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Ecological problematic and motivation

Two behaviors:
® commuting mode;

® foraging mode.

Goal: predicting the majority behavior of bats at sites throughout France.

» discriminate the foraging behavior from the commuting behavior.

Motivations:
® contribute to address spatial ecology issues;

® automate decision-making with few input variables.

Data: time of echolocation calls of differents species
recorded as part of Vigie-Chiro participatory project.

> we focus on the Common Pipistrelle. VIGIE



Echolocation and behavioral characterization

Echolocation: used by bats for foraging and commuting.

Behavioral characterization: via the way bats emit calls (see

22 23 24 Time

Figure: Sonogram containing a feeding buzz.

» consider the temporal distribution of the calls.

» sequence of calls (Ty),»1 as a realization of a point process N.
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Data modeling with Hawkes processes

Hawkes processes: family of point processes introduced in

Exponential model: for Y € {0, 1}, 0y € ©, conditional intensity given for
t > 0 by:

t
AGy(t) = Uy +/ OfY,BYe_ﬁY(t_S) dN(S) = puy + Z aYﬁye_ﬁY(t_T’),
0

Te<t
where
*O={u>00<a<1, =0}

® (T;)¢>1 are the jump times of the process, Y the label.

Modeling: the start time of a call considered as a jump of the Hawkes
process.

Classification: procedure is based on the likelihood and relies on Empirical
Risk Minimization (ERM).
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Real data

e Calls recorded over one night at 755 sites in France.
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Figure: Each point on the map represents a site and its colour refers to the number of events in the
temporal sequences.

e 332 labeled sites.
e 423 unlabeled sites.




Classification on labeled data: testing over 20 Monte-Carlo repetitions.

True abel
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Predicted label Prediced label

Figure: Confusion matrix of prediction on test data. Score: ERM: 68.13% (4.15), RF: 67.35% (2.21).

Prediction on unlabeled sites: tricky since bats have mixed behavior.
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Figure: Predictive probability on unlabeled data as a function of environmental covariates.



Conclusion and perspectives

Conclusion:
® Hawkes processes revelant for data modeling;
® classification procedure: prediction and behavioral confidence index;

® tool to ecologist for predicting bats behavior.

Bats Monitoring: A Classification Procedure of Bats Behaviors based on
Hawkes Processes,
, The Journal of the Royal Statistical Society, Series C.

Perspectives:
® |ook at other species with more marked behavior;

® extension to multivariate Hawkes process.
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Multidimensional linear Hawkes process (MHP)

Multivariate Hawkes process: N = (N;,

..., Nuy) is defined by M point
processes on R.

» M > 1is the dimension of the network.

Jj-th conditional intensity: given for t > 0 by:

M t M
Ai(8) = p,-+za,-,,-,/ h(t=s) ANy (s) = i+ Y @y > h(t=Typ),
= 0 =

Tj/,[<t

where

o 1= (..., um) € (R:)Mis the exogenous intensity vector;

o A= (ajy);; € R¥Mis the interaction matrix;

°* h:R, — R, such that fow h(t)dt < 1is the kernel function.



Modeling interaction within a network

Example: in a network of dimension M = 5.
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(a) exogenous intensity vector and interaction matrix
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(b) Jump times of the associated MHP

» a MHP models mutual excitation effects between connected
components of a network, which depend on past interactions.

Romain Lacoste
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Parametric model

Parametrization: each A; depends on an unknown parameter 6* belonging
to:

©:={ue RHM, AcR)"™ p(A) <1} e RMX (M),

where p(A) is the spectral radius of A.
Assumption: N have finite exponential moment.
Modeling hypothesis: h known.

Notation: §* = (i, A*) € O the true and unknown parameter.

» Ao+ the conditional intensity of the j-th componant associated with this
parameter.

Goal: recover the support of 6*: supp(0*).



Statistical setting

Let T > 0 be the upper bound of the observation interval.

Notation: 77 := {{Tj s }1<e<n;(1), 1 < j < M} the jump times of a MHP
N = (NMi,..., Ny) observed in short time on [0, T].

Data: training n-sample D, := {7}(1), .. .,7}(")} which consists of
independent copies of 77.

Asymptotic setting: in n — co the number of trials (not in T as in
)-

» the path may not have reached stationary regime.



High-dimensional framework

High-dimension: the dimension of the network M may be very large.

» in particular M(M + 1) may be larger than n.

Sparsity assumption: A* sparse.
» individuals in the network only impacted by a small portion of other
individuals.

Motivation:
e reduction of the problem dimension;
e facilitate interpretation;

e often very natural from a modeling standpoint.



