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Generative modeling

Assumption consider a dataset (Xi)1≤i≤N in Rdx with unknown
distribution πdata.

What estimate πdata and sample new instances from πdata.
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Generative modeling

Assumption consider an input variable X ∈ Rdx and a target
observation Y ∈ Rdy or Y ∈ {1, . . . ,M}.

What a generative model is a statistical model for the joint distribution
of (X,Y ), a discriminative model is a statistical model for the
conditional distribution of Y given X.

Generative learning consider a parametric family pθ, θ ∈ Θ and
training data D to estimate the unknown parameter θ. 1

1Illustrations from
https://vitalflux.com/generative-vs-discriminative-models-examples/
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Generative modeling

1 Estimate πdata with a parametric probability distribution pθ.

1. Choose a suitable parametric form for pθ.

⇝ In classical solutions, pθ is parameterized using a Neural
Network.

⇝ In most recent approaches, the score ∇ log πdata is direclty
parameterized.

2. Data (X1, . . . , XN ) ∼ πdata.
⇝ How to train and use the score to generate new samples ?

⇝ Score-based generative models (Yang et al., 2024)
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Controlled generation

2 Perform controlled generation using pθ∗ .

⇝ Target distribution: weight pθ∗ with a function x 7→ g(x)

ϕ(dx) =
g(x)pθ∗(dx)∫
g(z)pθ∗(dz)

,

⇝ Posterior sampling: g(x) = p(y|x).

⇝ Inverse problem with Y = f(X) + ε with X ∼ πdata
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Controlled generation

2 Perform controlled generation using pθ∗ .

⇝ Inverse problem with Y = f(X) + ε with X ∼ πdata
⇝ Use generative models to sample from the conditional law of X
given Y 3.

3Illustration from (Karezouni et al., 2023)
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Generative modeling - Applications

Assumption access to samples from some unknown distribution πdata.

What sampling (approximately) synthetic instances from πdata

Predict a protein’s 3D structure from its amino acid sequence.

⇝ Database of 200M proteins45(Deepmind & European Molecular
Biology Laboratory), trained with the 200k known conformations.

4https://alphafold.ebi.ac.uk/
5https://github.com/google-deepmind/alphafold
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Generative modeling - Applications

Assumption access to samples from some unknown distribution πdata.

What sampling (approximately) synthetic instances from πdata

Probabilistic model for generating molecular conformations
(GeoDiff, Xu et al., 2022)

⇝ GEOM (37 million annotated molecular conformations annotated by
energy): generates new structures + chemical toolkit to calculate
conformation energy.6

6https://github.com/MinkaiXu/GeoDiff
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Generative modeling - Applications

Probabilistic time series imputation (CSDI, Tashiro et al., 2021)

Healthcare dataset in PhysioNet Challenge 2012 (4000 clinical time series
with 35 variables for 48 hours from intensive care unit).

Synthetic Data Generation for Privacy and Security (TabDDPM,
Kotelnikov et al., 2023), etc.
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Generative modeling - Applications

⇝ Sample high-fidelity and diverse tunes, (Jukebox, Dhariwal et al.,
2020).

⇝ Non-Intrusive Load Monitoring, (DiffNILM, Sun et al., 2023).

⇝ Sample Image super-resolution, (Gao et al., 2023).

⇝ Preliminary medical diagnostic + biomedical denoising7.

7https://www.academie-medecine.fr/wp-content/uploads/2024/03/

Rapport-Systemes-dIA-generative-en-sante.pdf
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Generative modeling - Tractable likelihood ?

Tractable likelihood allows for straightforward comparison between
models, and straightforward optimization.

Flow-based generative models (Rezende & Mohamed, 2015,
Normalizing Flows) or Autoregressive models (Van den Oord et al.,
2016, PixelCNN)

The set of models with a tractable likelihood is constrained.

⇝ The distribution is factorized as a product of conditional
distributions

⇝ The distribution is modeled as an invertible transformation of a
base distribution
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Generative modeling - Energy based models

Energy-based models specify only the unnormalized negative
log-probability (Energy function).

Easy to leverage advances in architectures originally developed for
classification or regression, and flexible to special-purpose architectures.

⇝ Image generation (Du et al., 2019)

⇝ Natural language processing (Deng et al., 2020)

⇝ Reinforcement learning (Haarnoja et al., 2018)
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Generative modeling - Energy based models

The target random variable take values in (Rd,B(Rd)) and the target
distribution is written8:

x 7→ πθ(x) ∝ exp (−Eθ(x)) =
exp (−Eθ(x))∫
exp (−Eθ(u)) du

,

where θ is an unknown parameter and Eθ is the energy function.

Normalizing constant/partition function:

Zθ =

∫
exp (−Eθ(u)) du.

Gradient-based maximum likelihood requires to compute

x 7→ ∇θ log πθ(x) = −∇θEθ(x)−∇θ logZθ.

8(Song & Kingma, 2021)
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Generative modeling - Energy based models

Target x 7→ πθ(x) ∝ exp (−Eθ(x))

Gradient-based maximum likelihood requires to compute

∇θ logZθ = Z−1
θ

∫
∇θ exp (−Eθ(u)) du

=

∫
{−∇θEθ(u)}Z−1

θ exp (−Eθ(u)) du =

∫
{−∇θEθ(u)}πθ(u)du.

Therefore
∇θ logZθ = Eπθ

[−∇θEθ(X)]

where Eµ[f(X)] denotes the expectation of f(X) when X ∼ µ.
⇝ Possible to train an EBM by providing a Monte Carlo estimate of
∇θ logZθ which requires to obtain samples from πθ.
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Generative modeling - latent data

In some situations, observations are partial and do not contain some
variables of interest.

Given a generative process for the data, we might be interested in
reconstructing the distribution of the missing variables given the data.

We introduce a family of joint probability distributions (z, x) 7→ pθ(z, x),
θ ∈ Θ on (Z× X,Z × X ) where Z is a latent variable and X is the
observation.

In this setting, for all θ, x, z,

pθ(z, x) = pθ(z)pθ(x|z)

and πdata is estimated by the marginal

pθ(x) =

∫
pθ(z, x)dz =

∫
pθ(z)pθ(x|z)dz
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Generative modeling - latent data

Major drawback: pθ(x) is not available explicitly, nor the conditional
distribution of the latent data given the observation:

pθ(z|x) =
pθ(z)pθ(x|z)

pθ(x)
=

pθ(z)pθ(x|z)∫
pθ(z)pθ(x|z)dz

⇝ Challenging to train the model !

⇝ Challenging to sample latent data given the observations !
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Generative modeling - latent data - DLM9

(Kingma et al., 2013): deep latent variable model for multivariate
Benoulli data

X ∈ {0, 1}D and conditionally on a variable Z ∈ Rd, (X1, . . . , XD) are
independent with Bernoulli distribution with parameters
pθ(X) = (p1,θ(X), . . . , pD,θ(X)), where pθ(X) is the output of a
Multi-layer Perceptron with input X and parameters θ (weights and
biases).

In this example, the input variable has a prior distribution Z ∼ N (0, Id)
and, for any value of θ, the conditional distribution of Z given X is not
available explicitly.

9Deep Latent Models
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Generative modeling - latent data - HMM10

An observation is a sequence X = X1:n and the latent data is a sequence
Z = Z1:n.

Bivariate Markov chain (Zk)k∈N = (Zk, Xk)k∈N where the transition is
defined as follows.

Conditionally on Z0:k−1, Xk ∼ Qθ(Xk−1, ·),
Conditionally on (Xk, Z0:k−1), Yk ∼ Gθ(Xk, ·),

with Qθ a Markov kernel on X× B(X) and Gθ a Markov kernel on
X× B(Y).
We know how to compute pθ(Z1:n) and pθ(X1:n|Z1:n) but pθ(X1:n) and
pθ(Z1:n|X1:n) are intractable.

10Hidden Markov Models
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Topics covered in this tutorial

How to sample from πθ when the distribution is known up to a
multiplicative constant - MCMC

How to sample from πθ(z|x) when using latent data - VAE.

How to sample from πθ when only ∇ log πθ is estimated - Score-based
diffusion models.

Applications of all approaches
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Sampling with MCMC algorithms
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Bayesian setting

In a Bayesian setting, a parameter Z is embedded with a prior
distribution pθ and the observations are given by a probabilistic model:

X ∼ ℓθ(·|Z) .

