and Iy the corresponding Fisher information matrix.

Then, assuming regularity conditions, under Hp:

L . Nt _ - Y B
LRTn—>I£2|:rlO(Z 0)lh(Z —0) Rr,rggo(z 0)h(Z —0)

where Z ~ N(0, /;1)
— reduce to test the mean of a multivariate normal distribution
— identify the limit distribution



Example of testing one single variance is zero

[Self & Liang, 1987]

Let § = (8,72, %) and © =R x R* x S7.
Consider Hy : "7 = 0" against Hy : "72 > 0"
Let Z~ N(0, /5 1)

D(Z) = Z'l(60)Z — inf(Z — 60)'lo(Z — 6)

inf

9>0

_ 2 . 2

= |2} - (g; 1Z = 0l[3,

= [|IZIP = inf||Z -0
0>0

= 1Z|*1
12

= (0 +

7>0

15
— 1
2X()

where Z ~ N(0,1)



Sketch of proof

» Using Taylor series expansion

(n(0) = In(6o) +%n*15,,(90)/*1(90)5n(90)

1
= 5120 = 020 = 00)]'1(60)[Zn — n"/2(0 — 0o)]
+ 0p(1)[[0 = ol

where Z, = n=1/21(0)~1S,(6o).

> Define u = n'/2(# — 6y) and rewrite the likelihood ratio test
statistics as:

LRT, = —2[sup £,(0) — sup £,(0)]
[US(SH) [AS(SHt

= inf 11Zy — ulliay) —Ringouzn— ul[1(05)-

— establish the limit distribution



Asymptotic distribution of the LRT statistic
for general hypotheses when © is open

[Self and Liang (1987) Annals of statistics]
Consider the test defined by

Hyp:"0 € ©y" against H; : "0 € ©¢"
Then, assuming regularity conditions, under Hp:

LRT, = 2(¢n(Bn,) — a(B1)) = D1(2),
where Z ~ N(0, ;) and
D7(z) = ||z — T(©0,00)7 — |z — T(©1,00)|7-

where T(©,0) is the tangent cone of © at 6

= using tangent cones to approximate ©g and ©;



Limits of the existing results

Example of testing one variance equals to zero considering two

correlated random effects: )

Let § = (8,1, %) with I = < 31 112? > and © = R2 x Sf x S}
12 2

Consider Hp : 0 € ©g against H; : § € ©1 with

90:{9,5 €R277% = 712 :07’75 2 072 GS_—}_}
O1={0,8 € R* 7} > 0,775 — 17, 20,75 >0, X € §7}

— © is not open
— approxmation with cones for ©; and ©g
— identify the limit distribution



|dentifying the asymptotic distribution of the LRT
statistics for testing variance components in nonlinear
mixed effects model

[Baey, Cournede, K. (2019) CSDA]

Consider the test defined by

Hp : 6 € ©g against H; : 8 € ©1 where

©y = {9 S Rq‘ﬁ eRP. T € S;__r,FQ =0T =0, € Sj—}
©1={cRIBeR. TSI LeS]}

Then, assuming regularity assumptions, under Hp:

LRT, £ 22(I; Y, T(©0,00)* N T(©1,60)),

where T (0, 0) is the tangent cone of © at # and ¥%(V,C) has a
X-bar square distribution (mixture of chi square distributions) with
C a closed convex cone and V' a positive definite matrix



The Chi-bar Square distribution

Let C be a closed convex cone of RY and

V a positive definite matrix of size gxq.

Let Z ~ N(O, V)

Then ¥2(V,C) = —infpec(Z — 0)Y'VH(Z - 0)
has a x-bar square dlstr|but|on and

q
Ve >0 P(¢2 = wi(p, V.C)P(x: < t)
i=0

where the weights w;(q, V,C) are some non-negative numbers
summing up to one



Example of testing one variance equals to zero considering

two independent random effects

-2
Let 0 = (B,I,X) with I = < 01
© =R? xR" x R™ x S7.
Consider Hp : 712 = 0 against H;
Let Z ~ N(0,151)

