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The objective of these notes is to introduce an asymptotic method to study the adaptation of quan-

titative traits in homogeneous or heterogeneous environments. The first Section is devoted to the

study of the equilibrium of a phenotypically structured population subject to selection and mutation.

This one-population example provides a good introduction to our method. In section 2, we show

how the method can be applied to study the selection-mutation-migration equilibrium considering an

environment with two habitat types. In the last section we show how the method can be applied to

study the transient evolutionary dynamics of a population. See also the slides for the introduction

and numerical examples.

Sections 1 and 2 in these notes are mostly based on [19, 20]. Section 3 is mostly based on [24, 2, 16].

1 One population: the selection-mutation equilibrium

In this section we start by a simple scenario with no migration.The dynamics of the phenotypic density

in a single habitat is given by:

∂n0(t, z)

∂t
= UVm

∂2n0(t, z)

∂z2
+ n0(t, z) (r0(z)− κρ0(t)) , z ∈ R, (1)
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where ρ0 is the total population size:

ρ0(t) =

∫
R
n0(t, y)dy.

For this scenario we consider a general form of growth rate r0(z). We only suppose that r0(z) is

maximized for a unique optimal trait z0. In the following we present our two-step approach. First,

we analyse the evolutionary equilibria of the problem when the rate of mutation is small and we

identify the evolutionary stable strategy (ESS). Second, we use this ESS to derive an approximation

for the stationary solution of (1) when mutation is more frequent and maintains a standing variance

at equilibrium.

Remark 1.1 All the results in this section can be adapted to the multi-dimensional case z ∈ Rd.

However, to keep the notations simple we present the results for z ∈ R.

1.1 Adaptive dynamics and evolutionary stable strategies

In this section, we assume that the mutations are very rare such that a mutation is fixed or goes

extinct before a new mutation arises in the population. The phenotypic distribution results from a

collection of spikes. Such spikes are gradually replaced by others with the arrival of new mutations

and through a competitive procedure. The theory of Adaptive Dynamics [10] is based on the study

of the stable equilibrium distribution and the localization of the spikes of such equilibrium, known

as evolutionary stable strategies (ESS). Note that in this first step we do not make any assumption

regarding the effects of these mutations on the phenotype. We are interested in the identification of

the global ESSs, i.e. when the resident population cannot be invaded by any mutation no matter its

effect.

In absence of migration, the phenotype z0 constitutes a globally stable evolutionary strategy. Indeed,

when such monomorphic population reaches its demographic equilibrium, the total population size is

given by ρ∗0 = r(z0)
κ . The fate of a mutant with phenotype zm introduced in such a resident population

is determined by its fitness given by (i.e. per capita growth rate minus density dependence):

w(zm; ρ∗0) = r0(zm)− κ0ρ∗0 < w(z0; ρ
∗
0) = 0. (2)
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No mutant trait zm can indeed invade the population since r0(z) takes its maximum at z0.

1.2 Equilibrium distribution with mutation: presentation of the method

The ESS z0 corresponds to the long-term evolutionary outcome in a scenario where all phenotypic

strategies are present initially but where mutation is absent. In the following we study the impact of

mutation on the ultimate evolutionary equilibrium of the population.

We introduce a new parameter ε =
√
UVm. Hence we replace Vm by ε2 and we approximate the

phenotypic density nε,0(z), the equilibrium of (1), in terms of ε, the solution to

0 = ε2n′′ε,0(z) + nε,0(z) (r0(z)− κ0ρε,0) . (3)

Our objective is to provide an approximation of the phenotypic density when the effect of mutation

(measured by ε) is small while the mutation rate can be large.

To study nε,0(z) we will use a method based on Hamilton-Jacobi equations which has been developed

by the mathematical community during the last decade to study selection-mutation models, when the

effect of mutations is vanishingly small. This method was first suggested by [8] and was developed for

the case of homogeneous environments in [24, 2]. The first works in this field, which are addressed to

the mathematical community, were mainly focused on the limit case where the effect of mutations ε

is vanishingly small. More recent works (see for instance [23, 19, 20]) go further in the analysis and

characterize the phenotypic distribution when the mutations have non-negligible effects.

The method is based on the following transformation:

nε,0(z) =
1√
2πε

exp
(uε,0(z)

ε

)
. (4)

The introduction of the function uε,0(z) is a mathematical trick. It is indeed easier to provide first an

approximation of uε,0(z) rather than directly studying nε,0(z).

Note that a first approximation of the population’s phenotypic density which is commonly used in the
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theory of Quantitative Genetics is a Gaussian approximation of the following form around z∗:

nε,0(z) ≈ ρε,0 f, f PDF of N (z∗, ε σ2). (5)

The Gaussian approximation, is as if we had imposed uε,0(z) to be a quadratic function of z, that

is uε,0(z) = ε log(
ρ∗ε,0
σ )− (z−z∗)2

2σ2 . Our objective, however, is to obtain more accurate results than (5)

and to approximate uε,0 without making an a priori Gaussian assumption. To this end we postulate

an expansion for uε,0(z) in terms of ε:

uε,0(z) = u0(z) + εv0(z) +O(ε2), (6)

and we try to compute the coefficients u0(z) and v0(z). These terms can indeed be explicitly computed

and they lead to an approximation of the total population size ρε,0 and the phenotypic density nε,0(z):

ρε,0 ≈ ρ0 + εK0, nε,0(z) ≈
1√
2πε

exp
(u0(z) + εv0(z)

ε

)
. (7)

Indeed we neglect the error term in (6) since when ε is small, in view of (4), it has only small

contribution to the phenotypic density nε,0(z).

We will prove in what follows that ρ0 = ρ∗0, with ρ∗0 the total population size at the demographic

equilibrium of the ESS z0. We will also compute the other terms of the expansions κ0, u0(z) and

v0(z). We will show in particular that u0 solves, in the viscosity sense, the following Hamilton-Jacobi

equation with constraint: 
−|u′0(z)|2 = w(z; ρ∗0),

maxz u0(z) = u0(z0) = 0.

1.3 Regime of interest: evolutionary time scale much larger than ecological time

scale

Let

r(z) = rmax − µ(z),
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with µ(z) such that

min
z
µ(z) = µ(z0) = 0, −1

2
µ′′(z0) = s0.

Adimensional parametrization:

ñ(t, z) =
κ

rmax
n(

t

rmax
,

z√
s0/rmax

), µ̃(z) =
1

rmax
µ(

z√
s0/rmax

).