The inference is then based on the posterior distribution:

πθ(z|X) =
pθ(z)ℓθ(X|z)∫
pθ(u)ℓθ(X|u)du

.

In most cases the normalizing constant is not tractable:

πθ(Z|X) ∝ pθ(Z)ℓθ(X|Z) .
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MCMC: rationale

Let X1 be any starting point.

- For a given target distribution π, choose a π-reversible transition
kernel with density k:

π(x)k(x, x′) = π(x′)k(x′, x) [Reversibility]

- Sample a Markov chain X1, . . . , Xn with kernel k and compute

π̂n(f) =
1

n

n∑
i=1

f(Xi)

to approximate π(f) =
∫
f(x)π(dx).

⇒ Doest it converge ? What is the rate of convergence ?
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MCMC: rationale

Under regularity assumptions, if π is a stationary distribution:

- Ergodic theorem, under which condition can we establish, for
f ∈ L1(π),

π̂(f) =
1

n

n∑
i=1

f(Xi) −→
a.s.

∫
f(x)π(x)dx .

- Central limit theorem, under which condition can we establish, for
f ∈ L1(π),

√
n

σπ,q,f

[
1

n

n∑
i=1

f(Xi)−
∫
f(x)π(x)dx

]
D−→ N (0, 1) .
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Key tool : the Accept-Reject algorithm
Assume we know that π(x) ≤Mr(x) and that we know how to sample
from r.

1. Sample X ∼ r and U ∼ U([0, 1]).
2. If

U ≤ π(X)

Mr(X)
,

accept X.
3. Else go to 1.

Illustration of the Accept-Reject method (Cappé, Moulines, Ryden 2005).
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The Metropolis-Hastings algorithm

- Objective target density π.

- Instrumental transition density q(x, y).

Given Xk,

1. Generate Yk+1 ∼ q(·, Xk).

2. Set

Xk+1 =

{
Yk+1 with probability α(Xk, Yk+1) ,
Xk with probability 1− α(Xk, Yk+1) .

where

α(x, y) = 1 ∧ π(y)
π(x)

q(y, x)

q(x, y)
.

⇒ No restriction on π and q, with this choice of α the algorithm
produces a Markov chain with stationary distribution π.
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The Metropolis-Hastings algorithm
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The Metropolis-Hastings algorithm
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Independent case (Hastings 1970)

In this case q(x, y) = g(y).

1. Generate Yk+1 ∼ g(·).
2. Set

Xk+1 =

{
Yk+1 with probability α(Xk, Yk+1) ,
Xk with probability 1− α(Xk, Yk+1) .

where

α(x, y) = 1 ∧ π(y)
π(x)

g(x)

g(y)
.

Alternative to importance sampling and Accept-Reject algorithms.
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Independent case (Hastings 1970)

The samples are not i.i.d. but, if there exists M such that π(x) ⩽Mg(x)
then

∥Kn(x, ·)− π∥tv ⩽
(
1− 1

M

)n

(Ergodicity)

(Roberts, Tweedie 1996), (Mengersen, Tweedie 1996).

Expected acceptance probability is 1/M , no need to know M.

If the majoration condition does not hold, no geometric ergodicity.
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Cauchy vs Normal (I) (Cappé, Moulines, Ryden 2005)

- Target distribution: π(x) ∝ (1 + x2)−1.

- Proposal distribution: g(y) ∼ N (0, 1).

Histogram of IMH with 5000 samples.
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Random walk Metropolis-Hastings

The proposal mechanism is given by Yk+1 = Xk + εk+1, where εk+1 is
independent of Xk+1. The proposal distribution is of the form
q(x, y) = q(y − x) with q is symmetric.

1. Generate Yk+1 ∼ q(Xk, ·).
2. Set

Xk+1 =

{
Yk+1 with probability α(Xk, Yk+1) ,
Xk with probability 1− α(Xk, Yk+1) .

where

α(x, y) = 1 ∧ π(y)
π(x)

.

Using random walk moves prevents from being uniformly ergodic (Robert,

Casella 2004).
But still, geometric ergodicity.
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Cauchy vs Normal (II) (Cappé, Moulines, Ryden 2005)

- Target distribution: π(x) ∝ (1 + x2)−1.

- Proposal distribution: N (0, 1).

α(x, y) = 1 ∧ 1 + x2

1 + y2

Histogram of IMH with 10000 samples.
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Improving Metropolis-Hastings using gradient information

Langevin equation associated with π:

dXt = (Σ/2)∇ log π(Xt)dt+Σ1/2dWt ,

where W is a d-dimensional Brownian motion.

Under appropriate regularity assumptions, the generated dynamic is
ergodic with unique invariant distribution π.

Solving this equation analytically would allow to sample exacty from π.
Not tractable in practice!

Another family of proposals is based on the Euler-Maruyama
discretization of the equation...
Proposal mechanism of the form

Yk+1 = Xk +
hσ2

2
∇ log π(Xk) +

√
hσεk+1 .
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The MALA algorithm
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The MALA algorithm
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The MALA algorithm

If σ is chosen either too small or too large, the convergence can be
arbitrarily slow:

- σ small
Many moves are likely to be accepted.
The chain visits the state-space very slowly.

- σ large
Proposed moves often rejected.
The algorithm may be stuck for a long time.
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Challenge: scaling issues and high dimensionality

How to choose the scaling (σ) of the algorithm to optimize efficiency ?

Scaling problem mainly studied for:

1. Random walk Metropolis-Hastings (RWM)

- Proposal mechanism of the form Yk+1 = Xk + σεk+1.

- Acceptance rate:

α(x, y) = 1 ∧ π(y)

π(x)
.

2. Metropolis-Adjusted Langevin Algorithm (MALA)

- Proposal mechanism of the form

Yk+1 = Xk +
hσ2

2
∇ log π(Xk) +

√
hσεk+1 .
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How to choose scaling (Roberts, Rosenthal, 2001)
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Optimal scaling (Roberts, Gelman, Gilks, 1997), (Roberts, Rosenthal, 2001)

- The influence of scaling is better understood with high dimensional
settings.
⇒ Consider a state-space Rd when d→ +∞.

- Each component of the Markov chain converges weakly to a
diffusive limit.

- The choice of scaling can be obtained based on the behavior of this
diffusive limit

1. Target distribution: πd(x) =
∏d

k=1 f(xk).

2. RW proposal: qd(x) ∼ N (0, σ2Id/d).
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Optimal scaling
σd is of the form σ2

d = ℓ2/d.

Let (Zt)t≥0 be the linear interpolation of the Markov chain
(
Xd

k,1

)
k≥0

after time rescaling. (Zt)t≥0 converge weakly to the diffusion process
(Zt)t≥0:

dZt = h(ℓ)1/2dBt +
1

2
h(ℓ)∇ log π(Zt)dt

with h(ℓ) = 2ℓ2Φ
(
−
√
Iℓ/2

)
.

By choosing the value ℓ⋆ of ℓ which maximizes h(ℓ), the asymptotic
acceptance rate is

A(ℓ⋆) ∼ 0.234 .

For the MALA algorithm, by choosing σ2
d = ℓ/d1/3,

A(ℓ⋆) ∼ 0.574 .

These MCMC algorithms, even optimally scaled, remain inefficient
in high dimensional settings.
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Other scaling results
- (Roberts et al., AAP, 2012)

πd is confined to the d-dimensional hypercube (0, 1)d and twice
continuously differentiable on the hypercube with bounded
derivatives.

Scaling σd = ℓ/d.

The asymptotic optimal acceptance rate obtained by maximizing the
speed of the limiting diffusion is then equal to 0.1353.

- (Jourdain et al., AAP & Bernoulli, 2015)

Initial distribution is not π.
Same scaling using the weak formulation.

- (Durmus et al., JAP, 2017)

Same scaling using the weak differentiability assumptions.

- Fast MALA (Durmus et al. 2017, AAP): second order discretization of
the SDE: scaling of order 1/5.

These MCMC algorithms, even optimally scaled, remain inefficient
in high dimensional settings.

43 / 143



Extensions

- In practice the scale can be adapted on the fly to optimize the
acceptance rate. [Adaptive algorithms].

- The MCMC algorithm can still have trouble capturing multimodality
(trapped in local modes).

- [Parallel tempering] Design several target densities πTk with
T1 ≥ T2 · · · ≥ Tp = 1.

