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From aggregated networks to temporal networks
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Phenology: an important determinant of the structure
of plant-pollinator networks
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(A) Plant phenology (B) Interactions (C) Bee phenology
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Very few theoretical studies consider the effects of phenology on the
stability of mutualistic webs

» Effects on network structure
and species persistence

Encinas-Viso et al. (2012)

» Effects of species
phenological attributes on
species persistence

Ramos-Jiliberto et al. (2018)

Heterogeneity in phenology start

" o o
Heterogeneity in phenology length



Effects of climate warming on the phenology of many taxa
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Effects of climate warming on the phenology of
pollinators
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» Knowledge still restricted to few species of flower-visitors outside Lepidoptera
» Need to assess consequences at the scale of ecological communities

Bartomeus et al. (2011)



Plant response: from species to community
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Consequences of phenological shifts on plant-pollinator
networks
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» Investigate the potential consequences of climate
warming on pollinator assemblages by extending our
knowledge on phenological shifts of flower-visitors

» Understand how species phenologies and seasonality
determine plant-pollinator networks and their stability

Francois Duchenne



The data:
Historical and current records of occurrences of
potential insect flower visitors

French National Natural History Museum
collections + private collections

Global Biodiversity
Information Facility




The data:
Historical and current records of occurrences of
potential insect flower visitors

» 19 765 457 records for 2023 species between 1960 and 2016
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Methods:
Estimating phenological shifts

Identifying phenological modes for species with multimodal phenologies using

clustering gaussian mixture models
(e.g. multivoltine species, queens and workers)

Bombus terrestris Polygonia c-album

2500+
2000+
20000 1
15001

10001

Number of records
Number of records

10000 1

5004

0 100 200 300 0 100 200 200
Julian days - Julian days



Methods:
Estimating phenological shifts

julian day

100

1960 years 2016

Coupled models for each species to estimate:

shift in mean flight date Y, = p+ (n+axlatitudey + dxlongitudey)Xyear, + (p1 + y1 Xlongitudey)Xlatitudey,
(MFD) + (pz + y2Xlongitude?)xlatitude? + (p3 + ysxlongitude?)xlatitude?
+ (01)xlongitudey, + (o3)xlongitude? + (03)xlongitude? + 6xaltitudey

+ Ey

change in phenology length log(0?) = py + (pyXxlatitudey + o, xlongitudey, + 6, xaltitudey, + m,) Xyeary
(SD)




Mean flight date shifts

On average -
5.8 days earlier in 2016 %ﬂ
than in 1960

57% earlier
30% non significant
13% delayed

=-0.5 MFD shifts (days/year) 0.5




Changes of flight period lengths

On average
1.8 days shorter in 2016
than in 1960

30% shortened
43% non significant
27% lengthened

Duchenne et al. (2020)



MFD shifts (days/year)

Interspecific phenological shift variations
depend on mean fly date and location
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Intraspecific variations in phenological shift
that depend on mean fly date and location

Species with multimodal phenology
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Climate warming and phenological shifts of flower
visitor assemblages across Europe
Conclusion

» European flower visitors are flying on average 5.8 days
earlier and their phenologies are 3.8 days shorter in
2016 than in 1960

» Substantial heterogeneity in phenological shifts that
depends on evolutionary history, seasonal precocity and
location

» What consequences?



Changes in the seasonal structure of flower visitor
communities

Averaged probability density

1 365
Julian days



Changes in the average phenology overlaps of flower
visitor communities

Changes between 1980 and 2016

within orders among orders
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Which consequences on plant-pollinator networks?
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Lower temporal redundancy Decrease competition pressure
and complementarity for plant among pollinators for
pollination? resources (nectar/pollen)?




» Understand how species phenologies and seasonality
determine plant-pollinator networks persistence



Phenology and indirect effects in mutualistic
networks

High trait similarity
High phenology overlap
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Phenology and indirect effects in mutualistic
networks

High trait similarity High trait similarity
High phenology overlap Low phenology overlap

What are the respective impacts of trait vs phenology matching on
species persistence in mutualistic networks?

How do they determine indirect effects between plants and
between pollinators?



