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Context

Meiotic recombination:

— One of the main advantages
of sexual reproduction in
Eukaryotes
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Context

Meiotic recombination:

— Variable at many scales
(chromosome, individuals,
sexes, population, species, etc..)
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Context

Meiotic recombination:

— Increasing knowledge on its
genetic basis (reviewed by
Zelkowki et al., 2019)
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Context

Selection on recombination rates:
— Direct e.g. proper chromosome segregation during meiosis
— Indirect = mixing role of recombination

Recombination modifier models (reviewed by Otto, 2009) :

—

.



Context

— Recombination is favored in finite populations by the Hill-Robertson effect (Keightley &
Otto, 2006)
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Context

— Recombination is favored in finite populations by the Hill-Robertson effect (Keightley &

Otto, 2006)

Linkage
disequilibrium

t  —— =t -—

Time

- . X

Frequency

Fitness



Context

— Recombination is favored in finite populations by the Hill-Robertson effect (Keightley &
Otto, 2006)
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Context

— Recombination is favored in finite populations by the Hill-Robertson effect (Keightley &
Otto, 2006)
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Context

The role of self-fertilization

Intuitively selfing:
— Increases the variance in fitness
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Context

The role of self-fertilization

Intuitively selfing:

— Decreases the efficacy of recombination
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Context

The role of self-fertilization

— Deterministic analytical model by Roze & Lenormand (2005):
recombination is favored with certain gene interactions (disfavored
otherwise)

— QLE approximations require: s <<r

— Approximations break down when selfing rates are high and/or for
tightly linked loci



Model

— Reanalysis of Roze & Lenormand’s model with weak
recombination and only deleterious mutations

— Adaptation of the stochastic model of Roze (in press) to
Include the Hill-Roberston effect with selfing

— Whole chromosome introducting a chromosomal mutation
rate U and a direct fitness cost of recombination ¢

— ES map length R

Large number of loci
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Results

Extrapolation
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Results

Extrapolation

Hill-Robertson terms
Hill-Robertson + Deterministic terms
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Results

Extrapolation / no epistasis

Under random mating:
— Selection against delterious mutations = sh

— Plateau in the strength of the H-R effect as
long as sh << R
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¢ = direct cost of recombination



Results

Extrapolation

REs
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Perspectives

— Deleterious mutations are estimated to
have weak fitness effect on average
(Charlesworth, 2015): regime where selfing
Increases selection for recombination

— Higher genome-wide recombination rates
expected 1n more selfing species

Selfing rate (scaled)
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