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Gene expression variability
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Mathematical modeling of variability

Usually, cells are modeled as independent individuals.

cell division ⇒ correlations between mother and daughter cells

© random partitioning © inheritance

Questions: © do parameters usually treated as independent across cells
show inheritance? © to what extend are these parameters conserved
from one generation to the next?
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Gene expression modelling over a lineage tree

Identification from lineage tree data

Validation in silico of the ARME algorithm

Application to the study of yeast osmotic shock response
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Dynamical model of gene expression

{
ṁ(t) = kmu(t)− gmm(t)
ṗ(t) = kpm(t)− gpp(t).

I u(t): activity of transcription factors,
I km, gm: production and decay rate of the mRNA,
I kp, gp: production and decay rate of the protein.
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Individual parameters: mixed-effect modelling
Each cell v in the population has its own parameters

ψv = (kvm, g
v
m, k

v
p , g

v
p )

I Variability in the response to the same stimulus:

{
ṁ(t) = kvmu(t)− g v

mm(t)
ṗ(t) = kvpm(t)− g v

p p(t).
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Modelling inheritance
I Individual parameters:

ψv = (kvm, g
v
m, k

v
p , g

v
p ) and ϕv = log(ψv ).

I Transmission mechanism:

ϕ∅ ∼ N (µ,Σ) ϕv = Aϕv−
+ (I− A)b + ηv equal sharing

Σ = AΣAT + Ω ηv ∼ N (0,Ω) at division.
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Identification problem
I Additive noise model for the fluorescence measurements:

Y v
j = p(tvj , ψv ) + hεvj

Time
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where h ≥ 0, (εvj , j = 1, . . . , nv , v ∈ V ) are i.i.d. εvj ∼ N (0, 1).

I Goal: estimate θ = (A, b,Ω, h) from y and lineage informations W .

Microfluidics
+

Videomicroscopy
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ARME algorithm : a generalization of the SAEM algorithm

1. Initialisation : θ0 = ϑ0.
2. For k from 0 to N,

I Simulation step : using MCMC methods, simulate

(ϕk
v )v≥0 ∼ p((ϕv )v≥0|Y ,W , θk).

I Stochastic approximation step :

Qk+1(θ) = Qk(θ) + γk
(
log(p(Y , (ϕk

v )v≥0|W , θ)− Qk(θ)
)
.

I Maximization step : θk+1 = argmaxθ (Qk+1(θ)).

B For the simulation step: dependencies between individuals.

"Convergence of a stochastic approximation version of the EM algorithm." B. Delyon, M. Lavielle, E.
Moulines, Ann. Statist. 27 (1999), no. 1, 94–128.
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Implementation: detailed simulation step

� Using Metropolis-Hasting algorithm with several proposal law,
simulate

(ϕk
v )v≥0 ∼ p((ϕv )v≥0|Y ,W , θk).

Update of ϕ = (ϕv )v≥0

I at the population level: takes into account every correlations,
very low acceptance rate.
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Update of ϕ = (ϕv )v≥0

I at the population level: takes into account every correlations,
very low acceptance rate.

I at the generation level: takes into account the correlation with
the previous and the next generation, better acceptance rate.

I at the individual level: does not take into account any
correlation, adaptative acceptance rate.

12



Plan

Gene expression modelling over a lineage tree

Identification from lineage tree data

Validation in silico of the ARME algorithm

Application to the study of yeast osmotic shock response

13



Validation in silico of the ARME algorithm
Simulation of 20 datasets with

I u(t) =
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I 128 individuals (7 generations),
I a fixed value of km, for identifiability reasons,
I inheritance parameter A = Diag(0.5, 0.5, 0.5),
I global mean parameter b = [log(0.294), log(0.947), log(0.1)]T ,
I global covariance parameter Ω = Diag(0.1, 0.1, 0.1),

I noise of measure h = 20,

0 100 200 300 400 500 600
T (min)

0

50

100

150

200

250

300

Fl
uo

re
sc

en
ce

 (A
U)

14



Validation in silico of the ARME algorithm
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Application to the study of yeast osmotic shock response

I Extended model for gene expression (Llamosi et al. (2016)):
u̇(t) = khuc(t)− ghu(t),
ṁ(t) = kmu(t)− gmm(t),
ṗ(t) = kpm(t)− gpp(t),

with fixed values for kh and gh.
I Maturation time for reporter molecules.
I Budding yeast (S. cerevisiae): the mother keeps its own kinetic
parameter at division.
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Single-cell data fits after ARME identification
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Results from identification of a ARME model
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Conclusions

© Daughter cell parameters are determined by the mother to an
extent as large as 60% (a state-of-the art indirect method
assessed this value at 20− 40%).

© Indirect methods underestimate inheritance
© Inheritance is equal for the different parameters: it acts at the

level of global regulatory factors (at least for the system and data
we examined).

Perspectives

© Consider intrinsic noise, more complex inheritance models, etc.
© Proof of the convergence of the algorithm

Thank you for your attention!
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Performance in presence of intrinsic noise

∅ kmu(t)−−−−→ M, M
gm−→ ∅, M

kp−→ M + P, P
gp−→ ∅,
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Performance in presence of intrinsic noise
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Experimental design
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