Leads to

∂

∂t
ñ− UVms0

r2max

∆ñ = ñ
(
1− µ̃(z)− ρ̃

)
,

with µ̃(z) such that

min
z
µ̃(z) = µ̃(z0) = 0,

1

2

∂2µ̃

∂z2
(z0) = 1.

The quantity that should be sufficiently small to have a good approximation:

UVms0
r2max

<< 1,

or equivalently √
UVms0 << rmax.

This means indeed that the evolutionary time scale has to be much larger than ecological time scale.

1.4 Heuristic derivation

Replacing (4) in (3) we obtain:

0 = εu′′ε,0(z) + |u′ε,0(z)|2 + r0(z)− κ0ρε,0. (8)

This equation is derived using the following equalities:

n′ε,0(z) = u′ε,0(z)
nε,0(z)

ε
, n′′ε,0(z) =

(
εu′′ε,0(z) + |u′ε,0(z)|2

) nε,0(z)
ε2

.
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We then replace the ansatz (6) in (8). We first keep the zero order terms with respect to ε (the ones

in front of which there is no ε, corresponding to the dominant terms) to obtain the following equation

on u0(z):

0 = |u′0(z)|2 + r0(z)− κ0ρ0.

Note also that to have a finite but positive size of population, we should have

max
z∈R

u0(z) = 0.

Otherwise, in view of (4), the total population size whether becomes infinite as ε→ 0 (if maxz∈R u0(z) >

0) or it goes to 0 (if maxz∈R u0(z) < 0).

At the maximum point zmax of u0, we have ∂zu0(zmax) = 0 and hence

r0(zmax)− κ0ρ0 = 0.

For all other traits z

r0(z)− κ0ρ0 = −|u′0(z)|2≤0.

We deduce that zmax is the maximum point of r0(z), that is zmax = z0. In other words, u takes its

maximum at the ESS point z0 and the zero order term ρ0 in the approximation of the population size

is given by

ρ0 =
r0(z0)

κ0
. (9)

This corresponds indeed to the total population size ρ∗0 at the demographic equilibrium of the ESS z0.

We gather our results on u0 in the following form [24, 2]: u0 is indeed the unique viscosity solution to

the following Hamilton-Jacobi equation


0 = |u′0(z)|2 + w(z; ρ∗0),

maxz u0(z) = u0(z0) = 0,

(10)
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where we recall that w(z; ρ∗0) = r0(z) − κ0ρ∗0. This equation can be solved explicitly. The solution

u0(z) is given by

u0(z) = −
∣∣ ∫ z

z0

√
−w(y, ρ∗0)dy

∣∣. (11)

The reader can verify that u0(z), given by the formula above, is smooth and solves (10). Note that

the absolute values are necessary since the upper limit of the integral z can be smaller or larger than

the lower limit z0.

The identification of u0 leads also to the identification of n0, the weak limit of nε,0 as ε→ 0. The key

information to identify n0 is the following:

supp n0 ⊂ {z|u0(z) = 0}. (12)

The above property holds since u0(z) < 0 implies that limε→0 nε,i(z) = 0. Furthermore, from (11) we

know that

{z|u0(z) = 0} = {z0}.

This property together with (45) implies that n is indeed a Dirac mass:

n(z) = ρ∗δ(z − z0).

To compute the next order terms we then keep the terms of order ε

−u′′0(z) = 2v′0(z)u
′
0(z)− κ0K0. (13)

An evaluation of this equation at the point z0 gives

K0 =
1

κ0
u′′0(z0). (14)

The function v0(z) can also be computed thanks to (13), that is by integrating the following quantity

v′0(z) =
−u′′0(z) + κ0K0

2u′0(z)
. (15)
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Note that to compute v0(z) we also need to choose the value of v0(z0). This value is fixed in a way

such that ∫ ∞
−∞

1√
2πε

exp
(u0(z) + εv0(z)

ε

)
dz = ρ∗0 + εK0. (16)

Example of quadratic growth rate. We first consider a quadratic growth rate:

r0(z) = rmax,0 − s0(z − θ0)2. (17)

In this example the ESS, which is indeed the maximum point of r0(z), is given by z0 = θ0. Considering

the specific fitness function (17) in (9) we first obtain that

ρ∗0 =
rmax,0

κ0
.

Using (11) we then obtain that

u0(z) = −
∣∣ ∫ z

θ0

√
s0(y − θ0)2dy

∣∣ = −
√
s0
2

(z − θ0)2.

We also obtain from (14) that K0 = −
√
s0
κ0

. Moreover, from (15) we obtain that ∂
∂zv0(z) = 0 which

means that v0(z) is a constant. Combining these informations with (16) we obtain

ρ∗ε,0 ≈
1

κ0
(rmax,0 − ε

√
s0), nε,0(z) ≈

1√
2πε

exp
(u0(z) + εv0(z)

ε

)
=
ρ∗ε,0s

1/4
0√

2πε
exp

(
−
√
s0

2ε
(z − θ0)2

)
.

In other words, our approximation yields the Gaussian distribution (5) with:

ρ∗ε,0 ≈
1

κ0
(rmax,0 − ε

√
s0), σ2 =

1
√
s0
. (18)

Note that this Gaussian distribution is actually an exact solution of of (3) and the above ≈ signs can

indeed be replaced by equalities (see [11] and [3]–Chapter IV).

Example of non-symmetric growth rate (19). We next consider a growth rate which is not
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symmetric:

r0(z) = rmax,0 − s(z − θ0)2
(
a+ (z + θ0)

2
)
. (19)

In this example similarly to the previous example the ESS z0 is given by z0 = θ0 and

ρ∗0 =
rmax,0

κ0
.

The expression of u0(z) is however different, and it is given thanks to (11) by

u0(z) = −
∣∣ ∫ z

θ0

√
s(y − θ0)2(a+ (y + θ0)2)dy

∣∣. (20)

From this expression we can then compute K0 and v0(z) similarly to above using (14) and (15). In

Figure 1 we plot this first approximation and compare it with the exact distribution that we derived

numerically. We observe in particular that the population distribution has a non-negligible skewness

that is accurately captured by our method.

