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Generative modeling

Assumption consider a dataset (X;)1<i<y in R% with unknown
distribution Tgata.

What estimate Tqata and sample new instances from Tgaga.
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Generative modeling

Assumption consider an input variable X € R% and a target
observation Y € R% or Y € {1,..., M}.

What a generative model is a statistical model for the joint distribution
of (X,Y), a discriminative model is a statistical model for the
conditional distribution of Y given X.

Generative learning consider a parametric family py, 8 € © and
training data D to estimate the unknown parameter 4. !

Training data

Prediction

0.83

likely o be a Van Gogh

training - Discriminative predicion
model

Hllustrations from
https://vitalflux.com/generative-vs-discriminative-models-examples/
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Generative modeling

Assumption consider an input variable X € R% and a target
observation Y € R% or Y € {1,..., M}.

What a generative model is a statistical model for the joint distribution
of (X,Y), a discriminative model is a statistical model for the
conditional distribution of Y given X.

Generative learning consider a parametric family py, 8 € © and
training data D to estimate the unknown parameter 6. 2

Generated samples

m.«

Training data

training Generative sampling
model

Random noise

| An
observation

2|llustrations from
https://vitalflux.com/generative-vs-discriminative-models-examples/

5/143


https://vitalflux.com/generative-vs-discriminative-models-examples/

Generative modeling

@ Estimate mq.42 With a parametric probability distribution py.

1. Choose a for pg.
~> In classical solutions, py is parameterized using a Neural
Network.
~> In most recent approaches, the score V log 4., is direclty

parameterized.

2. Data (X',.. ., XN ~ Tdata-
~~ How to train and use the score to generate new samples ?

~ Score-based generative models (Yang et al., 2024)
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Controlled generation

@ Perform controlled generation using py. .

~ Target distribution: weight pg, with a function z — g(z)

g(x)pe, (dz)

o) = o (@)

~+ Posterior sampling: g(z) = p(y|z).

~> Inverse problem with Y = f(X) + ¢ with X ~ 7gata
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Controlled generation
@ Perform controlled generation using py. .

~ Inverse problem with Y = f(X) + & with X ~ 7qata

~ Use generative models to sample from the conditional law of X
given Y3.

Reverse SDE

3|llustration from (Karezouni et al., 2023)
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Generative modeling - Applications
Assumption access to samples from some unknown distribution mgaa.

What sampling (approximately) synthetic instances from 7gata

Predict a protein’s 3D structure from its amino acid sequence.

~ Database of 200M proteins*®(Deepmind & European Molecular
Biology Laboratory), trained with the 200k known conformations.

T1037 / 6vr4 T1049 / 6yaf
90.7 GDT 93.3 GDT
(RNA polymerase domain) (adhesin tip)

“https://alphafold.ebi.ac.uk/
Shttps://github.com/google-deepmind/alphafold
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https://alphafold.ebi.ac.uk/
https://github.com/google-deepmind/alphafold

Generative modeling - Applications

Assumption access to samples from some unknown distribution mgaa.

What sampling (approximately) synthetic instances from myata

Probabilistic model for generating molecular conformations
(GeoDiff, Xu et al., 2022)

pe(C*7116,CY)
@, @ @ —C),
q(ct |Ct 1)

~» GEOM (37 million annotated molecular conformations annotated by
energy): generates new structures + chemical toolkit to calculate
conformation energy.®

Shttps://github.com/MinkaiXu/GeoDiff
10/143


https://arxiv.org/pdf/2203.02923.pdf
https://github.com/MinkaiXu/GeoDiff

Generative modeling - Applications

Probabilistic time series imputation (CSDI, Tashiro et al., 2021)

Conditional observations x§*

VAVERVEN

FYWELVEEY
J J p@(xﬁllx?"‘g‘,j l l
~
Random noise X Imputation targets X
\p \ . W N

Healthcare dataset in PhysioNet Challenge 2012 (4000 clinical time series
with 35 variables for 48 hours from intensive care unit).

Synthetic Data Generation for Privacy and Security (TabDDPM,
Kotelnikov et al., 2023), etc.
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https://arxiv.org/pdf/2107.03502.pdf
https://proceedings.mlr.press/v202/kotelnikov23a/kotelnikov23a.pdf
https://proceedings.mlr.press/v202/kotelnikov23a/kotelnikov23a.pdf

Generative modeling - Applications

~» Sample high-fidelity and diverse tunes, (Jukebox, Dhariwal et al.,
2020).