A model for the dynamics of mutualistic networks
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A model for the dynamics of mutualistic networks




Interactions depend on trait & phenology matching
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Interaction term saturates with mutualistic partner densities Bastolla et al. (2009)

I; defines the interaction probability as a function of trait and phenology matching
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Phenological match

Trait match

Testing the relative impact of trait and phenological
matching

-

Interaction matrix (I)

Importance of the phenological match
IPM

Importance of the trait match
ITM




Competition for mutualistic interactions depends on phenological overlapp
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Competition/interference between plants and between pollinators depends on
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Testing the relative impact of trait and phenological
matching

Effects on species
persistence

Abundance




Importance of the

Relative impact of trait and phenological matching
on persistence

Increasing competition
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Testing the relative impact of trait and phenological
matching on indirect interactions

Direct

’ effects

Direct and indirect effects
Higashi & Nakajima (1995) g: bEtween p ants and
02 between pollinators at
_ 0.1 ope .
s=4 i equilibrium?




Testing the relative impact of trait and phenological

Direct
effects
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Phenological structure and the dynamics of
mutualistic networks
Some preliminary conclusions

» Constraints on morphological matching and phenological matching can have
different consequences on the dynamics of mutualistic networks

» When there is competition, the phenological structure of the community can
promote species persistence

» In addition to mismatch, phenological changes related to climate warming can
change the balance between competition and facilitation within guilds



» Investigate the potential consequences of climate
warming on pollinator assemblages by extending our
knowledge on phenological shifts of flower-visitors

» Understand how species phenologies and seasonality
determine plant-pollinator networks and their stability

» Pollination around the clock and the concequences of light
pollution

o R
- &

Eva Knop



What about nocturnal pollination?
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Only 168 studies on nocturnal pollination (moth) between 1971 and 2013

rarely at community level Diumnal pollinators
very few pollination effectiveness measures

appears to involve numerous plant families

McGregor et al. (2015)

Mocturnal pollinators
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Quantifying pollination around the clock
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What about light pollution?

e artificial light at night affect moth behaviour
® 99% of Europeans live in light-polluted areas

e global annual increase in area of about 6 %

Artificial Night Sky Brightness due to Light Pollution in North America
A preliminary picture of the growth from 1950 to 2025



Light pollution and nocturnal pollinators

night goggles

irentir
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7 ruderal meadows located in Bernese Oberland
head torch

2 sampling sites per meadow separated by 500m with
one where LED streetlamps were installed

Sampling along 100m transect every 30 min all night “’/g

between June and September 2015 i
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Light pollution and nocturnal pollinators
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Light pollution and plant seed set

Cirsium oleraceum Fecondated fruits

5 ruderal meadows located in Bernese Oberland
artificial light  vs. control




Light pollution and plant seed set
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Light pollution and diurnal pollinators

Potential for indirect interactions
i{i - I@

Height ruderal meadows
Sampling  every 30min from 17:00 to 16:59
along 50m transect
four 24h sampling rounds per site




to diurnal pollinators

Hymenoptera
B Lepidoptera
B Neuroptera

B gther

B Coleoptera

Dermaptera

“ Diptera
B  Hemiptera

Potential indirect effect from nocturnal

100 interactions




Conclusion

Nocturnal pollination is not neglectable,
with 20% of visits being nocturnal

Artificial light impact nocturnal pollinator
with negative consequences for plant
pollination.

Nocturnal pollinators are not redundant
with diurnal ones

The architecture of merged diurnal and
nocturnal pollination networks tend to
favor the spread of artificial light
perturbation from nocturnal to diurnal
pollinators
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Stability of mutualistic networks: a balance between
mutualism and competition?

s b =+ »Inconnected and in nested
. *\ﬁ% @% » & networks, positive effects
f; I @ : s _ outweight negative ones,
; : - enhancing persistence
% I Bastolla et al. (2009)
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Stability of mutualistic networks: a balance between
mutualism and competition?

-~ »In connected and in nested

* A A=A &
| *\ﬁ% t%%% *% networks, positive effects
i i bl gl outweight negative ones,
.l L enhancing persistence
;& I Bastolla et al. (2009)
mm » When competition for
resources are included,

nestedness enhances
persistence only in case of
adaptive foraging, leading to
niche partitioning

Specialist —— Generalist

Valdovinos et al. (2016)



Stability of mutualistic networks: a balance between
mutualism and competition?

Network structure (e.g. nestedness) arises from constraints
linked with species traits and phenologies.

How do these constraints affect the balance between
mutualism and competition in mutualistic webs?



Phenology and indirect effects in mutualistic
networks

High trait similarity
High phenology overlap
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