1.5 Approximation of the moments

From the above approximation, one can obtain a numerical approximation for the moments of the

population distribution (except for the moment of order 0, i.e. ρε,0, for which we already have obtained

an analytic approximation). In order to provide more explicit formula for the moments of order k ≥ 1

of the population’s distribution in terms of the parameters of the model, we also provide a second

approximation. This second approximation is based on the Laplace’s method of integration and instead

of using the values of u0 and v0 in the whole domain, uses the Taylor expansions of u0 and v0 around

the ESS points. Our second approximation is by definition less accurate than the first one.

Laplace’s method of integration. The Laplace’s method of integration allows to approximate

integrals of the form ∫ b

a
e
f(z)
ε dz,
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where f is twice differentiable function and ε is a small parameter. We assume indeed that f has a

single maximum point at the point z0 and that f ′′(z0) < 0. Then one can approximate the integral

above using the following property

lim
ε→0

∫ b
a e

f(z)
ε dz√

2πε
|f ′′(z0)| e

f(z0)
ε

= 1.

Analytic formula for the moments of the population’s distribution. According to above

there exists a unique ESS which is monomorphic and given by z0. In order to provide an explicit

approximation of the moments of the population’s distribution, we compute the third order approxi-

mation of u0(z) around z0:

u0(z) = −A
2

(z − z0)2 +B(z − z0)3 +O(z − z0)4, (21)

and the first order approximation of v0(z) around z0:

v0(z) = C +D(z − z0) +O(z − z0)2. (22)

Such coefficients can be computed thanks to (11) and (15). Note that we can compute directly the

constant C:

C = log(
√
Aρ∗0).

To obtain the zero order term in the expansion for v0(z) we use the fact that, as the mutation’s variance

vanishes (ε → 0), the total population size ρε,0 tends to ρ∗0 which corresponds to the demographic

equilibrium at the ESS.

The above approximation allows us to estimate the moments of the population’s distribution:


µε,0 = 1

ρε,0

∫
znε,0(z)dz = z0 + ε(3B

A2 + D
A ) +O(ε2),

σ2ε,0 = 1
ρε,0

∫
(z − µε,0)2 nε,0(z)dz = ε

A +O(ε2),

ψε,0 = 1
ρε,0

∫
(z − µε,0)3 nε,0(z)dz = 6B

A3 ε
2 +O(ε3).

(23)
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Derivation of the analytic formula. To compute such approximations we use similar arguments

as for the Laplace’s method of integration. We can indeed use the expressions in (21) and (22) to

compute for any integer k ≥ 1,

∫
(z − z0)knε,0(z)dz =

ε
k
2
√
Aρ∗0√
2π

∫
R(yke−

A
2
y2
(
1 +
√
ε(By3 +Dy) +O(ε)

)
dy

= ε
k
2 ρ∗0

(
ωk(

1
A) +

√
ε
(
Bωk+3(

1
A) +Dωk+1(

1
A)
))

+O(ε
k+2
2 ),

where ωk(σ
2) corresponds to the k-th order central moment of a Gaussian distribution with vari-

ance σ2. Note that to compute the integral terms above we have performed a change of variable

z − z0 =
√
ε y, therefore each term z − z0 can be considered as of order

√
ε in the integrations. Note

also that since the term v is multiplied by ε in (6), a first order expansion of v is enough, while a third

order expansion of u is required to obtain the above approximation. The above integrations are the

main ingredients to obtain the approximations given in (23), i.e. our second approximation.

The asymmetric growth rate (19): We can use our second approximation to obtain analytic

expressions for the moments of the phenotypic distribution in the case of example (19):

Here are the expressions for the mean phenotypic trait,

µε,0 =
1

ρε,0

∫
znε,0(z)dz = θ0 −

4θ0ε√
s(a+ 4θ20)3/2

+O(ε2),

for the variance,

σ2ε,0 =
1

ρε,0

∫
(z − µε,0)2nε,0(z)dz =

ε√
s(a+ 4θ20)

+O(ε2),

and the third central moment:

ψε,0 =
1

ρε,0

∫
(z − µε,0)3nε,0(z)dz = − 4θ0ε

2

s0(a+ 4θ20)2
+O(ε3).

In Table 1 we show that our two approximations capture accurately the first three moments of the

equilibrium distribution using the parameters that we used in Figure 1. As expected, the first approx-
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imation is more accurate, but the analytic expressions of the second approximation given above allow

us to capture the influence of the parameters of the model.
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Figure 1 – The selection-mutation equilibrium of the phenotypic density nε,0(z) in a
single population. We plot the exact phenotypic density at equilibrium obtained from numerical
computations of the equilibrium of (1) (blue dots) together with our first approximation (full black
line) with the growth rate given in (19). The vertical dotted line indicates the mean of the phenotypic
distribution. Note the skewness of the equilibrium distribution that is accurately captured with our
approximation (see also Table 1). In this figure, to compute numerically the equilibrium, we have
solved numerically the dynamic problem (1) and kept the solution obtained after long time when the
equilibrium has been reached. Parameter values: rmax = 3, s0 = 1; θ = −0.5, κ = 1, a = 0.2, b = 1,
ε = 0.1.

1.6 Rigorous derivation

In this subsection, we provide the main elements to prove that (uε,0) converges locally uniformly to

u0. For the derivation of asymptotic expansions of type (6) see [9, 22].

The following proposition provides the important ingredients for the proof of the convergence of

(uε,0).

Proposition 1.2 For all ε ≤ ε0, the family (uε,0) is locally uniformly bounded and Lipschitz. More-

over, (ρε,0) is uniformly bounded.

The convergence of (uε,0) follows from the proposition above and the Arzela-Ascoli Theorem. We

hence deduce that uε,0 converges to a certain continuous function u0. We saw in the subsection 1.4
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Exact value First approximation Second approximation

Mean: µε,0 -0.29 -0.29 -0.35

Variance: σ2
ε,0 0.13 0.14 0.09

Third central moment: ψε,0 0.02 0.02 0.01

Table 1 – First three moments of the phenotypic distribution at mutation-selection equi-
librium in a single population. We compare the values from the exact numerical resolution of (1)
and our two approximations using the growth rate given in (19) (see also Figure 2). Parameter values:
rmax = 3, s0 = 1; θ = −0.5, κ = 1, a = 0.2, b = 1, ε = 0.1.

that formally we expect that u0 solves (10):

0 = |u′0(z)|2 + w(z; ρ∗0).