~» Non-Intrusive Load Monitoring, (DiffNILM, Sun et al., 2023).
~» Sample Image super-resolution, (Gao et al., 2023).

~+ Preliminary medical diagnostic + biomedical denoising’.

"https://www.academie-medecine.fr/wp-content/uploads/2024/03/
Rapport-Systemes-dIA-generative-en-sante.pdf
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https://assets.pubpub.org/2gnzbcnd/11608661311181.pdf
https://assets.pubpub.org/2gnzbcnd/11608661311181.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099094/
https://openaccess.thecvf.com/content/CVPR2023/html/Gao_Implicit_Diffusion_Models_for_Continuous_Super-Resolution_CVPR_2023_paper.html
https://www.academie-medecine.fr/wp-content/uploads/2024/03/Rapport-Systemes-dIA-generative-en-sante.pdf
https://www.academie-medecine.fr/wp-content/uploads/2024/03/Rapport-Systemes-dIA-generative-en-sante.pdf

Generative modeling - Tractable likelihood ?

Tractable likelihood allows for straightforward comparison between
models, and straightforward optimization.

Flow-based generative models (Rezende & Mohamed, 2015,
Normalizing Flows) or Autoregressive models (Van den Oord et al.,
2016, PixelCNN)

The set of models with a tractable likelihood is constrained.

~> The distribution is factorized as a product of conditional
distributions

~~ The distribution is modeled as an invertible transformation of a
base distribution
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https://arxiv.org/pdf/2101.03288
https://arxiv.org/pdf/2101.03288
https://arxiv.org/pdf/2101.03288
https://arxiv.org/pdf/2101.03288

Generative modeling - Energy based models

Energy-based models specify only the unnormalized negative
log-probability (Energy function).

Easy to leverage advances in architectures originally developed for
classification or regression, and flexible to special-purpose architectures.

~> Image generation (Du et al., 2019)
~> Natural language processing (Deng et al., 2020)

~» Reinforcement learning (Haarnoja et al., 2018)
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https://papers.nips.cc/paper_files/paper/2019/hash/378a063b8fdb1db941e34f4bde584c7d-Abstract.html
https://arxiv.org/abs/2004.11714
https://arxiv.org/abs/1702.08165

Generative modeling - Energy based models

The target random variable take values in (R?, B(R?)) and the target
distribution is written®:

i mg(w) o exp (~Eog(2)) = feef;) ((—_EE:(%)dU’

where 6 is an unknown parameter and Ey is the energy function.

Normalizing constant/partition function:
Zy = /exp (—Eo(u)) du.

Gradient-based maximum likelihood requires to compute

x+— Vologmg(x) = —VeEg(xz) — Vg log Zy.

8(Song & Kingma, 2021)
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https://arxiv.org/pdf/2101.03288

Generative modeling - Energy based models

Target x — mp(z) x exp (—Eg(x))

Gradient-based maximum likelihood requires to compute

Volog Zg = Z, ! /V@ exp (—Eg(u)) du
= /{—VgEg(u)} Z, exp (—Eg(u)) du = /{—VgEg(u)} 7o (u)du.

Therefore
Vg log Z@ = ]Eﬂa [—VeEe (X)]
where E,,[f(X)] denotes the expectation of f(X) when X ~ p.

~+ Possible to train an EBM by providing a Monte Carlo estimate of
Vo log Zy which requires to obtain samples from .
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Generative modeling - latent data

In some situations, observations are partial and do not contain some
variables of interest.

Given a generative process for the data, we might be interested in
reconstructing the distribution of the missing variables given the data.

We introduce a family of joint probability distributions (z,z) — ps(z, ),
€O on (ZxX,ZxX)where Z is a latent variable and X is the
observation.

In this setting, for all 6, z, z,
po(2, ) = po(2)po(z2)

and Tgats is estimated by the marginal

po(z) = / po(z,z)dz = / po(2)po(z]2)dz
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Generative modeling - latent data

Major drawback: py(x) is not available explicitly, nor the conditional
distribution of the latent data given the observation:

po(z)pe(x|2) _  po(2)pe(zl2)
po(x) [ po(2)pe(x|2)dz

po(z]r) =

~+ Challenging to train the model !