- Swaps between states of adjacent levels are proposed to allow an
exchange of information.
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And for dynamical data ?

Population dynamics in a predator-prey system

dZt = αθ(Zt)dt+

(
Z1(t) 0
0 Z2(t)

)
ΓdWt

with

αθ(Zt) =

(
Z1(t)(a10 − a11Z1(t)− a12Z2(t))
Z2(t)(−a20 + a21Z1(t)− a22Z2(t))

)
The observation model is given by

Xtk =

(
c1Z1(tk)e

ε
(1)
k

c2Z2(tk)e
ε
(2)
k

)

Objectives: estimate the unknown parameters and sample from
pθ(Zt0:tn |Xt0:tn)
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Lotka-Volterra

Objectives:

Estimate the unknown parameters and sample from pθ(Zt0:tn |Xt0:tn)

Problems:

pθ(Zt0:tn |Xt0:tn) ∝ pθ(Zt0:tn)pθ(Xt0:tn |Zt0:tn) but pθ(Zt0:tn) is
unknown.

At iteration p, not easy to design a proposal distribution given Z
(p)
t0:tn .

Possible to use Sequential Importance Sampling to propose a new state:
computationally intensive.

46 / 143



Synthetic data
300 time steps

The first 10000 samples are discarded, the mean over the next 10000
samples is displayed.
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Bayesian setting

⇁ Guess-and-check strategy of Random Walk Metropolis and the
approximation of the Langevin equation are doomed to fail in high
dimensional spaces.

⇁ In high dimensional settings, the difficulty is to propose new states far
from the initial point, and use the geometry of the target density to
ensure a high acceptance probability.

⇁ A move based on the gradient pulls the state away from the level set
towards the mode of the target density.

⇁ Stability in the exploration may be ensured by adding a momentum
to counteract the ”gravitational” (gradient) attraction.
A well tuned momentum balances the corresponding dynamics and leads
to conservative moves.
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Heuristic: why gradient moves may not be sufficient ?
For a function f : Rd → R, define the level sets:

Cc = {x ∈ Rd, f(x) = c} .

⇁ The gradient is orthogonal to level sets.
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Bayesian setting

⇁ Define a target joint distribution:

µ(q, p) ∝ exp (−H(q, p)) .

⇁ In the case where H(q, p) = U(q) +K(p),

µ(q, p) ∝ exp (−U(q)) exp (−K(p)) .

⇁ In Bayesian analysis, the position q is understood as the parameter of
interest θ and U is its log-posterior (unnormalized) distribution:

U(q) = − log(π(q)ℓ(q|Y )) ,

where π is the prior distribution of q and ℓ(·|Y ) the conditional
distribution given the data.

If (q∗, p∗) ∼ µ, then q has the target distribution!
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Equations of motion
⇁ The system is described by a d-dimensional position q and a
d-dimensional momentum p.
⇁ The Hamiltonian function H describes the system dynamics: for all
1 ⩽ j ⩽ d,

dqj
dt

=
∂H

∂pj
,

dpj
dt

= −∂H
∂qj

.

This Hamiltonian dynamics generates a vector field oriented with
the level set of the joint distribution !
⇁ This system can be written using matrix products: if z = (q, p) is joint
state,

dz

dt
=

(
0d Id
−Id 0d

)
∇H(z) .

⇁ In most cases, the Hamiltonian is of the form H(q, p) = U(q) +K(p)
where U is the potential energy and K(p) = pTM−1p/2 is the kinetic
energy with M a symmetric positive-definite matrix.
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Properties of the Hamiltonian dynamics

Reversibility
For all s ⩾ 0, the mapping Ts : (q(t), p(t)) 7→ (q(t+ s), p(t+ s)), is
one-to-one: there exists a unique inverse transform.

Stationarity
Using the chain rule,

dH(q, p)

dt
=

d∑
j=1

(
dqj
dt

∂H

∂qj
+

dpj
dt

∂H

∂pj

)
= 0 .

Volume preservation (Liouville’s theorem)
The vector field defined by Hamiltonian dynamics is divergence free so
that the dynamics is volume preserving.
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Hamiltonian within MCMC implementation

⇁ Define a target joint distribution:

µ(q, p) ∝ exp (−H(q, p)) .

where H(q, p) = U(q) +K(p) and U(q) = − log π(q|Y ).

Solving the Hamiltonian dynamics defines a new proposal moves
for a MCMC approach.

Which time horizon to solve the system (efficient exploration of a
level set)?

How to perform the integration numerically ?

How to choose the kinetic energy K ?
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Euler discretization

⇁ Starting at state (qt, pt), provides an approximate value for
(qt+δ, pt+δ).
In the case where H(q, p) = U(q) +K(p), Euler discretization is:

pt+δ = pt − δ∇U(qt) ,

qt+δ = qt + δ∇K(pt) .

And, if it is assumed that K(p) = pTM−1p/2,

pt+δ = pt − δ∇U(qt) ,

qt+δ = qt + δM−1pt .
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Euler discretization
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Euler discretization

⇁ H(q, p) = q2/2 + p2/2.
⇁ Initial state (q, p) = (0, 1), L = 20 steps.
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Leapfrog integrator

⇁ Starting at state (qt, pt), provides an approximate value for
(qt+δ, pt+δ).
In the case where H(q, p) = U(q) +K(p), the leapfrog integrator is:

pt+δ/2 = pt − δ∇U(qt)/2 ,

qt+δ = qt + δ∇K(pt+δ/2) ,

pt+δ = pt+δ/2 − δ∇U(qt+δ)/2 .

And, if it is assumed that K(p) = pTM−1p/2,

pt+δ/2 = pt − δ∇U(qt)/2 ,

qt+δ = qt + δM−1pt+δ/2 ,

pt+δ = pt+δ/2 − δ∇U(qt+δ)/2 .
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Leapfrog discretization
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Leapfrog discretization

⇁ H(q, p) = q2/2 + p2/2.
⇁ Initial state (q, p) = (0, 1), L = 20 steps.
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Leapfrog discretization - multimodal setting
⇁ U(q) is the logdensity of a mixture of 3 Gaussian distributions.

60 / 143



HMC - monomodal setting
⇁ U(q) is the logdensity of a Gaussian distributions.
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HMC - multimodal setting
⇁ U(q) is the logdensity of a mixture of 3 Gaussian distributions.

62 / 143



HMC - comparison with other MCMC
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Variational Autoencoders
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What we did yesterday

What estimate a distribution πdata and sample new instances from πdata.

Generative model introduce a parametric estimator πθ and sample new
instances from πθ.

MCMC sample a Markov chain invariant w.r.t. πθ even when πθ is
known up to a multiplicative constant

▶ Random Walk Metropolis Hastings: local perturbation of the state
at each iteration.

▶ Metropolis Adjusted Langevin: local perturbation using ∇x log πθ(x)
of the state at each iteration.

▶ Hamiltoninan Monte Carlo: extended state space to move
approximately on level sets.
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Generative modeling - latent data

In some situations, observations are partial and do not contain some
variables of interest.

Given a generative process for the data, we might be interested in
reconstructing the distribution of the missing variables given the data.

We introduce a family of joint probability distributions (z, x) 7→ pθ(z, x),
θ ∈ Θ on (Z× X,Z × X ) where Z is a latent variable and X is the
observation.

In this setting, for all θ, x, z,

pθ(z, x) = pθ(z)pθ(x|z)

and πdata is estimated by the marginal

pθ(x) =

∫
pθ(z, x)dz =

∫
pθ(z)pθ(x|z)dz
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Generative modeling - latent data

Major drawback: pθ(x) is not available explicitly, nor the conditional
distribution of the latent data given the observation:

pθ(z|x) =
pθ(z)pθ(x|z)

pθ(x)
=

pθ(z)pθ(x|z)∫
pθ(z)pθ(x|z)dz

⇝ Challenging to train the model !

⇝ Challenging to sample latent data given the observations !
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VAE

Variational Auto-Encoders (VAE) are very popular approaches to
introduce approximations of a target conditional distribution in the
context of latent data models.

Consider a family of joint probability distributions (z, x) 7→ pθ(z, x),
θ ∈ Θ, on (Z× X,Z × X ) where Z is a latent variable and X is the
observation.

