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The a-Ford model [Ford

Figure: a = 0 on the left; & = 0.5 in the middle; o = 0.9 on the right.
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The a-Ford model [Ford '05]

Fix a € [0,1]. The a-Ford tree is a random binary unrooted tree with n leaves:
@ Start with one edge (yielding 2 leaves).

@ Given the a-Ford tree with k-leaves, assign weight 1 — o to each external and
weight « to each internal edge.

@ Pick an edge according to its weight, and insert there another leaf.

@ Stop when the current binary combinatorial tree has n leaves.
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The a-Ford model [Ford '05]

Fix € [0,1]. The a-Ford tree is a random binary unrooted tree with n leaves:

Start with one edge (yielding 2 leaves).

Given the a-Ford tree with k-leaves, assign weight 1 — a to each external and
weight « to each internal edge.

Pick an edge according to its weight, and insert there another leaf.

Stop when the current binary combinatorial tree has n leaves.
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The a-Ford model [Ford '05]

11—«

Special cases:

o a = 0: Kingman coalescent tree whithout edge lengths or Yule tree.
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What if the tree gets large?

Josué Nussbaumer (UGE) The a-Ford algebraic measure trees



The a-Ford model [Ford '05]

11—«

Special cases:

o a = 0: Kingman coalescent tree whithout edge lengths or Yule tree.
e a = 1: uniform tree [Aldous '93].

o o« = 1: comb tree.
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What if the tree gets large? Need a state space of (infinite) trees with a “nice”
topology.
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The space of algebraic measure trees [Léhr, Winter '18]

N
. \ooo

y [ ]

For x,y,z € T there exists a unique branch point c = ¢(x,y,z) € T with
[x,y] N [y,z] N [z,x] = {c}
6/16
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The space of algebraic measure trees [Léhr, Winter '18]

Definition: algebraic tree

An algebraic tree is a set T together with a symmetric map ¢: T — T such
that:

@ (2-point condition) For x,y € T, c(x,y,y) = y.
@ (3-point condition) For x,y,z € T, c(x, y, c(x,y,z)) = c(x,y, z).
@ (4-point condition) For x,y,z,w € T,

c(x,y,z) € {c(x,y,w), c(x,z,w), c(y, z, w)}.
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Definition: algebraic tree

An algebraic tree is a set T together with a symmetric map ¢: T — T such
that:
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Definition

| \

An algebraic measure tree (T, c, 1) consists of an order separable algebraic tree
(T, c) together with a probability measure p on (T, B(T,c)).

v
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Topology on T2

We consider the subset of binary algebraic measure trees:

To:={(T,c,u): deg(v) <3Vv e T, atoms(u) C leaves(T)}.
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Topology on T2

We consider the subset of binary algebraic measure trees:

To:={(T,c,p): deg(v) <3 Vv e T, atoms(u) C leaves(T)}.

Idea: “Gromov-weak” topology

A sequence of trees converges to a limit tree if and only if all randomly sampled
finite subtrees converge to the corresponding limit subtrees.
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“Sample shape convergence = convergence of subtrees”

When we sample n points according to u, we can look at the tree shape they
span.

u1 us
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4

Figure: A tree T and the shape spanned by 5 points.
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Figure: A tree T and the shape spanned by 5 points.

A sequence of algebraic measure trees is sample-shape convergent if for all n,
the distributions of the n-tree shapes converge.

Josué Nussbaumer (UGE) The a-Ford algebraic measure trees 9/16



The a-Ford algebraic measure trees

Let « € [0,1]. For all n € N, the a-Ford tree with n leaves defines a random
tree in T (we put the uniform distribution on the leaves).
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The a-Ford algebraic measure trees

Let « € [0,1]. For all n € N, the a-Ford tree with n leaves defines a random
tree in T (we put the uniform distribution on the leaves).

Proposition [N., Winter '20]

As the number of leaves goes to infinity, the a-Ford model converges in
distribution in T to a random continuum algebraic measure tree.
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The a-Ford algebraic measure trees

Let « € [0,1]. For all n € N, the a-Ford tree with n leaves defines a random
tree in T (we put the uniform distribution on the leaves).

Proposition [N., Winter '20]

As the number of leaves goes to infinity, the a-Ford model converges in
distribution in T to a random continuum algebraic measure tree.

We call the limit the a-Ford algebraic measure tree.
o « = 0: the Kingman algebraic measure tree.

o o= %: the algebraic measure Brownian Continuum Random Tree [L&hr,

Mytnik, Winter '18].
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Statistics on the limit trees

We ignore the branch lengths, so we can not look at total length.
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@ Sample shapes: distribution of the shape spanned by m points sampled
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Statistics on the limit trees

We ignore the branch lengths, so we can not look at total length.

@ Sample shapes: distribution of the shape spanned by m points sampled
according to p.
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@ Subtree masses: sample 3 points according to p and look at how the mass
is distributed around their branch point.
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Subtree masses

For u = u1, ua, us three leaves of T, we consider the vector of the three masses
of the components connected to c(u):

n(u1, vz, us) = (n1(u), n2(u), n3(u))-

U‘s
2\ooc(u)/ .
./ 7\.7./

BN

Figure: A tree with 8 leaves; n(u) = (%, %, %)

We look at polynomials of the form

0= [ nP ().
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Subtree masses: o = %

Proposition [Aldous '94]
Let Pcrr be the law of the Brownian algebraic CRT. Then for all f: A, — R

continuous bounded,

onr | [ 1*af(u(@)] = [ reopin(3.5.3) (@0

Az

where Dir(1, 3, 1) is the Dirichlet distribution.

The a-Ford algebraic measure trees
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Subtree masses: o =0

Proposition [N., Winter '20]

Let Pkin be the law of the Kingman algebraic measure tree. Let Bi 2 and Bz
be two independent beta random variables, such that Bi > has law Beta(1, 2)
and B has law Beta(2,2). Then for all f: A2 — R continuous bounded,

i | [ 1) 0w

1 *
=] 6 ZS ]E[f oT (817282,27 B1’2(1 — Bz,z), 1-— B1’2)],
TES3

where Sz is the set of permutations {1,2,3}, and for 7 € Sz, 7*: Ax — Az is
the induced map 7" (x) = (Xz(1); Xr(2), X(3))-
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Subtree masses

— What about the other a € [0, 1]?
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Subtree masses

— What about the other a € [0, 1]?

We can calculate all the moments through a recurrence relation.

E. [ /5 awm

123 (du) (m (u))?
123 (dw)(m (u))?

123 (du) (m (u))*

1 (du) (m (w))°|

_11-7a
~15(5 - 3a)’
37— 25«

| 63(5—3a)’

145 — 165a + 440
|~ 42(5-3a)(7 —3a)’
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