~~ Challenging to sample latent data given the observations !
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Generative modeling - latent data - DLM?

(Kingma et al., 2013): deep latent variable model for multivariate
Benoulli data

X € {0,1}” and conditionally on a variable Z € R?, (X1,..., Xp) are
independent with Bernoulli distribution with parameters

po(X) = (p1,0(X),...,pp,o(X)), where pg(X) is the output of a
Multi-layer Perceptron with input X and parameters 6 (weights and
biases).

In this example, the input variable has a prior distribution Z ~ A(0, I)
and, for any value of 6, the conditional distribution of Z given X is not
available explicitly.

9Deep Latent Models
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https://proceedings.neurips.cc/paper/2014/file/d523773c6b194f37b938d340d5d02232-Paper.pdf

Generative modeling - latent data - HMM?©

An observation is a sequence X = X;.,, and the latent data is a sequence
Z =Zin.

Bivariate Markov chain (Zy)ken = (Zk, Xk )ren Where the transition is
defined as follows.
Conditionally on ZO:k—l; Xk ~ Qg(Xk_l, ~),
Conditionally on (X%, Zo.k—1), Yi ~ Go(Xk, ),
with Qp a Markov kernel on X x B(X) and Gy a Markov kernel on
X x B(Y).

We know how to compute pg(Z1.,,) and pg(Xi.,|Z1.n) but pe(Xi.,) and
po(Z1.,|X1.r,) are intractable.

10Hidden Markov Models
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Topics covered in this tutorial

How to sample from my when the distribution is known up to a
multiplicative constant - MICMC

How to sample from 7y (z|z) when using latent data - VAE.

How to sample from my when only V log 7y is estimated - Score-based
diffusion models.

Applications of all approaches
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Sampling with MCMC algorithms
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Bayesian setting

In a Bayesian setting, a parameter Z is embedded with a prior
distribution py and the observations are given by a probabilistic model:

X~ by(12).

The inference is then based on the posterior distribution:

_ po(2)lo(X|2)

mo(2|X) = T po(u)le(X|u)du

In most cases the normalizing constant is not tractable:

m9(Z|X) x po(2)le(X|Z) .
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MCMC: rationale

Let X; be any starting point.

- For a given target distribution 7, choose a m-reversible transition
kernel with density k:

7(z)k(z,2") = n(z")k(z',x) [Reversibility]

- Sample a Markov chain Xy, ..., X,, with kernel k& and compute
) 1 ¢
i (f) =D f(X)
i=1

to approximate 7(f) = [ f(z)m(dz).

= Doest it converge ? What is the rate of convergence ?
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MCMC: rationale

Under regularity assumptions, if 7 is a stationary distribution:

- Ergodic theorem, under which condition can we establish, for

feLli(n),

S FX) — [ f@)m(@)da.

1
n
i=1

- Central limit theorem, under which condition can we establish, for

f € Li(m),

aff liZf(Xi)—/f(x)w(x)dx] L2y N(0,1).

i=1
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Key tool : the Accept-Reject algorithm

Assume we know that 7(x) < Mr(x) and that we know how to sample
from 7.

1. Sample X ~r and U ~ U([0, 1]).

2. If ()
7r
U< ,
-~ Mr(X)
accept X.
3. Else go to 1.

target density

Illustration of the Accept-Reject method (Cappé, Moulines, Ryden 2005).
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The Metropolis-Hastings algorithm

- Objective target density 7.

- Instrumental transition density ¢(z,y).

Given X,
1. Generate Y11 ~ q(-, Xg).
2. Set
¥ | Y41 with probability a( X, Yit1),
171 X, with probability 1 — a (X, Yig1) -
where

alz,y) = 1A Y

= No restriction on 7 and ¢, with this choice of « the algorithm
produces a Markov chain with stationary distribution 7.
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The Metropolis-Hastings algorithm

def HM_mcnte_carlo(n_samples, log_prob, initial_state, step_size = 0.1):

e

n_samples: number of samples to return

log_prob: opposite of the loglikelihood to sample from
tnttial_state: iniital sample

step_size: standard deviation of the proposed moves

Outputs

samples: samples from the MCMC algorithm

accepted: array of 0 and I to display which proposed moves have been accepted
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The Metropolis-Hastings algorithm
def HM_monte_carlo(n_samples, log_prob, initial state, step_size = 0.1):
initial_state = np.array(initial_state)

samples = [initial_state]
accepted = []

size = (n_samples,) + initial_state.shape[:1]