One can indeed prove following classical arguments that the function u0 is indeed a viscosity solution

to such Hamilton-Jacobi equation. Viscosity solutions correspond to a class of weak solutions which

are particularly adapted to such stability properties (u0 is obtained as the limit of the solution to a

vanishingly viscous problem). For an introduction to the notion of viscosity solutions and their basic

properties, see [1]. For similar convergence results in the context of selection-mutation models, see

[2] for the dynamic version of the problem presented above, and [19] for the heterogeneous 2-habitat

model.

Note that the Hamilton-Jacobi equation above in general might admit several viscosity solutions.

Here, the uniqueness is obtained thanks to the constraint

max
z
u0(t, z) = 0,

which implies that at the maximum point z0 of w(·; ρ∗0), u0(z0) = 0 and that u0 takes negative values.

Such properties allow to determine in a unique way the viscosity solution u0 which is given by (11)

([15], Chapter 5).

We provide below, the proof of the main regularity result in Proposition 1.2, that is the Lipschitz
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bound.

Proof of the Lipschitz bound of Proposition 1.2.

−εu′′ε,0 = |u′ε,0|2 + w(z; ρε,0). (24)

We differentiate the above equation with respect to z and multiply it by u′ε,0 to obtain

−εu′ε,0u′′′ε,0 = 2u′2ε,0u
′′
ε,0 + r′0(z)u

′
ε,0.

We then define pε,0 := |u′ε,0|2 and notice that

p′ε,0 = 2u′ε,0u
′′
ε,0, p′′ε,0 = 2u′′2ε,0 + 2u′ε,0u

′′′
ε,0.

Combining the above lines we obtain that

−ε
2
p′′ε,0 + εu′′2ε,0 = 2p′ε,0u

′
ε,0 + r′0(z)u

′
ε,0. (25)

Let’s first assume that pε,0 takes its maximum at a point zm. Evaluating the equation above at zm

we obtain that

εu′′2ε,0(zm) ≤ −ε
2
p′′ε,0(zm) + εu′′2ε,0(zm) = r′0(zm)u′ε,0(zm).

Let’s also assume that r′(z) is bounded (note that this assumption does not hold for instance if r0 is

a quadratic function). Then we would obtain that

εu′′2ε,0(zm) ≤ C|u′ε,0(zm)|.

Using again (8) we obtain that

1

ε
(|u′ε,0(z)|2 + r0(z)− κ0ρε,0)2 ≤ C|u′ε,0(zm)|.

One can deduce then from the inequality above, and assuming that r0 and ρε,0 are bounded, that
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|u′ε,0(zm)| is bounded.

However, in the above argument we made some assumptions which do not necessarily hold. We do

not know a priori that pε,0 takes its maximum at a point in the interior of R. Moreover, r′0(z) may

be unbounded. We may overcome these difficulties, by introducing cut-off functions and providing a

local argument, showing that |u′ε,0| is locally bounded. See [19] for more details.

2 Two populations: the selection-mutation-migration equilibrium

The objective of this section is to provide an approximation of the phenotypic densities (n1(z), n2(z))

solution to the following system:


0 = ε2n′′ε,1(z) + nε,1(z) (r1(z)− κ1ρε,1) +m2nε,2(z)−m1nε,1(z),

0 = ε2n′′ε,2(z) + nε,2(z) (r2(z)− κ2ρε,2) +m1nε,1(z)−m2nε,2(z),

(26)

with

ri(z) = rmax,i − s(z − θi)2.

As previously we also assume that ε2 = UVm is a small parameter. We follow the two-step approach

we used to obtain the stationary phenotypic distribution in a single population. First, we analyse the

evolutionary equilibria of the system when mutations are rare using the Adaptive Dynamics framework.

We identify monomorphic or dimorphic globally evolutionary stable strategies (ESS). Second, we use

these ESSs to derive approximations of the solution of (26) when mutation is more frequent and

maintains a standing variance at equilibrium.

In the analysis presented below, we will assume that migration rates are positive mi > 0. However

the extreme source and sink case, where for instance m1 > 0 but m2 = 0 can also be treated using

the same approach. For the derivation of our approximation in this case, see [19, 20].

2.1 Adaptive dynamics in presence of migration

In this section, we provide the conditions for a global evolutionary stable strategy. To be able to

characterize the ESS one should first characterize the demographic equilibrium corresponding to a set
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of traits. Because there are only two habitats, at most two distinct traits can co-exist. Therefore, we

only need to consider two scenarios where the phenotypic distribution is either monomorphic (with

phenotype zM ) or dimorphic (with phenotypes zDI and zDII , where the subscripts I and II indicate that

the phenotype is best adapted to habitat 1 and 2, respectively).

The monomorphic equilibrium is given by nMi (z) = ρMi δ(z−zM ) where δ(.) is the dirac delta function,(
ρM1 , ρ

M
2

)T
is the right eigenvector associated with the dominant eigenvalue W (zM ; ρM1 , ρ

M
2 ) = 0 of

A(zM ; ρM1 , ρ
M
2 ), with

A(zm; ρ1, ρ2) =

 w1(zm; ρ1)−m1 m2

m1 w2(zm; ρ2)−m2

 . (27)

In a similar way the dimorphic equilibrium is characterized by: nDi (z) = νI,iδ(z− zDI ) + νII,iδ(z− zDII ),

where νI,i+νII,i = ρDi and (νk,1, νk,2)
T are the right eigenvectors associated with the largest eigenvalues

W (zDk ; ρD1 , ρ
D
2 ) = 0 (for k = I, II) of A(zDk ; ρD1 , ρ

D
2 ).

The evolutionary stability of a resident strategy zM∗ can be studied with the analysis of the invasion

of a new mutant strategy zm at the demographic equilibrium
(
ρM∗1 , ρM∗2

)
set by the resident strategy.

The monomorphic strategy zM∗ is an evolutionary stable strategy if for any mutant zm 6= zM∗, the

effective fitness is negative: W (zm; ρM∗1 , ρM∗2 ) < 0. In a similar way, the dimorphic strategy {zD∗I , zD∗II }

is an evolutionary stable strategy if for any mutant zm 6∈ {zD∗I , zD∗II }, the effective fitness is negative:

W (zm; ρD∗1 , ρD∗2 ) < 0.

To determine the global ESS, we first define

zD∗ =

√
θ2 − m1m2

4θ2s1s2
, ρD∗1 =

m1m2
4θ2s2

+ rmax,1 −m1

κ1
, ρD∗2 =

m1m2
4θ2s1

+ rmax,2 −m2

κ2
.

