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The α-Ford model [Ford ’05]

Figure: α = 0 on the left; α = 0.5 in the middle; α = 0.9 on the right.
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The α-Ford model [Ford ’05]

Fix α ∈ [0, 1]. The α-Ford tree is a random binary unrooted tree with n leaves:
Start with one edge (yielding 2 leaves).

Given the α-Ford tree with k-leaves, assign weight 1− α to each external and
weight α to each internal edge.

Pick an edge according to its weight, and insert there another leaf.

Stop when the current binary combinatorial tree has n leaves.
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The α-Ford model [Ford ’05]
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Special cases:

α = 0: Kingman coalescent tree whithout edge lengths or Yule tree.

α = 1
2 : uniform tree [Aldous ’93].

α = 1: comb tree.

. . .

q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q
Goal
What if the tree gets large? Need a state space of (infinite) trees with a “nice”
topology.
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The space of algebraic measure trees [Löhr, Winter ’18]

•

• • x •

z • • c •

• • • •

y •

For x , y , z ∈ T there exists a unique branch point c = c(x , y , z) ∈ T with[
x , y
]
∩
[
y , z
]
∩
[
z , x
]

=
{
c
}
.
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The space of algebraic measure trees [Löhr, Winter ’18]

x z

c1 c2

y w

Definition: algebraic tree

An algebraic tree is a set T together with a symmetric map c : T 3 → T such
that:

(2-point condition) For x , y ∈ T , c(x , y , y) = y .

(3-point condition) For x , y , z ∈ T , c(x , y , c(x , y , z)) = c(x , y , z).

(4-point condition) For x , y , z ,w ∈ T ,

c(x , y , z) ∈ {c(x , y ,w), c(x , z ,w), c(y , z ,w)}.

Definition
An algebraic measure tree (T , c, µ) consists of an order separable algebraic tree
(T , c) together with a probability measure µ on (T ,B(T , c)).
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Topology on T2

We consider the subset of binary algebraic measure trees:

T2 := {(T , c, µ) : deg(v) 6 3 ∀v ∈ T , atoms(µ) ⊆ leaves(T )}.

Idea: “Gromov-weak” topology
A sequence of trees converges to a limit tree if and only if all randomly sampled
finite subtrees converge to the corresponding limit subtrees.
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“Sample shape convergence = convergence of subtrees”

When we sample n points according to µ, we can look at the tree shape they
span.

u1 u3

• • u5 1 3 5

• • • • • • •

u2 u4 2 4

Figure: A tree T and the shape spanned by 5 points.

A sequence of algebraic measure trees is sample-shape convergent if for all n,
the distributions of the n-tree shapes converge.
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The α-Ford algebraic measure trees

Let α ∈ [0, 1]. For all n ∈ N, the α-Ford tree with n leaves defines a random
tree in T2 (we put the uniform distribution on the leaves).

Proposition [N., Winter ’20]

As the number of leaves goes to infinity, the α-Ford model converges in
distribution in T2 to a random continuum algebraic measure tree.

We call the limit the α-Ford algebraic measure tree.

α = 0: the Kingman algebraic measure tree.

α = 1
2 : the algebraic measure Brownian Continuum Random Tree [Löhr,

Mytnik, Winter ’18].
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Statistics on the limit trees

We ignore the branch lengths, so we can not look at total length.

Sample shapes: distribution of the shape spanned by m points sampled
according to µ.

u1 u3

• • 1 3

• • • u4 • • 4

u2 2

Subtree masses: sample 3 points according to µ and look at how the mass
is distributed around their branch point.
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Subtree masses

For u = u1, u2, u3 three leaves of T , we consider the vector of the three masses
of the components connected to c(u):

η(u1, u2, u3) = (η1(u), η2(u), η3(u)).

u3

u2 • • •

• • c(u) •

• • •

• u1

Figure: A tree with 8 leaves; η(u) =
( 3
8 ,

3
8 ,

2
8

)
.

We look at polynomials of the form

Φf (χ) :=

∫
T3
µ⊗3(du)f (η(u)).
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Subtree masses: α = 1
2

Proposition [Aldous ’94]

Let PCRT be the law of the Brownian algebraic CRT. Then for all f : ∆2 → R
continuous bounded,

ECRT

[∫
T3
µ⊗3(du)f (η(u))

]
=

∫
∆2

f (x)Dir
(1
2
,
1
2
,
1
2

)
(dx),

where Dir
( 1
2 ,

1
2 ,

1
2

)
is the Dirichlet distribution.
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Subtree masses: α = 0

Proposition [N., Winter ’20]

Let PKin be the law of the Kingman algebraic measure tree. Let B1,2 and B2,2

be two independent beta random variables, such that B1,2 has law Beta(1, 2)
and B2,2 has law Beta(2, 2). Then for all f : ∆2 → R continuous bounded,

EKin

[∫
T3
µ⊗3(du)f (η(u))

]
=

1
6

∑
π∈S3

E
[
f ◦ π∗(B1,2B2,2,B1,2(1− B2,2), 1− B1,2)

]
,

where S3 is the set of permutations {1, 2, 3}, and for π ∈ S3, π∗ : ∆2 → ∆2 is
the induced map π∗(x) = (xπ(1), xπ(2), xπ(3)).
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Subtree masses

→ What about the other α ∈ [0, 1]?

We can calculate all the moments through a recurrence relation.

Eα
[∫

T3
µ⊗3(du)η1(u)

]
=

1
3
,

Eα
[∫

T3
µ⊗3(du)(η1(u))2

]
=

1
5
,

Eα
[∫

T3
µ⊗3(du)(η1(u))3

]
=

11− 7α
15(5− 3α)

,

Eα
[∫

T3
µ⊗3(du)(η1(u))4

]
=

37− 25α
63(5− 3α)

,

Eα
[∫

T3
µ⊗3(du)(η1(u))5

]
=

145− 165α + 44α2

42(5− 3α)(7− 3α)
.
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