For all θ, x, z,
pθ(z, x) = pθ(z)pθ(x|z)

and the conditional distribution pθ(z|x) is not availbale explicitly.

How to estimate θ and sample approximately from pθ(z|x) ?
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VAE- learn disentangled representations

▶ Common assumption in unsupervised representation learning:
low-dimensional latent variables generate observed data.

▶ Knowledge of true latent variables useful in many tasks:
classification, transfer learning, causal inference etc.

▶ Problem: models used usually unidentifiable (e.g. β-VAE), thus
we cannot recover true data generating features.

▶ General identifiable framework for principled disentanglement.
Deep leargning architectures for structured VAE. Some
theoretical guarantees for VI for state spaces.
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ELBO
A variational approach can be introduced. Considering a family
(z, x) 7→ qφ(z|x), φ ∈ Φ where Φ is a parameter space.

Then, we can write, for all φ, θ, x, z,

log pθ(x) =

∫
log pθ(x)qφ(z|x)dz

= Eqφ(·|x) [log pθ(x)]

= Eqφ(·|x)

[
log

pθ(Z, x)

pθ(Z|x)

]
= Eqφ(·|x)

[
log

qφ(Z|x)
pθ(Z|x)

]
+ Eqφ(·|x)

[
log

pθ(Z, x)

qφ(Z|x)

]
.

The first term of the right-hand-side is the Kullback-Leibler divergence
between qφ(·|x) and pθ(·|x), so that log pθ(x) ≥ L(θ, φ, x), where

L(θ, φ, x) = Eqφ(·|x)

[
log

pθ(Z, x)

qφ(Z|x)

]
is the ELBO in this setting.
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A schematic view
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An example with Gaussian distributions

How to define qφ? qφ(·|x) can be defined as a Gaussian with mean
µφ(x) and variance σ2

φ(x)Idz
.

z0(x) = x

zk(x) = ψk (Wkzk−1(x) + bk−1) , 1 ≤ k ≤ L− 1

zL(x) = ψL (WLzL−1(x) + bL−1) =

(
µφ(x)
σ2
φ(x)

)
.

Parameter to estimate φ = (Wk, bk)1≤k≤L, functions (ψk)1≤k≤L and
dimensions of (zk(x))1≤k≤L to be chosen.

72 / 143



An example with Gaussian distributions

How to define pθ? pθ(·|z) can be defined as a Gaussian with mean
µ̃θ(z) and variance σ̃2

θ(z)Idx
.

z̃0(z) = z

z̃k(z) = ψ̃k

(
W̃kz̃k−1(z) + b̃k−1

)
, 1 ≤ k ≤ L− 1

z̃L(z) = ψ̃L

(
W̃Lz̃L−1(z) + b̃L−1

)
=

(
µ̃θ(z)
σ̃2
θ(z)

)
.

Parameter to estimate θ = (W̃k, b̃k)1≤k≤L, functions (ψ̃k)1≤k≤L and
dimensions of (z̃k(z))1≤k≤L to be chosen.
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Stochastic optimization

Assuming that we have a dataset with i.i.d. data {xi}1≤i≤n, VAE
propose to solve the optimization problem:

(φ̂∗,n, θ̂∗,n) ∈ argmaxφ∈Φ,θ∈Θ

1

n

n∑
i=1

L(θ, φ, xi).

This is approximately solved using Stochastic Gradient ascent.

▶ Initialize φ̂0, θ̂0.

▶ Draw (Xk1
, . . . , XkM

) randomly in the dataset.

▶ (
φ̂k+1

θ̂k+1

)
=

(
φ̂k

θ̂k

)
+ γk+1∇φ̂k,θ̂k

(
1

M

M∑
i=1

log
pθ(Zi, Xki

)

qφ(Zi|Xki
)

)

with Zi ∼ qφ̂k
(·|Xki).

Adaptive step-sizes + ascent direction with (ADAGRAD, Duchi et
al., 2011) or (ADAM, Kingma & Ba, 2015)
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After training

After the training phase VAE may be used for several objectives.

Loglikelihood estimation: log pθ(x) = logEqφ(·|x)[pθ(Z, x)/qφ(Z|x)],
estimated by

log

(
1

M

M∑
i=1

pθ(Zi, x)/qφ(Zi|x)
)

with (Zi)1≤i≤M i.i.d. with distribution qφ(·|x)

Reconstruction: for any x, we can encode x by sampling z ∼ qφ(·|x)
and decode z by sampling x̂ ∼ pθ(·|z).

Sampling: we can sample new data by x ∼ pθ(·|z) with z ∼ pθ.
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Some theoretical properties
Assumptions on the variational family (Lipschitz in φ and z) and on the
training loss (Lipschitz in all parameters)

(Tang & Yang, 2021) obtained an upper bound for the total variation
distance between the target distribution and the distribution
generated from a latent space model.

With probability at least 1− c exp(−κ(log n)1/α),

dtv

(
πdata,

∫ (
1

n

n∑
i=1

qφ̂n
(z|xi)

)
pθ̂n(·|z)

)2

≤ cminθ,φEπdata
[m(θ, φ,X)] + k

d∗
n

log(dn)

with

m(θ, φ, x) = log πdata(x) + KL (qφ(·|x))∥pθ(z)pθ(x|z))
= log πdata(x)− L(θ, φ, x) .
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Some theoretical properties

With probability at least 1− c exp(−κ(log n)1/α),

dtv

(
πdata,

∫ (
1

n

n∑
i=1

qφ̂n
(z|xi)

)
pθ̂n(·|z)

)2

≤ cminθ,φEπdata
[m(θ, φ,X)] + k

d∗
n

log(d∗n)

The estimation error (second term) scales as O(1/n) up to a logarithmic
term, which matches the rate of parametric density estimation.

If the model is well-specified, i.e. πdata =
∫
pθ∗(z)pθ∗(·|z)dz and

qφ(z|x) = pθ∗(z|x),

minθ,φEπdata
[m(θ, φ,X)] = 0
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Context: example of the gut microbiome

Microbiota:
▶ Bacteria, viruses, and parasites living in the gastrointestinal tract.

▶ Genetic clustering in a tree graph called a taxonomy on which we
annotate abundance values.

(a) Taxonomy of the microbiome of
Arions species (b) Taxa-abundance sample
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Context: example of the gut microbiome

Motivations:

▶ Biomarker for several diseases: prediction of Crohn’s disease
complications through count data.

▶ Taxonomy not exploited yet despite the genetic correlations it yields.

Medical interpretability:

▶ The bacteria are forming an interaction network yielding biological
functions of interest.

Figure: Functional groups among an interaction network
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Context
Challenges:

▶ How to model hierarchical count data?

▶ Highly variable and sparse data, high dimensionality, low sample size.

▶ Hierarchical compositionality: the children abundance C
(
Xℓ

k

)
of a

node should sum to the value of their parent Xℓ
k∑

j∈Cℓ
k

Xℓ+1
j = Xℓ

k .

(a) Tree graph (b) Hierarchical count data
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Application to gut microbiota

Using the tree graph while ensuring flexibility?

Top-Down PLN-Tree:

▶ Latent Markov dynamic (top-down):

Z1 ∼ N (µ1,Σ1) ,

Zℓ+1 ∼ N
(
µθℓ+1

(Zℓ),Σθℓ+1
(Zℓ)

)
.

▶ Constrained observed dynamic:

X1 ∼ P
(
eZ

1
)
,

C
(
Xℓ

k

)
∼ P

eC(Z
ℓ
k)
∣∣∣∣ ∑
j∈Cℓ

k

Xℓ+1
j = Xℓ

k

 .
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PLN-Tree: model inference

Issue: Learning θ through maximum likelihood is intractable.

Approach: Variational inference introduces a learnable proxy to the
intractable quantity pθ(Z|X̄) denoted by qφ(Z|X̄).

Backward approximation11: pθ(Z|X̄) is a backward Markov Chain, then

qφ,1:L(Z|X̄) = qφ,L(Z
L|X̄1:L)

L−1∏
ℓ=1

qφ,ℓ|ℓ+1(Z
ℓ|Zℓ+1, X̄1:ℓ) .

Objective: ELBO is not explicit but approximated using Monte Carlo
sampling.

11Amortized backward variant
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PLN-Tree: model inference

Dataset: 650 microbiota from, patients with 7 diseases.

How to evaluate the performances?