Theorem 2.1 [19] There exists a unique global ESS.
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(i) The ESS is dimorphic if

m1m2

4s1s2θ4
< 1, (28)

0 < m2ρ
D∗
2 + (w1(−zD∗; ρD∗1 )−m1)ρ

D∗
1 , (29)

and

0 < m1ρ
D∗
1 + (w2(z

D∗; ρD∗2 )−m2)ρ
D∗
2 . (30)

Then the dimorphic equilibrium is given by

nD∗i = νI,iδ(z + zD∗) + νII,iδ(z − zD∗), νI,i + νII,i = ρD∗i , i = 1, 2,

where νk,i can be explicitly determined (see [20]).

(ii) If the above conditions are not satisfied then the ESS is monomorphic. In the case where condition

(28) is verified but the r.h.s. of (29) (respectively (30)) is negative, the fittest trait belongs to the

interval (−θ,−zD∗) (respectively (zD∗, θ)). If (28) is satisfied but (29) (respectively (30)) is an equality

then the monomorphic ESS is given by {−zD∗} (respectively {zD∗}).

If the habitats are symmetric, then the second and the third conditions (29)–(30) above are always

satisfied and the dimorphism occurs under the only condition (28). In other words, if migration is weak

with respect to the selection or the difference of the optimal traits in the two habitats, then the ESS

will be dimorphic. When the habitats are non-symmetric the extra conditions (29) and (30) appear

which are conditions of mutual invasibility. Condition (29) (respectively condition (30)) means indeed

that a mutant trait of type zD∗ (respectively −zD∗) can invade a monomorphic resident population

of type −zD∗ (respectively zD∗) which is at it’s demographic equilibrium (see [19]-Proposition 3.4).

We can indeed rewrite conditions (29) and (30) respectively as below

η1 < β2rmax,2 − α1rmax,1, η2 < β1rmax,1 − α2rmax,2,

with ηi, αi and βi constants depending on m1, m2, g1, g2, κ1, κ2 and θ (see [20] for the expressions

of these coefficients). These conditions are indeed a measure of asymmetry between the habitats.

They appear from the fact that even if condition (28), which is the only condition for dimorphism in
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symmetric habitats, is satisfied, while the quality of the habitats are very different, the ESS cannot be

dimorphic. In this case, the population will be able to adapt only to one of the habitats and it will be

maladapted to the other one (see Figure 2). The proof of Theorem (2.1) is given in [19]–Section 4.
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Figure 2 – Maintenance of polymorphism and non-symmetric adaptation as a function of
the maximal growth rates rmax,1 and rmax,2 in the two habitats. In (A) we examine a symmetric
situation where all the parameters are identical in the two habitats: m1 = m2 = 0.5, s1 = s2 = 2,
κ1 = κ2 = 1. In (B) we show a non-symmetric case with the same parameters as in (A) except
m1 = 0.5 and m2 = 0.7. The black area indicates the parameter space where the population is driven
to extinction because the maximal growth rates are too low. In the grey area some polymorphism can
be maintained in the two-habitat population as long as the difference in the maximal growth rates
are not too high. When this difference reaches a threshold polymorphism cannot be maintained and
the single type that is maintained is more adapted to the good-quality habitat (the habitat with the
highest maximal growth rate).

2.2 Selection-mutation-migration equilbirum

In the following we allow mutation rate to increase and we study the impact of mutations on the

ultimate evolutionary equilibrium of the phenotypic densities, i.e. the solution of (26). We present

below the general principle of the approach before examining specific case studies.

Our objective is to provide an approximation of the phenotypic density in each habitat when the effect
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of mutation (measured by ε) is small. We use analogous transformation to (4):

nε,i(z) =
1√
2πε

exp
(uε,i(z)

ε

)
. (31)

Our objective is then to estimate uε,i(z). We proceed as in Section 1.2 and we postulate an expansion

for uε,i in terms of ε:

uε,i(z) = ui(z) + εvi(z) +O(ε2), (32)

and we try to compute the coefficients ui(z) and vi(z) . First we can show that, when there is migra-

tion in both directions (i.e. mi > 0 for i = 1, 2), the zero order terms are the same in both habitats:

u1(z) = u2(z) = u(z) (see Section 2.3 below). We can indeed compute explicitly u(z) which is given

by (37) in the monomorphic case and by (38) in the dimorphic case. As we observe in the formula

(37) and (38), u(z) attains its maximum (which is equal to 0) at the ESS points identified in the

previous subsection. This means that the peaks of the population’s distribution are around the ESS

points (zM∗ in the case of the monomorphic ESS and (zD∗I , zD∗II ) for the dimorphic ESS). Note that

the fact that u1(z) = u2(z) = u(z) means that the peaks of the population distribution are placed

approximately at the same points (ESS points) in both habitats. However, the size of the peaks may

be different since v1(z) is not necessarily equal to v2(z).

We are also able to compute the first order term vi(z) (see Section 2.3). This allows us to obtain an

approximation (that we call first approximation) of the phenotypic density nε,i(z).

As in section 1.2 we can also derive more explicit formula for the moments of order k ≥ 1 of the

stationary phenotypic distribution. This second approximation, instead of using the values of u(z)

and vi(z) in the whole domain, is based on the computation of the Taylor expansions of u(z) and vi(z)

around the ESS points and can be computed following similar types of arguments as in Section 1.5.

2.3 Heuristic derivation

As mentioned above, our first approximation is based on the computation of the terms ui(z) and vi(z).
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Based on such computations we can provide an approximation of the population’s total density ρε,i

and the phenotypic density nε,i(z) in the following form

ρε,i ≈ ρi + εKi, nε,i(z) ∝
1√
2πε

exp
(ui(z) + εvi(z)

ε

)
. (33)

In order to identify the functions ui, vi, ρi and Ki, we first let ε → 0 in (26) to obtain that

nε,i(z)→ ni(z) and ρε,i → ρi with


0 = n1(z) (r1(z)− κ1ρ1) +m2n2(z)−m1n1(z),

0 = n2(z) (r2(z)− κ2ρ2) +m1n1(z)−m2n2(z),

ρi =
∫
R ni(z)dz,

which is equivalent with

A(z, ρ1, ρ2)

 n1(z)

n2(z)

 = 0, ρi =

∫
R
ni(z)dz,

with A(z, ρ1, ρ2) given by (27). This means that (ρ1, ρ2) corresponds to the sizes of the populations

1 and 2 at the demographic equilibrium (n1(z), n2(z)), in absence of mutations. We will show that

this equilibrium corresponds indeed to a global evolutionary stable strategy and hence ρi = ρ∗i . To

this end, we replace (31) in (26) and obtain


0 = εu′′ε,1(z) + |u′ε,1(z)|2 + r1(z)− κ1ρε,1 +m2 exp(

uε,2(z)−uε,1(z)
ε )−m1,

0 = εu′′ε,2(z) + |u′ε,2(z)|2 + r2(z)− κ2ρε,2 +m1 exp(
uε,1(z)−uε,2(z)

ε )−m2.