61=0
~ 2 .
= 71 — inf
6:>0
~ 2
- Zl 1Zu1>0

1 2

1>

(0) + 5X

where Z ~ N(0,1)

inf (Z — 0)'Io(Z — 0)

(1)

0
and
V3 >

9t =0

— inf(Z=0)(Z -6
ellnzo( ) o( )

(41— 61)



Evaluation of the empirical level of the test for one effect
when two effects are non correlated in the linear model

Yii = p1i + poitij +€jj

2
I ] 0)
Let [ =
(0 73

Consider Hp : v1 = 0 against H; : y1 > 0

Table: Percentages of rejection for the LRT procedure for n = 500 for the
nominal level of the test a on 300 repetitions.

o OA‘0.5xg+0.5><§
0.01 0.010
0.05 0.046
0.10 0.093




Example of testing one variance equals to zero considering
two correlated random effects

2

Let = (8,1, ) with I = ( ;Vl ’;122 > and © = R? x S} x S}
12 2

Consider Hp : 0 € ©¢ against H; : 0 € ©4

90:{97ﬁ€R277]2_ = 712 :0773 2 O,Z GSj_}
©1={0.8€R?,43 >0,773 1%, > 0,73 >0, € S}

d
LRT, = 1x2(1) + 1x%(2)



Evaluation of the empirical level of the test for one effect
when two effects are correlated in the linear model

Yii = p1i + poitij +€jj

2
Let [ = < 71 ’7122 )
Y12 V2

Consider Hp : 0 € ©¢ against H; : 0 € ©;

Table: Percentages of rejection for the LRT procedure for n = 500 for the
nominal level of the test a on 300 repetitions.

@0.5x2+0.5x2

« 0.5x3+0.5x3

0.01 0.016 0.049
0.05 0.055 0.174
0.10 0.103 0.311



Perspectives

» need for efficient numerical evaluation of likelihood
» need for efficient numerical evaluation of Fisher information
matrix

» limits of non asymptotic test procedure ...
= Likelihood ratio tests in linear mixed models with one
variance component, Crainiceanu and Ruppert, JRSS B (2004)



Comments on the distribution of random effect

centered distribution
usual choice Gaussian distribution

possible to choose other ones: Student, mixture ...

vVvyyy

test for the adequation of Gaussian distribution for random
effects

= Diagnosing misspecification of the random-effects
distribution in mixed models Drikvandi et al. Biometrics
(2016)

» Nonparametric estimation of random effects densities in linear
mixed-effects model. Comte F, Samson A, Journal of
Nonparametric Statistics, (2012)



Summary of the day

Yi = f(Xjei)+ej, 1<i<N, 1<j<J
pi = UB+ Vb, 1<i<N

with b; % g(.;T) and £ < q(;; £) with 6 = (3,T, %)

» Testing procedure for fixed effects 8 via LRT
» Testing procedure for variance components [ via LRT

» alternatives: Wald test, score test



Model choice criteria

Consider the mixed effects model

Yi = f(Xipi)+ej 1<i<N 1<j<J
oi = UpB+b;, 1<i<N
. iid iid
with b; ~ N(0,T) and ej~ qand 0 =(5,T)
Recall the
Bayesian information criterion defined as:

BIC = —210g Lmarg (0 Y1) + dim(9) log(nops)

= what is the "real” sample size in mixed effects model? NJ? N7
From a practical point of view, the log(/NJ) penalty is implemented
in the R package nlme and in the SPSS procedure MIXED while
the log(/N) penalty is used in Monolix, saemix or in the SASproc
NLMIXED.



Model choice criteria

[A note on BIC in mixed-effects models, Delattre, Lavielle,
Poursat, EJS 2014]
Consider the following mixed effects model:

{ ei  ~ q(|U0)
Yilois Xi ~ aq(.|pi; Xi)
where p; = U;8 + b; with U; block diagonal,
bi ~ N(0,T) and T is potentially degenerated.