Approach: learn the models, sample from them, and assess resemblance with
the original data given several criteria.
Perfomance criteria (non-taxonomic dependent):

▶ Alpha diversity distribution: compare ecosystems by estimating species
variety through richness and evenness (Shannon, Simpson, ...).

▶ Samples distribution: empirical Wasserstein.

Benchmarked models:

▶ PLN-Tree: backward and mean-field

▶ PLN per layer: yields non-valid hierarchical count data, just as a reference.

▶ PLN (fill): sample last layer, fill the rest using the hierarchical
compositionality constraint.
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Synthetic data

For individual i, if ps,i is the proportion of species i,

Shannoni,ℓ = −
Sℓ∑
s=1

ps,i log ps,i InvSimpsoni,ℓ =
1∑Sℓ

s=1 p
2
s,i

.

After parameter inference, we sample M = 25 times n = 2000
microbiota to be compared with the dataset.
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Public dataset
(Pasolli et al., 2016)
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Public dataset
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Public dataset
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Public dataset - classification

Use a VAE as preprocessing techniques to solve other tasks

In the PLN-Tree framework, the first layer’s latent variable models the
total count, while the next variables account for how the counts
progressively distribute over the layers in the observed space.

Consider a feature-engineered latent feature called Latent Tree Counts
(LTC)

V1 = exp(Z1) ,

∀ℓ < L, k ≤ Kℓ , V̌ℓ
k = σ

(
Žℓ

k

)
×Vℓ

k .

Use the latent features as input of any classification procedure
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Public dataset - classification
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Reconstruction guarantees

State space models

ϕθ0:t︸︷︷︸
Z0:t given X0:t

h = Eθ [h(Z0:t)|X0:t]

▶ Z0:t is a Markov chain with transition density mθ.

▶ Conditionally on Z0:t, the observations are independent with
emission densities gθ(Zt, ·).

Additive state functionals

h0:t : z0:t 7→
t∑

s=1

h̃s(zs−1, zs)

⇝ ϕθ0:th0:t crucial in both inference and parameter learning.
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Variational family
In practice the model is often estimated by maximizing the ELBO:

L(θ, φ) = Eqφ,0:t

[
log

pθ(z1:t,x1:t)

qφ,0:t(z1:t|x1:t)

]
where qφ,0:t(z1:t|x1:t) is the variational distribution.

Traditional assumption on the variational family

qφ,0:t(z1:t|x1:t) =

t∏
s=1

qφ,s(zs|x1:t) .

⇁ No theoretical results and does not fit classical posterior distributions
(for instance in HMMs).

New framework: backward decomposition

qφ,0:t(z1:t|x1:t) = qφ,t(zt|x1:t)

t∏
s=2

qφ,s−1|s(zs−1|zs,x1:t) .

⇁ Some theoretical guarantees and well designed for online learning.
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Goal - bias control

Theoretically validate backward variational smoothing as a valid
approximation.

▶ Variational inference is not consistent.

▶ Bias depends on implementation / optimization.

⇝ Ensure that the bias is controlled w.r.t time.

Quantities of interest: ϕθ0:th0:t = Eθ [h0:t(Z0:t)|X0:t]

h0:t additive state functional.

|qφ,0:th0:t − ϕθ0:th0:t| ≤ ?

⇝ Marginal smoothing as a byproduct.
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An insightful result

Assumptions

▶
∥∥qφ,t − ϕθt

∥∥
tv
≤ ε.

▶
∥∥∥qφ,s−1|s(zs, ·)− bθs−1|s(zs, ·)

∥∥∥
tv
≤ ε for all s < t, xs ∈ X.

Additive bound ∣∣qφ,0:th0:t − ϕθ0:th0:t
∣∣ ≤ ctε

Questions
Quantitative bounds without strong mixing ?

Does minimizing the ELBO ensure that the true and variational kernels
are close ?

93 / 143



To obtain excess risk bound

Assumptions

▶ KL(qφ,t, ϕ
θ
t ) ≤ ε.

▶ KL(qφ,s−1|s(zs, ·), bθs−1|s(zs, ·)) ≤ ε for all s < t.

▶ Additional moment and Lipschitz assumptions.

There exist constants c0, c1, c2, D such that with probability at least
1− c0exp(−c1{log n}1∧α∗), for any γ > 0,

KL
(
πdata

∥∥∥PX
θ̂n,T

)
≤ (1 + γ)(T + 1)ϵ+ c2(1 + γ−1)

Dd∗T
3

n
log(d∗n)(log n)

1/α∗ .
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To obtain excess risk bound

There exist constants c0, c1, c2, D such that with probability at least
1− c0exp(−c1{d∗ log n}1∧α∗), for any γ > 0,

KL
(
πdata

∥∥∥PX
θ̂n,T

)
≤ (1 + γ)(T + 1)ϵ+ c2(1 + γ−1)

Dd∗T
3

n
log(d∗n)(log n)

1/α∗ .

Questions

Improving the dependency with respect to T ?

Specific results (constants) for specific deep architectures ?
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Estimating πdata with diffusion models
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What we already know

In some situations, observations are partial and do not contain some
variables of interest.

Given a generative process for the data, we might be interested in
reconstructing the distribution of the missing variables given the data.

We introduce a family of joint probability distributions (z, x) 7→ pθ(z, x),
θ ∈ Θ on (Z× X,Z × X ) where Z is a latent variable and X is the
observation.

In this setting, for all θ, x, z,

pθ(z, x) = pθ(z)pθ(x|z)

and πdata is estimated by the marginal

pθ(x) =

∫
pθ(z, x)dz =

∫
pθ(z)pθ(x|z)dz
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What we already know

MCMC sample a Markov chain invariant w.r.t. pθ(z|x) even if
pθ(z|x) ∝ pθ(z)pθ(x|z) is known up to a multiplicative constant.

▶ Random Walk Metropolis Hastings: local perturbation of the state
at each iteration.

▶ Metropolis Adjusted Langevin: local perturbation using
∇z log pθ(z|x) of the state at each iteration.

▶ Hamiltoninan Monte Carlo: extended state space to move
approximately on level sets.

VAE to approximate pθ(z|x) with variational family qφ(z|x).
▶ Easy optimization and large variety of choices for qφ(z|x).
▶ Latent space: useful to encode data, solve classification tasks.

▶ Challenge: design problem-tailored qφ(z|x).
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Score-Based Generative Models (SGMs)

What: generate synthetic instances of a target distribution πdata

How: instead of providing a model for πdata, we model the score
∇x log πdata

Key idea: perturb data with a sequence of intensifying Gaussian noise
and jointly estimate the score functions for all noisy data distributions
(Song & Ermon, 2019)
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Why using the score function ?

Consider the Langevin SDE

dXt = ∇x log πdata(Xt)dt+
√
2dBt

Markov semigroup associated with the Langevin diffusion (Xt)t≥0 is
reversible w.r.t. πdata

Euler–Maruyama discretization scheme associated with the Langevin
diffusion

Xk+1 = Xk + γk+1∇x log πdata(Xk) +
√
2γk+1Zk+1

If (γk)k≥0 decreases to 0, the marginal distribution of this chain
converges to πdata
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Score-Based Generative Models (SGMs)

What: generate synthetic instances of a target distribution πdata

How: instead of providing a model for πdata, we model the score
∇x log πdata

Let σ1 < . . . < σT be a sequence of noise levels and write

Xt = X0 + σtεt ,

with X0 ∼ πdata and εt ∼ N (0, Id).

The conditional distribution of Xt given X0 qt|0(Xt|X0) is known and
Gaussian but the marginal density qt of Xt is unknown.
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Top: noised distributions
Bottom: noised scored
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Score-Based Generative Models (SGMs)

Xt = X0 + σtεt ,

with X0 ∼ πdata and εt ∼ N (0, Id).

Let sθ(x, t) be a parametric approximation of ∇ log qt(x).

The parameter θ can be estimated by minimizing a score matching loss:

L(θ) = E
[
λ(t)σ2

t ∥∇x log qt(Xt)− sθ(Xt, t)∥2
]

= E
[
λ(t)σ2

t

∥∥∇x log qt|0(Xt|X0)− sθ(Xt, t)
∥∥2]+ C

= E

[
λ(t)

∥∥∥∥−Xt −X0

σt
− σtsθ(Xt, t)

∥∥∥∥2
]
+ C

= E
[
λ(t)σ2

t ∥ε+ σtsθ(Xt, t)∥2
]
+ C
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Score-Based Generative Models (SGMs)

The parameter θ can be estimated by minimizing a score matching loss:

L(θ) = E
[
λ(t)σ2

t ∥ε+ σtsθ(Xt, t)∥2
]
+ C

Then , sampling can be performed with annealed Langevin
dynamics

▶ Start with x
(N)
T+1 ∼ N (0, Id).