(34)

Similarly to above, this system is derived using the following equalities

n′ε,i(z) = u′ε,i(z)
nε,i(z)

ε
, n′′ε,i(z) =

(
u′′ε,i(z) + |u′ε,i(z)|2

) nε,i(z)
ε2

.

We can determine ui(z), vi(z) from the above equation and (32).

Note that the exponential terms in (43) suggest that, when mi > 0 for i = 1, 2, as ε → 0 uε,1(z) and
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uε,2(z) converge to the same limit u(z). Otherwise, one of these exponential terms tends to infinity

while the other terms are bounded. Keeping the zero order terms (the ones in front of which there is

no ε, corresponding to the dominant terms) we obtain


0 = |u′(z)|2 + r1(z)− κ1ρ1 +m2 exp(v2(z)− v1(z))−m1,

0 = |u′(z)|2 + r2(z)− κ2ρ2 +m1 exp(v1(z)− v2(z))−m2.

(35)

We then multiply the first line by exp(v1(z)) and the second line by exp(v2(z)) and write the system

in the matrix form to obtain w1(z; ρ1)−m1 m2

m1 w2(z; ρ2)−m2


 exp(v1(z))

exp(v2(z))

 = −|u′(z)|2

 exp(v1(z))

exp(v2(z))

 .

Note that the matrix in the l.h.s. is nothing but A(z, ρ1, ρ2) given by (27). The equality above means

that −|u′(z)|2 is indeed the principal eigenvalue of A(z; ρ1, ρ2), that is (see Section 2.1)

−|u′(z)|2 = W (z; ρ1, ρ2).

Similarly to Subsection 1.4, to have a finite but positive size of population, we should have

max
z∈R

u(z) = 0.

Otherwise, in view of (31), the total population size whether becomes infinite as ε→ 0 (if maxz∈R u(z) >

0) or it goes to 0 (if maxz∈R u(z) < 0). Similarly we obtain

suppni ⊂ {z |u(z) = 0},

where suppni is the set of traits z such that the density ni(z) is positive. The above property holds

since u(z0) < 0 implies that limε→0 nε,i(z0) = 0.

Let z̄ be such that u(z̄) = 0 which means that it is a maximum point of u(z). Then, u′(z̄) = 0 and
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hence

W (z̄; ρ1, ρ2) = 0.

Moreover in all the points z ∈ R, we have

W (z; ρ1, ρ2) = −|u′(z)|2 ≤ 0.

This implies that

if z ∈ suppn1 = suppn2 then W (z; ρ1, ρ2) = 0,

if z 6∈ suppn1 = suppn2 then W (z; ρ1, ρ2) ≤ 0.

In other words (n1(z), n2(z)) corresponds to the demographic equilibrium corresponding to the global

ESS and hence ni(z) = n∗i (z) and ρi = ρ∗i , with n∗i (z) and ρ∗i given in Subsection 2.1.

We gather the informations that we obtained on u(z):


−|u′(z)|2 = W (z; ρ∗1, ρ

∗
2),

maxz∈R u(z) = 0,

(36)

with the maximum points of u(z) attained at the ESS points. We can indeed prove that u solves the

above equation in the viscosity sense.

Similarly to Section 1.6, this property allows us to identify u in a unique way and to provide explicit

formula for u(z).

In the case of monomorphic ESS, u(z) is given by

u(z) = −
∣∣ ∫ z

zM∗

√
−W (x; ρM∗1 , ρM∗2 )dx

∣∣. (37)

The reader can verify that u(z), given by the formula above, is smooth and solves (36) with its

maximum point at zM∗.

In the case of dimorphic ESS, u(z) is given by

u(z) = max
(
−
∣∣ ∫ z

zD∗I

√
−W (x; ρM∗1 , ρM∗2 )dx

∣∣, −∣∣ ∫ z

zD∗II

√
−W (x; ρM∗1 , ρM∗2 )dx

∣∣). (38)
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The reader can also verify that the above function is smooth at all points except at the point where

the two functions in the maximum operator intersect. Moreover, u(z) solves (36) at the smooth points

and it attains its maximum at the ESS points zD∗I and zD∗II . See ([19] and ([15], Chapter 5)) for the

details on why u can be determined by the above formulas.

Computation of the next order terms vi(z):

The derivation of the next order terms vi(z) follows also similar arguments as in Section 1.4. How-

ever, since here we have a system the computations are less straight forward. We present the main

ingredients to compute these terms.

From (35) and (36) we can compute v2(z)− v1(z) thanks to the following formula

v2(z)− v1(z) = log
( 1

m2

(
W (z, ρM∗1 , ρM∗2 )− w(z, ρM∗1 ) +m1

))
.

We next keep the first order terms in (43), i.e. the terms with an ε in front of them. To do so, we

need to go further than (32) in the approximation of uε,i(z) and also keep the term of order ε2, li(z):

uε,i(z) = u(z) + εvi(z) + ε2li(z) +O(ε3).

Then, keeping the first order terms in (43) we obtain


0 = u′′(z) + 2u′(z)v′1(z)− κ1K1 +m2 exp(v2(z)− v1(z))(l2(z)− l1(z)),

0 = u′′(z) + 2u′(z)v′2(z)− κ2K2 +m2 exp(v1(z)− v2(z))(l1(z)− l2(z)).
(39)

Using the above equalities and by evaluating them at the ESS points we can compute vi(z) and Ki

for i = 1, 2. See [19]–Section 3.3 for the details of such computations.

3 The transient dynamics

The Hamilton-Jacobi approach allows also to study the transient evolutionary dynamics of populations.

This method was indeed initially introduced to study dynamic equations [8, 24, 2]. In this section we
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show briefly how the method can be applied to study the transient dynamics of a population.