LASSO procedure for support recovery

Goodness-of-fit functional:

.
Rral0) = 1 ( Z [ a2 [Tagw o).

where )L;g(t) and /\/J.(i)(t) are defined from the i-th repetition.

Estimator:

M M
0 e argmin { R7.,(0) +k 101
0 cRMx(M+1) { Z Z Y

==
where k is the regularization constant to be calibrated.
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Some additional notations

For each t € (0, T] the random matrix H; € R™M+1)

. " t . »
(He)ij = H (1), with H(¢) :=/ h(t=s)dN"(s), j#0, H = 1.
0

1 T
T Jo

° Sj’f = {QL., #0, 0 < < M} the support of the j-th line of 6"

> contains at least an element (as ,u;.‘ is non-zero).
* Hs.s: := (Hyj)jes;-

» submatrix given by deleting the rows and columns belonging to the
complementary of the support 57 := {67, =0, 0 <j" < M}.



Assumptions on H (1/3)

Assumption 1: (Mutual incoherence)

There exists some 1> y > 0 such that

max  ||Hge gHz o <1-y as.
je{l,...,M}” 555577 le Y

» ensures there is not too much correlation between active and non-active
variables;

> the incoherence parameter y € (0, 1] must not be too small.



Assumptions on H (2/3)

Assumption 2: (Minimum eigenvalue)

There exists Ay > 0 such that

Hs s

J’7)

min - Amin

> Ay as.
je{1,...M}

> imposes each matrix [I-I]sjf,s; to be invertible;
> identifiability of the problem restricted to each S;.‘;

» ensures that the submatrix HS]’_‘)S]’_‘ does not have its columns linearly
dependent.



Assumptions on H (3/3)

Assumption 3: (Minimum signal condition)

2 log*(nM?)
NF

min St

i €s

0?.,‘ > Ay max
j

» ensures that the non-zero entries of the true parameter are big enough to

detect;

» imposes that the minimum value 6 . (non-zero) cannot decay to zero
faster than the regularization parameter x chosen in the next theorem.



Main result

log*(nM?)

Under assumptions 1, 2, et 3. Let k = T For n large enough,
n

with probability greater than 1 - % with Cy > 0, the penalized least-
squares contrast admits a unique solution 6 which satisfies the fol-
lowing properties:

1) éj,j' >0

® supp(6) = supp(6");
Ao max; |5;‘|2 log?* (nM?)

<
0 Vn

ofi-r

The proof follows the primal-dual-witness method (see
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Implementation details (1/2)

Objective function : written as the sum of two functions.

MM
R7.A(0) + KZ Z 1071

=1 7=

> use first-order optimization algorithm based on proximal methods with
Nesterov’s momentum method, namely FISTA (see

)-

FISTA: new iterate is based on a specific linear combination of the previous
two points.

e significantly faster rate of convergence than ISTA;

e additional computation cost is marginal (requires only one gradient
evaluation per iteration as for ISTA);

e descent step used is 1/L with L the Lipschitz constant of the gradient



Implementation details (2/2)

Calibration of «: use EBIC criteria (see )-

EBIC: for somey € [0,1],k € A

EBIC,(x) := —2L7, (é(x)) + |5§<K)

MZ
log(n) + 2y log ( )
‘ 0(x)

where 0 (k) is the LASSO estimates with the tuning parameter k, L1, is the
log-likelihood of the model, )5(3(,()’ is the number of active coefficients of
0(k).

e relevant in a high-dimensional setting with parsimony assumptions;

e we choose the constant y = 1

e we explore a grid of size |A| = 40



Simulation scheme and evaluation

Synthetic data generation: paths simulated by cluster process
representation algorithm;

Panel of scenarios: vary the sparsity rate of A* as well as its structure

I .k 1"
1-.=-" L :
. N N .

(a) Scenario 1

~ |

(b) Scenario 2

Figure: * = (u*, A*) in both scenarios. Sparsity rate A* in Scenario 1: 92%, in Scenario 2 : 85%.

Evaluation: using the following metrics

M

M
x X 1 X % A 2.
di (A ’A) Y .Z,_1 Va2, ) 2nd oo (A ’A) N\ Z.,_1 Ay = Air s
)= J)=
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Visual results for

e M=25T =5, h(s) = fexp(—pfs) with § = 3.

A A n=100 A n=500 A, n=1000

Figure: True support supp(60*) and recovered support supp(é) in Scenario 2. The impact of nis
investigated.