▶ For t = T to t = 1
Set x

(0)
t = x

(N)
t+1

For i = 1 to i = N − 1
x
(i+1)
t = x

(i)
t + stsθ(x

i
t, t)/2 + s

1/2
t εit
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Score-Based Generative Models (SGMs)

What: generate synthetic instances of a target distribution πdata

Why: challenges in modeling the complexity of real data, preventing
conventional parametric modeling or traditional maximum likelihood
methods.

Creating noise from data is easy; creating data from noise is
generative modeling. (Song et al., Score-Based Generative Modeling through

Stochastic Differential Equations)

Who: SGMs address this by

1. (forward phase) introducing progressively noise into the samples,

2. (backward phase) reversing the noising dynamics, with the help of a
score function usually learned using deep neural networks.
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Diffusion models: the forward process - DDPM (Ho et al., 2020)

Consider the forward noising process

Xk =
√

1− βkXk−1 +
√
βkZk , βk ∈ [0, 1], X0 ∼ πdata ,

where Zk ∼ N (0dx
, Idx

).

Figure: One sample X0:n.

Xk ∼ πk where 12 πk(dxk) :=
∫
πdata(dx0)N (dxk;

√
ᾱkx0, (1− ᾱk)Idx

).

(Xk)k≥0 is a discrete-time OU process.

12ᾱk :=
∏k

j=1(1− βj).
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Diffusion models: the backward process
Note that

π1:n|0(x1:n|x0) = πn|0(xn|x0)
n∏

k=2

πk−1|0,k(xk−1|x0, xk)

where πn|0(xn|x0) = N (xn; ᾱ
1/2
n x0, (1− ᾱn)I) and

πk−1|0,k(xk−1|x0, xk) ∝ πk−1|0(xk−1|x0)πk|0(xk|x0)
= N

(
xk−1;µk(x0, xk), σ

2
k Id
)
,

with

µk(x0, xk) = ᾱ
1/2
k−1x0 + (1− ᾱk−1 − σ2

k)
1/2(xk − ᾱ1/2

k x0)
/
(1− ᾱk)

1/2.

⇝ We know how to write the joint distribution of X1:n given X0.

⇝ Use this decomposition to turn noise into samples from πdata.

pθ0:n(dx0:n) = pn(dxn)
n−1∏
k=0

pθk(dxk|xk+1) .
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Diffusion models: the backward process

⇝ Use this decomposition to turn noise into samples from πdata.

pθ0:n(dx0:n) = pn(dxn)
n−1∏
k=0

pθk(dxk|xk+1) ,

where pn is a std Gaussian and

pθk(dxk|xk+1) = N (dxk;µ
θ
k+1(xk+1), βk+1Idx

)

with µθ
k+1(xk+1) obtained by replacing x0 in µk+1(x0, xk+1) with a

prediction

x̂0|k,θ(xk+1) := ᾱ
−1/2
k+1

(
xk+1 − (1− ᾱk+1)

1/2eθ(xk+1, k + 1)
)
.
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Diffusion models: the backward process

We use
pθk(dxk|xk+1) = N (dxk;µ

θ
k+1(xk+1), βk+1Idx

)

with µθ
k+1(xk+1) obtained by replacing x0 in µk+1(x0, xk+1) with a

prediction

x̂0|k,θ(xk+1) := ᾱ
−1/2
k+1

(
xk+1 − (1− ᾱk+1)

1/2eθ(xk+1, k + 1)
)
.

eθ∗(Xt, t) might be seen as the predictor of the noise added to X0 to
obtain Xt (in the forward pass) and justifies the prediction terminology.

The parameter θ is obtained by minimizing a variational loss between
the forward and backward joint distributions.
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Diffusion models: an illustration

Data distribution πdata Marginal p500

Figure: Samples from pt for some time steps ranging from n := 500 to 1. π0 is
a Gaussian mixture.
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Diffusion models: an illustration

Data distribution πdata Marginal p150

Figure: Samples from pt for some time steps ranging from n := 500 to 1. π0 is
a Gaussian mixture.
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Diffusion models: an illustration

Data distribution πdata Marginal p100

Figure: Samples from pt for some time steps ranging from n := 500 to 1. π0 is
a Gaussian mixture.
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Diffusion models: an illustration

Data distribution πdata Marginal p80

Figure: Samples from pt for some time steps ranging from n := 500 to 1. π0 is
a Gaussian mixture.
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Diffusion models: an illustration

Data distribution πdata Marginal p70

Figure: Samples from pt for some time steps ranging from n := 500 to 1. π0 is
a Gaussian mixture.
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Diffusion models: an illustration

Data distribution πdata Marginal p50

Figure: Samples from pt for some time steps ranging from n := 500 to 1. π0 is
a Gaussian mixture.
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Diffusion models: an illustration

Data distribution πdata Marginal p40

Figure: Samples from pt for some time steps ranging from n := 500 to 1. π0 is
a Gaussian mixture.
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Diffusion models: an illustration

Data distribution πdata Marginal p20

Figure: Samples from pt for some time steps ranging from n := 500 to 1. π0 is
a Gaussian mixture.
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Diffusion models: an illustration

Data distribution πdata Marginal p15

Figure: Samples from pt for some time steps ranging from n := 500 to 1. π0 is
a Gaussian mixture.
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Diffusion models: an illustration

Data distribution πdata Marginal p5

Figure: Samples from pt for some time steps ranging from n := 500 to 1. π0 is
a Gaussian mixture.
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(Shibata et al., 2024)
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https://www.mdpi.com/2076-3417/14/8/3489


Why it works ? (Ronneberger et al., 2015)
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https://arxiv.org/abs/1505.04597


(Zhang et al., 2022)
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https://peerj.com/articles/cs-970/


Guarantees on the approximation of πdata
Score-based training procedures
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SGM - Forward phase

Data noised using the Ornstein–Uhlenbeck (OU) process:

d
−→
X t = −

β(t)

2

−→
X tdt+ β1/2(t)dBt,

−→
X 0 ∼ πdata .

Fix T > 0, then,

KL
(
L
(−→
XT

)
, π∞

)
≲ exp

(
−1

2

∫ T

0

β(s)ds

)
KL (πdata, π∞)

with

KL (µ, ν) :=

∫
log

(
dµ(x)

dν(x)

)
µ(dx) .

Fokker-Planck for (pt)0≤t≤T + logarithmic Sobolev inequality +
Gronwall’s inequality
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Time reversal

For pt := L(
−→
X t), (t, x) 7→ ∇ log pt(x) is the score function. We

consider the time reversal of the forward process, i.e., the process
satisfying

d
←−
X t =

(
β̄(t)

2

←−
X t + β̄(t)∇ log pT−t

(←−
X t

))
dt+β̄1/2(t)dBt,

←−
X 0 ∼ pT ,

with β̄(t) := β(T − t). It satisfies(−→
X t

)
t∈[0,T ]

=
(←−
XT−t

)
t∈[0,T ]

.

In our setting,

L
(−→
XT

)
= L

(←−
X 0

)
≈ π∞ , L

(←−
XT

)
= L

(−→
X 0

)
≈ πdata .
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Score matching in theory

The backward dynamics is

d
←−
X t =

(
β̄(t)

2

←−
X t + β̄(t)∇ log pT−t

(←−
X t

))
dt+ β̄1/2(t)dBt,

←−
X 0 ∼ pT .

If the score is known, we can (in theory) simulate the backward
process and get data from noise.

Let sθ : [0, T ]× Rd 7→ Rd be such that

Lscore(θ) = E
[∥∥∥sθ (τ,−→X τ

)
−∇ log pτ

(−→
X τ

)∥∥∥2
]
,

with τ ∼ U(0, T ) independent of the forward process (
−→
X t)t≥0.
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Score matching in practice

As the linear part can be simulated exactly, we consider the Exponential
Integrator scheme:

Let 0 =: t0 ≤ t1 ≤ · · · ≤ tN := T . Consider

d
←−
X θ

t = β̄(t)

(
1

2σ2

←−
X θ

t + sθ
(
T − tk,

←−
X θ

tk

))
dt+ β̄1/2(t)dBt ,

for t ∈ [tk, tk+1), with
←−
X θ

0 ∼ π∞.

