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Context

Meiotic recombination: 

→ One of the main advantages
of sexual reproduction in 
Eukaryotes

→ Variable at many scales
(chromosome, individuals, 
sexes, population, species, etc..)

→ Increasing knowledge on its
genetic basis (reviewed by 
Zelkowki et al., 2019)

C
C

 B
Y

 4
.0

 o
p
en

st
ax

.o
rg

Chiasmata



Context

Peñalba &Wolf, 2020

Meiotic recombination: 

→ One of the main advantages
of sexual reproduction in 
Eukaryotes

→ Variable at many scales
(chromosome, individuals, 
sexes, population, species, etc..)

→ Increasing knowledge on its
genetic basis (reviewed by 
Zelkowki et al., 2019)



Context

Meiotic recombination: 

→ One of the main advantages
of sexual reproduction in 
Eukaryotes

→ Variable at many scales
(chromosome, individuals, 
sexes, population, species, etc..)

→ Increasing knowledge on its
genetic basis (reviewed by 
Zelkowki et al., 2019)

Peñalba &Wolf, 2020



Context

Selection on recombination rates:

→ Direct e.g. proper chromosome segregation during meiosis

→ Indirect = mixing role of recombination

Recombination modifier models (reviewed by Otto, 2009) :
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→ Recombination is favored in finite populations by the Hill-Robertson effect (Keightley & 
Otto, 2006)

Linkage 

disequilibrium

0



Context

→ Recombination is favored in finite populations by the Hill-Robertson effect (Keightley & 
Otto, 2006)

Linkage 

disequilibrium

0



Context

→ Recombination is favored in finite populations by the Hill-Robertson effect (Keightley & 
Otto, 2006)

Linkage 

disequilibrium

0



Context

→ Recombination is favored in finite populations by the Hill-Robertson effect (Keightley & 
Otto, 2006)

Linkage 

disequilibrium

Time
0



Context

→ Recombination is favored in finite populations by the Hill-Robertson effect (Keightley & 
Otto, 2006)

Linkage 

disequilibrium

Time
0



Context

→ Recombination is favored in finite populations by the Hill-Robertson effect (Keightley & 
Otto, 2006)

Linkage 

disequilibrium

Time
0



Context

→ Recombination is favored in finite populations by the Hill-Robertson effect (Keightley & 
Otto, 2006)

Linkage 

disequilibrium

Time
0

Frequency

Fitness



Context

→ Recombination is favored in finite populations by the Hill-Robertson effect (Keightley & 
Otto, 2006)

Linkage 

disequilibrium

Time
0

Frequency

Fitness

Frequency

Fitness



Context

→ Recombination is favored in finite populations by the Hill-Robertson effect (Keightley & 
Otto, 2006)

Linkage 

disequilibrium

Time
0

Frequency

Fitness

Frequency

Fitness



Context

Intuitively selfing: 

→ Increases the variance in fitness
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Context

→ Deterministic analytical model by Roze & Lenormand (2005): 
recombination is favored with certain gene interactions (disfavored
otherwise)

→ QLE approximations require: s << r

→ Approximations break down when selfing rates are high and/or for 
tightly linked loci

The role of self-fertilization



Model

→ Reanalysis of Roze & Lenormand’s model with weak
recombination and only deleterious mutations

→ Adaptation of the stochastic model of Roze (in press) to 
include the Hill-Roberston effect with selfing

→ Whole chromosome introducting a chromosomal mutation 
rate U and a direct fitness cost of recombination c

→ ES map length RES

R
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Results
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effect

→ Weak deterministic effect disfavoring
recombination

Selfing rate
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s = selection coefficient of deleterious mutations

Hill-Robertson + Deterministic terms

Hill-Robertson terms



Results

→ Predominance of the Hill-Roberston
effect

→ Weak deterministic effect disfavoring
recombination

→ Selfing increases or decreases RES
according to s (selection against
deleterious mutations)

Hill-Robertson + Deterministic terms

Hill-Robertson terms

Selfing rate

Extrapolation

s = selection coefficient of deleterious mutations



Results

Under random mating:

→ Selection against delterious mutations = sh

→ Plateau in the strength of the H-R effect as 
long as sh << R

Extrapolation / no epistasis

c = 0.001

c = 0.01

c = 0.1

From Roze (in press)

c = direct cost of recombination



Results

Under partial selfing:

→ Selection against delterious mutations = she

→ he , effective dominance coefficient: h under
random mating, 1 under full-selfing

→ Stronger effective selection when increasing
the selfing rate

→When s low => plateau of the H-R effect

→ RES increases because the efficacy of 
recombination is reduced (no effect under full 
selfing)

Extrapolation

Hill-Robertson + Deterministic terms

Selfing rate

s = selection coefficient of deleterious mutations



Perspectives

→ Deleterious mutations are estimated to 
have weak fitness effect on average 
(Charlesworth, 2015): regime where selfing 
increases selection for recombination

→ Higher genome-wide recombination rates 
expected in more selfing species

Roze & Lenormand, 2005
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