0 O
= < 0 g )
Denote the parameter 0 = (g, 0r) where O = BF and
Or = (Br,TR).
Consider the hybrid Bayesian information criterion defined as:

BIChyp = —210g Limarg(6; Y1) + dim(6) log(N) + dim(6F ) log(NJ)

= intensive simulation study to highlight the good statistical
properties of this criterion



Model choice criteria

[A note on BIC in mixed-effects models, Delattre, Lavielle,
Poursat, EJS 2014]
Consider the hybrid Bayesian information criterion defined as:

BlChy = —2108 Lmarg(0; Y{¥) + dim(6r) log(N) + dim(0) log(NJ)

» In a pure fixed-effects model,
= 0 = 9[:
= penalty dim(0) log(NJ)

» if all the individual parameters are random,
= 0 =0g
= penalty dim(#) log(/V)

» the criterion proposed appears to be an hybrid BIC version
that automatically adapts to the random-effects structure of a
mixed model



Variable selection in linear mixed effects model

Consider the linear mixed effect model:

Yi=XiB+Zibj+¢ei, 1<i<N,

Y; is the observation vector for individual i of size J

X; and Z; are matrices of known covariates of individual /

bi ¢ N(0,T)

>

>

» [ is the vector of fixed effects of size p

>

» &; is a random error vector, with ¢; %NJ(O,Z)

= In case where NJ << p not possible to use classical maximum
likelihood approach

= penalize the estimation criterion



Variable selection in linear mixed effects model

Consider the linear mixed effect model:

Yi=XiB+Zibi+ei, 1<i<N,

Y; is the observation vector for individual i of size J

X; and Z; are matrices of known covariates of individual /

bi % Ny(0,T())

>
>
» [ is the vector of fixed effects of size p
>
> & 2 NY(0,021)

= Y; ~ N(XiB, ZIT(7)Z; + o21)



Variable selection in linear mixed effects model

[Estimation for High-Dimensional Linear Mixed-Effects Models
Using L; Penalization, Schelldorfer et al., SJS (2011)]
Consider the linear mixed effect model:

Yi=XiB+ Zibj+ei, 1<i<N,
where 3 is of size p, b; %’Nq(07 M(vy)) and ¢; %NJ(O,OQ/)
= Yi ~ N(XiB, ZIT(7)Zi + o21)

Consider the setting where NJ << p , dim(v) << p,
g might as high as p

Consider the following objective function

p
C(B,7,0%) = ,|og\\/|+ (Y XBYVTHY = XB)+ A |Bil

with V' = diag(V1,..., V) and V; = ZT (v )Zi + o2l
and define the penalized estimator (6 4,02) = argmax Q(3, 7, 0?)



Variable selection in linear mixed effects model

Yi:Xi/8+Zibi+5i , 1<i < N7
where 3 is of size p, b; 'E./\/'q(O, [(v)) and £; % N,(0,021)

p
C(B,7,0%) = ,|og\\/|+ (Y XBYVTHY = XB)+ A |Bil

A~

(B,4,8%) = argmax Q(8B,7,0?)

> theoretical properties of consistency for the penalized

estimates and for the support of 3

P implemented in R package Immlasso and glmmlasso
= other approach [An iterative algorithm for joint covariate and
random effect selection in nonlinear mixed effects models, Delattre
et al. (2019)]
= further work needed for variable selection in nonlinear mixed
effects models



Short global summary

vVvvyVvVvyypy

fixed and random effects

maximum likelihood estimator with good properties
convergent stochastic algorithm to evaluate its value
testing procedures for fixed effects and variance components
model choice criteria

variable selection in linear mixed effects model



Somes

extensions of mixed models

Modeling the observation level through a function defined by
an Ordinary Differential Equation [Donnet S., Samson A,
JSPI (2007)]

Parametric inference for mixed models defined by stochastic
differential equations, [Donnet S., Samson A. (2008) ESAIM
PS (2008)]

Parametric estimation of complex mixed models based on
meta-model approach, [Barbillon P, Barthelemy C, Samson A,
Statistics and Computing, (2017) |



Others models with random effects

» Maximum likelihood estimation in frailty models [K., El Nouty
Stat Compu (2013)]

» Maximum likelihood estimation for stochastic differential
equations with random effects [Delattre M., Genon-Catalot
V., Samson A., SJS (2013)]
= Mixedsde: a R package to fit mixed stochastic differential
equations [Dion C., Hermann S., Samson A. (2018)]

> ...
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