We denote π̂
(β,θ)
N the marginal probability density of

←−
X θ

T .

The loss function is built using the conditional score:

L(θ) = E
[
ατ

∥∥∇ log pτ |0(Xτ |X0)− sθ(τ,Xτ )
∥∥2] .
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Diffusion models: convergence

In early works: strong assumptions on the data distribution (polynomial
growth of the score), (de Bortoli et al., 2021):∥∥∥πdata − π̂(β,θ)

N

∥∥∥
tv
≤ c0M exp(c1T ) + c2

(
T−1 + T−1/2

)
,

where M quantifies the quality of the score approximation.

In most recent works, we only require πdata to have a finite relative
Fisher information w.r.t the standard Gaussian distribution, (Conforti et
al., 2023):

KL(πdata, π̂
(β,θ)
N ) ≤ exp(−c0T )KL(N (0, Id), πdata) +MT + c1h ,

Assuming that Eπdata
[∥∇ log(dπdata/dγd)∥2] <∞.
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https://arxiv.org/pdf/2106.01357.pdf
https://arxiv.org/abs/2308.12240
https://arxiv.org/abs/2308.12240


Diffusion models: convergence
In more recent works, assuming that πdata is smooth and strongly
log-concave, (Lee et al., 2022), (Gao et al., 2023) : explicit upper
bounds in Wasserstein distance.

Under similar assumptions, (Strasman et al., 2024) proposed a unified
framework for time-inhomogeneous SGMs, with joint theoretical
analyses in KL and Wasserstein metrics.

KL
(
πdata

∣∣∣∣∣∣π̂(β,θ)
N

)
≤ EKL

1 (β) + EKL
2 (θ, β) + EKL

3 (β) ,

EKL
1 (β) = KL (πdata||π∞) exp

{
− 1

σ2

∫ T

0

β(s)ds
}
,

EKL
2 (θ, β) =

N−1∑
k=0

E
[∥∥∥∇ log pτk

(−→
X τk

)
− sθ

(
τk,
−→
X τk

)∥∥∥2] ∫ τk

τk+1

β(t)dt ,

EKL
3 (β) = 2hβ(T )I(πdata|π∞) ,
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Gaussian case

Let the true distribution be Gaussian in dimension d = 50 with mean 1d

and different choices of covariance structure.

1. (Isotropic) Σ(iso) = 0.5Id.

2. (Heteroscedastic) Σ(heterosc) ∈ Rd×d is a diagonal matrix such that

Σ
(heterosc)
jj = 10 for 1 ≤ j ≤ 5, and Σ

(heterosc)
jj = 0.1 otherwise.

3. (Correlated) Σ(corr) ∈ Rd×d is a full matrix whose diagonal entries
are equal to one and the off-diagonal terms are

Σ
(corr)
jj′ = 1/

√
|j − j′| for 1 ≤ j ̸= j′ ≤ d.
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Comparison with existing literature
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(a) Isotropic setting (b) Heteroscedastic setting (c) Correlated setting

Figure: Comparison of the empirical KL divergence between πdata and the
generative distribution π̂

(β,θ)
N w.r.t. SGM for βa⋆ , the VPSDE model and the

one with a cosine schedule, presented in Chen et al. (2023).

▶ Optimizing the noise schedule has an impact even with simple
parametrization of the β scheduling.
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Bayesian inverse problem
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Original problem

Bayesian inverse problem:

Y = f(X) + σε, where ε ∼ N (0dx
, Idx

), X ∼ πdata, σ ≥ 0 .

Objective: Sample the distribution of X given Y .

Posterior
samples

Sample from
πdata

AX+σε−−−−−→

Observation Y

−→

Sample from the W2S dataset [Zhou et al., 2020].
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Proposed framework

Objective: Sample the distribution of X given a realisation of Y .

We only have access to samples X1, . . . , XM ∼ πdata.

⇝ Step 1: train a diffusion model pθ∗0 to estimate πdata.

⇝ Step 2: consider the approximate Bayesian inverse problem:

Y = AX + σε, where ε ∼ N (0dy , Idy ), X ∼ pθ∗0 , σ ≥ 0 .

A specific application (in-painting):

Y = X + σε, where ε ∼ N (0dy
, Idy

), X ∼ pθ∗0 , σ ≥ 0 ,

where X are the top dy coordinates of X.

⇝ Step 3: extend to settings where the conditional distribution of Y
given X has probability density x 7→ gY0 (x).
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Proposed framework

For all y, draw approximate samples from the posteriors

ϕy0(dx) ∝ gy0 (x)pθ∗0 (dx) ,

where gy0 (x) ∝ N (y, x, σ2Idy
).

→ Classical setting where the target distribution is known up to a
multiplicative constant (MCMC, Self-Normalized Importance Sampling, etc.).

→ We do not know how to evaluate pθ∗0 , only sample from it.

→ Upper bound the error between ϕy0(dx) and the true posterior ?
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Illustration of the posterior distribution

Assume dx = 2, dy = 1. Inverse problem:

Y = X1, (X1, X2) ∼ GaussianMixture .

p0 p0 and ϕy0
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Figure: Left plot: prior in blue and green vertical line of points with first
coordinate equal to y. Right plot: samples from ϕy

0 are shown in green.

128 / 143



Illustration of the posterior distribution

Assume dx = 2, dy = 1. Inverse problem:

Y = X1, (X1, X2) ∼ GaussianMixture .
p0 p0 and ϕy0
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Figure: Left plot: prior in blue and green vertical line of points with first
coordinate equal to y. Right plot: samples from ϕy

0 are shown in green.
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Posterior sampling problem

The target ϕy0 is approximated by our parametric posterior distribution:

ϕy0(x0) = pθ0(x0|y) ∝ pθ0(x0)gy0 (x0) ,

∝
∫
pn(xn)

{
n−1∏
t=1

pθt (xt|xt+1)

}
pθ0(x0|x1)gy0 (x0)dx1:n .

The integral is not tractable!

Consider a sequence of positive potential functions (gyk)1≤k≤n and the
sequence of probability distributions defined by

ϕyn(xn) ∝ gyn(xn)pn(xn)
and for 1 ≤ k ≤ n− 1,

ϕyk(xk) ∝
∫

gyk(xk)

gyk+1(xk+1)
pθk(xk|xk+1)ϕ

y
k+1(xk+1)dxk+1 ,

so that for all k ≥ 1, ϕyk(xk) ∝ g
y
k(xk)p

θ
k(xk).
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Posterior sampling proposal: recursion

Recall that ϕyk(dxk) ∝ g
y
k(xk)pk(dxk). We cannot sample from it in all

but trivial cases.

Using pk(dxk) =
∫
pk(dxk|xk+1)pk+1(dxk+1),

ϕyk(dxk) ∝
∫

gyk(xk)

gyk+1(xk+1)
pk(dxk|xk+1)ϕ

y
k+1(dxk+1)

∝
∫ ∫

gyk(zk)pk(dzk|xk+1)

gyk+1(xk+1)︸ ︷︷ ︸
:=ω̃k(xk+1)

pyk(dxk|xk+1)ϕ
y
k+1(dxk+1) ,

where pyk(dxk|xk+1) = pk(dxk|xk+1)g
y
k(xk) is available in closed form in

the linear and Gaussian setting.
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Posterior sampling proposal

Construct a sequence of distributions {ϕyt }nt=1 that bridge between
N (0dx

, Idx
) and ϕy0 by leveraging the diffusion marginals {pt}nt=1.

Intuitive choice

▶ ϕyn(dxn) ∝ gyn(xn)pn(dxn) with gyn(xn) = N (xn; ᾱ
1/2
n y, (1− ᾱn)I).

▶ Proposal distribution.

pyk(dxk|xk+1) ∝ pk(dxk|xk+1)g
y
k(xk)

∝ pk(dxk|xk+1)N (xk; ᾱ
1/2
k y, (1− ᾱk)I) .

As pθk(dxk|xk+1) = N (dxk;µ
θ
k+1(xk+1), βk+1Idx), the proposal

distribution is available explicitly.
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Posterior sampling proposal

⇝ {ϕyt }nt=1 is available in closed form for the Gaussian mixture example.