3.1 One population: the transient dynamics of a population subject to selection

and mutation

In this section, we present the method for a more general model than the one studied above:


∂
∂tn− UVm∆n = nR(z, I), z ∈ Rd

I(t) =
∫
Rd η(y)n(t, y)dy,

(40)

This model, takes into account the competition for the resources which are consumed by the individuals

of trait y the rate η(y). The growth rate of individuals of trait z, i.e. R(z, I), depends in a decreasing

way on the total consumption of the population I(t). Note that if

η ≡ 1, R(z, I) = r0(z)− κI,

then the model is equivalent to the model (1). Note also that here we let z ∈ Rd while in Section 1

we considered z ∈ R. While we chose the simpler model studied in Section 1 to simplify the notations

and to insist on the general principles of the method, all the results in Section 1 can be generalized to

the model (40).

Here are the main assumptions on η and R (for the whole set of assumptions see [5]):

0 < C1 ≤ η ≤ C2,

−C3 ≤
∂R

∂I
(z, I) ≤ −C4 < 0,

max
z∈Rd

R(z, IM ) = 0.

A typical example is

R(z, I) = r0(z)− κI, with r0(z) a concave function.
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3.1.1 The regime of small mutations

As in Section 1, we assume that the mutations have small effects, that is UVm = ε2, with ε a small

parameter. In order to observe the small effect of the mutations on the dynamics of the phenotypic

density, we also make a change of variable in time to accelerate the dynamics:

t 7→ t

ε
, nε(t, z) = n(

t

ε
, z).

Replacing this in (40), the equation on nε is written


ε ∂∂tnε − ε

2∆nε = nεR(z, Iε),

Iε(t) =
∫
η(y)nε(t, y)dy.

(41)

As previously, the method starts with a Hopf-Cole transformation

nε(t, z) =
1

(2πε)d/2
exp

(uε(t, z)
ε

)
. (42)

We can show that the function uε converges locally uniformly to a continuous function which is the

viscosity solution to a Hamilton-Jacobi equation with constraint. Under suitable assumptions we can

also provide an asymptotic expansion for uε:

uε = u+ εv +O(ε2).

This allows us to provide an approximation of the phenotypic density and its moments as in the

stationary case. We will also provide a differential equation describing the dynamics of the dominant

trait in the population. This equation is related to Lande’s equation in Quantitative Genetics (and

also to the canonical equation of Adaptive Dynamics). However, it is more general since it takes into

account the dynamics of the variance of the phenotypic distribution.
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3.1.2 Derivation of the Hamilton-Jacobi equation with constraint

Replacing (42) in (41) we obtain

∂tuε − ε2∆uε = |∇uε|2 +R(z, Iε). (43)

Similarly to above, this equation is obtained using the following relations:

∂

∂t
nε(t, z) =

∂

∂t
uε(t, z)

nε(t, z)

ε
,

∇nε(t, z) = ∇uε(t, z)
nε(t, z)

ε
, ∆nε(t, z) =

(
∆uε(t, z) + |∇uε(z)|2

) nε(t, z)
ε2

.

Let’s suppose that (uε, Iε) converges, as ε→ 0, to (u, I), with

0 < I1 ≤ I(t) ≤ I2.

Such properties can be indeed proved under suitable assumptions [2, 5]. Following similar arguments

as in the previous section, we obtain

max
z
u(t, z) = 0, for all t,

and

supp n(t, z) ⊂ {z|u(t, z) = 0}.

Here, n(t, z) is a measure obtained as the limit of nε(t, z) as ε → 0. Passing formally to the limit in

(43) we also obtain that

∂

∂t
u− |∇u|2 = R(z, I).

Note moreover, that at the maximum point zm of u(t, ·), we have

∂

∂t
nε(t, zm) = 0,

∂

∂z
nε(t, zm) = 0,
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and hence

R(zm, I(t)) = 0.

We deduce that

{z|u(t, z) = 0} ⊂ {z|R(z, I(t)) = 0}.

Combining the above properties we obtain that



∂
∂tu− |∇u|

2 = R(z, I),

maxz u(t, z) = 0, for all t,

u(0, z) = u0(z).

(44)

supp n(t, ·) ⊂ {z|u(t, z) = 0} ⊂ {z|R(z, I(t)) = 0}. (45)

We can indeed prove rigorously that uε converges to the viscosity solution of (44) [24, 2, 5]. Moreover

the solution (u, I) to the Hamilton-Jacobi equation with constraint (44) is unique [21, 4]. Note that

describing the solution u is more difficult in the dynamic case, since it depends on the identification

of I(t) which is more complex in the dynamic case. In what follows, we will show which type of

information on the phenotypic density we could obtain from such result.

3.1.3 Concentration of the phenotypic density at a single point (monomorphism)

As the effect of the mutations ε vanishes, we expect that nε converges to a Dirac mass ρ(t)δ(z− z(t)).

This means that the phenotypic density would concentrate at a single dominant trait z(t) which evolves

under the effects of the mutations and selection. In this model, since the growth rate suffers from the

competition for only one nutrient, via the term I(t), we expect indeed to have a single dominant trait,

as the effect of the mutations vanishes. This is indeed a consequence of the principle of the competitive

exclusion [14, 25] which states that when there are k limiting factors for the population, no more than k

distinct traits may coexist. When ε is small but non-zero, we then expect that the phenotypic density

nε(t, ·) would have a continuous uni-modal distribution, with its peak close to this dominant trait z(t).
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A key information that allows to show such concentration phenomenon is given by (45). If we can

prove that either the set {z|u(t, z) = 0} or the set {z|R(z, I(t)) = 0} has a single point, we will then

deduce that supp n(t, ·) has a single point and hence, the phenotypic density n is a single Dirac mass:

n(t, ·) = ρ(t)δ(· − z(t).

Let’s assume for instance that z ∈ R and that R(·, I) is a monotonic function with respect to its first

variable. This then implies that the set {z|R(z, I(t)) = 0} has a singe point and hence n is a single

Dirac mass. This is not the only situation where we can prove such property. In the next section, we

will introduce a framework, which not only allows to obtain such concentration property but it also

leads to more quantitative results.

3.1.4 The concave framework; more precise results

In this section we assume additionally that R(·, I) and uε,0(·) are strictly concave functions, where

uε,0(z) = ε log((2πε)d/2nε(0, z)).