Results for 30 Monte-Carlo repetitions

dn d,
n= 100 n =500 n= 1000 n= 100 n =500 n= 1000
Scenario 1| 0.03 (0.01) | 0.03 (0.01) | 0.03 (0.01) | 0.96 (0.11) | 0.44 (0.04) | 0.32 (0.04)
Scenario 2 | 0.10 (0.01) | 0.05 (0.01) | 0.04 (0.01) | 1.04 (0.10) | 0.47 (0.06) | 0.32 (0.03)

Table: Lasso results

> larger n is, the better the support is reconstructed, either in terms of
Hamming distance or ¢, distance.

n # events time (sec)
100 | 9524 (147) | 68.64 (0.22)
Scenario 1| 500 | 47651 (354) | 334.13 (1.30)
1000 | 95737 (632) | 670.51 (2.67)

Table: Number of observed events, average execution time for Scenario 1.

» fast computational time (optimized C++ code).



Conclusion and perspectives

Conclusion:
e consistency of the support and the convergence of the estimator;

e good numerical results on synthetic data;

ERM-LASSO classification rule for Multivariate Hawkes Processes paths,
, Soon on Hal.

Sparkle: a statistical learning toolkit for Hawkes process modeling in Py thon,
, In progress.

Perspectives:
e include inhibition interactions;

e ecological bat problem: each component of the MHP would model
echolocation calls associated with a species;

» model the effects of inter-species cooperation and competition between
species.



Thank you for your attention!

Any questions?




Modeling the sequence of calls

Point processes: model the occurrence of random events over time.
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Figure: On the left are represented the start times of echolocation calls sequences, on the right it is the
autocorrelation as a function of the lag for four nights.

» presence of strong temporal dependence in data.




Mixture model

Let Z),s = {(7}1, Yh,..., (TT”, Y")} be a sample of i.i.d. observations such
that:

® Label: Y ~ B (p*);
® Feature: 77 = (Ti,..., Ty, ) of intensity Ag;(t) on [0, T] with 0, € ©.

Goal: learn a decision rule g from D* :

such that g(77) is a prediction of the

label Y. ‘
» given a new unlabeled feature

771, our guess for Y™ is g (7).

Quality of label prediction: measured by its missclassification risk

R(g) =P (g(77™) # ¥™).




Bayes rule and empirical risk minimization

Bayes rule: characterized by
8por (T1) =1y oo (151}

P eXP(FgT(TT))

where 1,: g (77) =P (Y =1|97) =
Tpr.0" T Y exp(Foy (1) (1=p") exp o (7))

Empirical risk: based on D, estimates p = % 21 Vyiz1y and solve :

« 1 <
0 € argmin — 1 Ny
oo ”Z‘ lgpo (77)#Y'}

> minimize this require to solve a non convex optimization problem.
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ERM procedure

Convexification: replace the 0 — 1 loss by a convex surrogate (see
) and based on D,, solve instead :

n

0 e argmin 1 Z (Zi —]‘,3,9(7}[))2

n
0e0? i=1

where Z' = 2Y; — 1 and f5.0(T7) = 2np0(T7) — 1.
Model: ¥ = {27 — 1: 5 € H} where

X pexp (Fo, (7)) }
i1 = e (77) =
{’7”"’ ) = e (For (7)) + (1 = B) exp (Fan(77))

Classifier: g(77) = “{f(Tr)zo}'




Goodness-of-fit test

ERM procedure: provides estimates of (6;, 07).
> gives a model for the behavior within each class.
Model evaluation: by performing a goodness-of-fit test.

» using the Time-Rescaling Theorem (see )-

Let A(t) = fot A(s) ds be the compensator of the process N. Then, a.s.,
the transformed sequence {7; = A(T))} is a realization of a unit-rate
Poisson process if and only if the original sequence {T;} is a realization
from the point process N.

Test Hy: “the sequence of observations is a realization of the point process
with intensity Aék ”.
: iid
> test if {Ay (Tjx1) — Ay (T} ~ E(1)




Test results

Labeled data:

&(7)
p-value | Acceptance Rate
Class 0 | 0.26 (0.06) 0.66 (0.11)
Class 1| 0.15(0.03) 0.45 (0.07)

Table: Mean p-values and reject rate for a 5% significance level test.

Unlabeled data:

8(7)
p-value | Acceptance Rate
Class 0 0.15 0.43
Class 1 0.21 0.49

Table: Mean p-values and acceptance rate for a 5% significance level test.




	Hawkes Processes Classification Procedure for Bats Monitoring
	Ecological problematic
	Statistical methodology
	Results on real data

	Support recovery of a multivariate Hawkes process in high dimension
	Statistical framework
	Theoretical results
	Numerical experiments