π0 and ϕy0 Posterior ϕy450

Figure: Left plot: samples from the prior π0 and posterior ϕy
0 . Right plot:

samples from the posterior proposals ϕy
t for time steps ranging from n := 500

to 0.
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Posterior sampling proposal

⇝ {ϕyt }nt=1 is available in closed form for the Gaussian mixture example.

π0 and ϕy0 Posterior ϕy450

Figure: Left plot: samples from the prior π0 and posterior ϕy
0 . Right plot:

samples from the posterior proposals ϕy
t for time steps ranging from n := 500

to 0.
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Posterior sampling proposal

⇝ {ϕyt }nt=1 is available in closed form for the Gaussian mixture example.

π0 and ϕy0 Posterior ϕy150

Figure: Left plot: samples from the prior π0 and posterior ϕy
0 . Right plot:

samples from the posterior proposals ϕy
t for time steps ranging from n := 500

to 0.
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Posterior sampling proposal

⇝ {ϕyt }nt=1 is available in closed form for the Gaussian mixture example.

π0 and ϕy0 Posterior ϕy100

Figure: Left plot: samples from the prior π0 and posterior ϕy
0 . Right plot:

samples from the posterior proposals ϕy
t for time steps ranging from n := 500

to 0.
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Posterior sampling proposal

⇝ {ϕyt }nt=1 is available in closed form for the Gaussian mixture example.

π0 and ϕy0 Posterior ϕy80

Figure: Left plot: samples from the prior π0 and posterior ϕy
0 . Right plot:

samples from the posterior proposals ϕy
t for time steps ranging from n := 500

to 0.
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Posterior sampling proposal

⇝ {ϕyt }nt=1 is available in closed form for the Gaussian mixture example.

π0 and ϕy0 Posterior ϕy70

Figure: Left plot: samples from the prior π0 and posterior ϕy
0 . Right plot:

samples from the posterior proposals ϕy
t for time steps ranging from n := 500

to 0.
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Posterior sampling proposal

⇝ {ϕyt }nt=1 is available in closed form for the Gaussian mixture example.

π0 and ϕy0 Posterior ϕy50

Figure: Left plot: samples from the prior π0 and posterior ϕy
0 . Right plot:

samples from the posterior proposals ϕy
t for time steps ranging from n := 500

to 0.
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Posterior sampling proposal

⇝ {ϕyt }nt=1 is available in closed form for the Gaussian mixture example.

π0 and ϕy0 Posterior ϕy40

Figure: Left plot: samples from the prior π0 and posterior ϕy
0 . Right plot:

samples from the posterior proposals ϕy
t for time steps ranging from n := 500

to 0.
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Posterior sampling proposal

⇝ {ϕyt }nt=1 is available in closed form for the Gaussian mixture example.

π0 and ϕy0 Posterior ϕy20

Figure: Left plot: samples from the prior π0 and posterior ϕy
0 . Right plot:

samples from the posterior proposals ϕy
t for time steps ranging from n := 500

to 0.
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Posterior sampling proposal

⇝ {ϕyt }nt=1 is available in closed form for the Gaussian mixture example.

π0 and ϕy0 Posterior ϕy15

Figure: Left plot: samples from the prior π0 and posterior ϕy
0 . Right plot:

samples from the posterior proposals ϕy
t for time steps ranging from n := 500

to 0.
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Posterior sampling proposal

⇝ {ϕyt }nt=1 is available in closed form for the Gaussian mixture example.

π0 and ϕy0 Posterior ϕy2

Figure: Left plot: samples from the prior π0 and posterior ϕy
0 . Right plot:

samples from the posterior proposals ϕy
t for time steps ranging from n := 500

to 0.
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Posterior sampling proposal

⇝ {ϕyt }nt=1 is available in closed form for the Gaussian mixture example.

π0 and ϕy0 Posterior ϕy0

Figure: Left plot: samples from the prior π0 and posterior ϕy
0 . Right plot:

samples from the posterior proposals ϕy
t for time steps ranging from n := 500

to 0.
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Posterior sampling proposal: SMC approximation

Assume that ϕNt+1 = 1
N

∑N
i=1 δξit+1

is a particle approximation of ϕyt+1.

ϕyt (dxt) =

∫
pyt (dxt|xt+1)

ω̃t(xt+1)ϕ
y
t+1(dxt+1)∫

ω̃t(zt+1)ϕ
y
t+1(dzt+1)

,

⇝ Weight:

ϕyt (dxt) ≈
N∑
i=1

ω̃t(ξ
i
t+1)∑N

j=1 ω̃t(ξ
j
t+1)

pyt (dxt|ξit+1) .

⇝ Resample: Draw A1:N
t+1

iid∼ Categorical({ωj
t }Nj=1) where ω

j
t ∝ ω̃t(ξ

i
t+1).

⇝ Mutate: Sample ξit ∼ pyt (·|ξ
Ai

t+1

t+1 ) for i ∈ [1 : N ].

ϕNt (dxt) =
1

N

N∑
i=1

δξit(dxt) .
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Particle cloud of the 4 first observed coordinates in the case
(dx, dy) = (4, 800).

Red points: particle cloud, Purple points at the origin: true posterior
samples.

The blue curve is the mean of the artificial taget at each time.
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Posterior sampling proposal: SMC approximation

The final particle approximation is

ϕN0 (dx0) =
1

N

N∑
i=1

δy(dx0)δξi0(dx0) .

⇝ By standard SMC convergence results and under the assumption
that supxt+1∈Rdx ω̃t(xt+1) <∞ for all t ∈ [0 : n− 1],∥∥ϕy0 − ϕN0 ∥∥22 ≲ 1

N
.

⇝ Standard inequalities for SMC filters. There exist constants
c1,n, c2,n ∈ (0,∞) such that, for all N ∈ N, ε > 0 and bounded
function h : Rdx 7→ R,

P
[∣∣ϕN0 (h)− ϕy0 (h)

∣∣ ≥ ε] ≤ c1,n exp(−c2,nNε2/|h|2∞) .
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Posterior sampling proposal: SMC approximation

The final particle approximation is

ϕN0 (dx0) =
1

N

N∑
i=1

δy(dx0)δξi0(dx0) .

There exist Cy
n and Dy

n such that

KL(ϕy0 ∥ E
[
ϕN0
]
) ≤ Cy

n

N
+
Dy

n

N2
.

Results non explicit in n without additional assumptions.
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Synthetic example

25 component Gaussian mixture

⇝ Gaussian random variables with mean
µi,j := (8i, 8j, · · · , 8i, 8j) ∈ Rdx for (i, j) ∈ {−2,−1, 0, 1, 2}2 and
unit variance.

20 component Funnel mixture

⇝ A funnel distribution is defined by the following density

N (x1; 0, 1)

d∏
i=1

N (xi; 0, exp(x1/2)) .

⇝ Sampling (µi, Ri)
20
i=1 uniformly in ([−20, 20]d × SO(Rd))×20. The

mixture consists of 20 Funnel random variables translated by µi and
rotated by Ri.

Observation model

For a pair of dimensions (dx, dy) the measurement model is
Y = AX + σε where A and σ are drawn randomly.
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Synthetic example
First two dimensions for the GMM case with dx = 8. The rows represent
dy = 1, 2, 4.
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Synthetic example
First two dimensions for the GMM case with dx = 80. The rows
represent dy = 1, 2, 4.
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Synthetic example
First two dimensions for the GMM case with dx = 800. The rows
represent dy = 1, 2, 4.
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Synthetic example

(1) 25 component Gaussian mixture (2) 20 component Funnel mixture.
A ∈ Rdy×d and σ are drawn randomly.

Figure: Sliced Wasserstein between samples of the target posterior and the
empirical measure returned by each method. Top: Gaussian mixture. Bottom:
Funnel mixture. We show the 95% CLT interval over 20 seeds.
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Super-resolution example
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Deblurring example
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Many problems ahead

⇝ Not so many solutions proposed to adapt such methods to data
from ecosystems abundancy, population dynamics, time series data.

⇝ Generic methods that can be used so sample form distribution or
conditional distribution but choice of the proposal distribution
(MCMC), variational family (VAE), score network (SBGM) is crucial.

⇝ Theoretical results under realistic assumptions.
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