We assume indeed that

−D1 ≤ D2uε,0(z) ≤ −D2 < 0,

−D3 ≤ D2R(z, I) ≤ −D4 < 0,

Theorem 3.1 [16, 21] In the concave framework, u(t, ·) the viscosity solution to (44) is indeed smooth

and a classical solution. Moreover, u(t, ·) is a strictly concave function and hence, for all t ≥ 0, there

exists a unique point z(t) such that

max
z
u(t, z) = u(t, z(t)) = 0,

which implies that

n(t, z) = ρ(t)δ(z − z(t)).
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Finally, the following equation describes the dynamics of the dominant trait z(t):

ż(t) = (−D2u(t, z(t)))−1∇R(z(t), I(t)). (46)

Theorem 3.2 [23, 22] In the concave framework, and under regularity assumptions, we have

uε(t, z) = u(t, z) + εv(t, z) + o(ε), Iε(t) = I(t) + εJ(t) + o(ε).

Similarly to the previous sections, Theorem 3.2 leads to the following approximation of the pheno-

typic density:

nε,0(z) ≈
1

(2πε)d/2
exp

(u(t, z) + εv(t, z)

ε

)
.

It also allows to provide analytic approximations of the moments of the phenotypic distribution. In

particular, we can compute the covariance matrix of the phenotypic distribution as follows

Vε,t = ε(−D2u)−1(t, z(t)) + o(ε),

where Vε,t = (vi,j(t)) with vi,j =
∫
zizj

nε(t,z)
ρε(t)

dx− (
∫
zi
nε(t,z)
ρε(t)

dz)(
∫
zj
nε(t,z)
ρε(t)

dz). Note that here we find

again the term (−D2u)−1(t, z(t)) which also appeared in equation (46). This property allows to provide

a biological interpretation of this equation and in particular to compare it to the so-called canonical

equation in Adaptive Dynamics [7, 6] or to Lande’s equation in Quantitative Genetics [17, 12, 13].

In these equations, which are very related equations under different formalisms, the change in the

dominant/average trait is given by the product of the gradient of the fitness and a term that scales

the rate of evolutionary change (proportional to mutational variance or genetic variance respectively

in adaptive dynamics and quantitative genetics). In (46), the dynamics of the dominant trait ż(t) is

also given by the product of the gradient of the fitness ∇zR and the term
(
−D2u

(
t, z̄(t)

))−1
which,

when multiplied by ε, approximates well the phenotypic covariance matrix (note that here we do not

consider any environmental contribution in the phenotype, therefore the phenotypic variance is equal

to the genetic variance). In this way, (46) may be seen as a generalization of the canonical equation

or Lande’s equation to a case where the mutations are not assumed to be very rare (on the contrary
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to adaptive dynamics) and such that the evolution of the genetic variance is included in the dynamics

(the phenotypic density is not assumed to be of Gaussian type with fixed variance).

3.1.5 Example of quadratic fitness

Let’s consider the following fitness function:

R(z, I) = rmax − sz2 − κI.

One can solve explicitly the selection-mutation model (40) with such growth rate when the initial

condition is a Gaussian. However, it is less trivial to do so when the initial condition is arbitrary.

Here, we show how to provide an approximation of the solution, when ε is small, assuming arbitrary

initial condition using the Hamilton-Jacobi approach. An alternative way to do so is to use the

method based on cumulated generating functions [18] which provides an explicit solution for arbitrary

ε. This method works particularly well when one considers a quadratic stabilizing selection. The

Hamilton-Jacobi approach has the advantage to apply to arbitrary forms of growth rates R(z, I) and

with possible heterogeneities.

In this case study, the corresponding Hamilton-Jacobi equation is written



∂
∂tu(t, z)− | ∂∂zu|

2(t, z) = rmax − sz2 − κI,

maxz u(t, z) = u(t, z(t)) = 0,

u(0, z) = u0(z).

Note that, since

R(z(t), I(t)) = 0,

one can then express the value of I in terms of z(t):

I(t) =
1

κ

(
rmax − sz2(t)

)
.

We can also provide an analytic formula for the dominant trait z(t) (which is a good approximation
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of the mean phenotypic trait when ε is small):

z(t) =
2e2
√
st

1 + e4
√
st

arg max
C
{u0(C)− C2

√
s

2
tanh

(
2
√
st
)
}.

Computation of z(t):

We next show how to identify analytically z(t). Note that the function u solves

∂

∂t
u(t, z)− | ∂

∂z
u|2(t, z) = −sz2 + sz2(t).

The viscosity solution of the above equation is indeed given by the following representation formula:

u(t, z) = sup
γ∈W 1,∞([0,t])

γ(t)=z

u0(γ(0))−
∫ t

0

( |γ̇|2
4

(τ) + sγ2(τ)− sz2(τ)
)
dτ.

The maximizing trajectory satisfies the following Euler-Lagrange equation:

γ̈(τ) = 4sγ(τ).

As a consequence γ(τ) can be written as follows

γ(τ) = Ae2
√
s τ + (C −A)e−2

√
s τ , with A and C some constants.

We deduce that

u(t, z) = sup
A,C∈R

Ae2
√
s t+(C−A)e−2

√
s t=z

u0(C)− s
∫ t
0

(
2A2e4

√
s τ + 2(C −A)2e−4

√
s τ − z2(τ)

)
dτ

= sup
A,B∈R

Ae2
√
s t+(C−A)e−2

√
s t=z

u0(C)−
√
s
2

(
A2(e4

√
s t − 1) + (C −A)2(1− e−4

√
s t)
)

+ s
∫ t
0 z

2(τ)dτ.

We are interested in identifying the point z(t) which corresponds to the maximum point of u(t, ·).

Let’s define

F (A,C) = u0(C)−
√
s

2

(
A2(e4

√
s t − 1) + (C −A)2(1− e−4

√
s t)
)
.
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If the maximum of F is taken at some point (Am, Cm). Then,

z(t) = Ame
2
√
s t + (Cm −Am)e−2

√
s t,

is a maximum point of u(t, ·). Note that the maximum point Am can be expressed in terms of Cm:

Am = Cm
1− e−4

√
st

e4
√
st − e−4

√
st

= Cm
1

1 + e4
√
st
.

We deduce that

Cm = arg maxC u0(C)− C2
√
s
2

(
e4
√
s t−1

(1+e4
√
st)2

+ e8
√
s t−e4

√
s t

(1+e4
√
st)2

)
= arg maxC u0(C)− C2

√
s
2 tanh

(
2
√
st
)
.

This implies that

z(t) =
2e2
√
st

1 + e4
√
st

arg max
C
{u0(C)− C2

√
s

2
tanh

(
2
√
st
)
}.
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