# random variable to sample proposed moves
epsilon = st.norm{0, 1).rvs(size)

for noise in tqdm{epsilon):
g-new = samples[-1] + step_size*noise

# acceptance rate
old_log_p = log_prob(samples[-1])
new_log_p = log_prob{g_new)

1f np.log(np.random.rand(}) < old_log_p - new_log_p:
samples . append(q_new)
accepted.append(True)

else:
samples.append (np. copy (samples[-1]))
accepted.append(False)

return (np.array(samples[1:]),np.array(accepted),)
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Independent case

In this case q(z,vy) = g(y).
1. Generate Yi 41 ~ g().

2. Set
X Yi+1 with probability a( Xy, Yit1),
Lt I ¢ with probability 1 — a(Xg, Y1) -
where
alz,y) =1A ) 9(x) .
m(z) 9(y)

Alternative to importance sampling and Accept-Reject algorithms.
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Independent case

The samples are not i.i.d. but, if there exists M such that 7(x) < Mg(x)
then

M
(Roberts, Tweedie 1996), (Mengersen, Tweedie 1996).

1 n
K" (z,) = 7t < (1 - —) (Ergodicity)

Expected acceptance probability is 1/M, no need to know M.

If the majoration condition does not hold, no geometric ergodicity.
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Cauchy vs Normal (1)

- Target distribution: 7(x) oc (1 +2%)7 1.
- Proposal distribution: g(y) ~ N(0,1).

Histogram of IMH with 5000 samples.
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Random walk Metropolis-Hastings

The proposal mechanism is given by Y11 = Xi + €x41, where €41 is
independent of Xy 1. The proposal distribution is of the form
q(z,y) = q(y — x) with ¢ is symmetric.

1. Generate Yiy1 ~ q(Xk, ).

2. Set
X Yi+1 with probability a( Xy, Yit1),
LAt I ¢ with probability 1 — a(Xg, Y1) -
where
m(y)
=1AN—=].

Using random walk moves prevents from being uniformly ergodic (Robert,
Casella 2004).
But still, geometric ergodicity.
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Cauchy vs Normal (I1)
(1+
0,1

I
1
)-

- Target distribution: 7(x) r?)~!
- Proposal distribution: A(0,
1+ 22
alz,y) =1 /N ——
(@,y) =11 e
1

HIﬁ—HTI‘HﬁﬁﬂTI// T]%“‘Hﬁmn -

Histogram of IMH with 10000 samples.
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Improving Metropolis-Hastings using gradient information

Langevin equation associated with 7:

dX, = (£/2)Vlog n(X,)dt + /2dW, ,
where W is a d-dimensional Brownian motion.

Under appropriate regularity assumptions, the generated dynamic is
ergodic with unique invariant distribution 7.

Solving this equation analytically would allow to sample exacty from 7.
Not tractable in practice!

Another family of proposals is based on the Euler-Maruyama
discretization of the equation...
Proposal mechanism of the form

h 2
Yir1 = Xi + %Vlogﬂ(Xk) + Vhoerg .
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The MALA algorithm

def MALA monte_carlo(n_samples, log_prob, initial state, step_size = 0.1):

n_samples: number of samples to return
log_prob: opposite of the loglikelthood to sample from
inttial_state: initial sample

step_stze: standard deviation of the proposed moves

Outputs

samples: samples from the MCHMC algorithm

accepted: array of 0 and 1 to display which proposed moves have been accepted
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The MALA algorithm

def MALA_monte_carlo(n_samples, log_prob, initial_state, step_size = 0.1):
initial_state = np.array(initial_state)
gradV = grad(log_prob}

samples = [initial state]
accepted = []

size = {n_samples,) + initial_state. shape[:1]

# random wariable fo sample proposed moves
epsilon = at.morm(0, 1) rvs(size)

step = 0.5/{step_size=+2)

for noise in tgdm{epsilon):

grad_new = gradV{samples[-11}
mean_new = samples[-1] - step+grad_new
q_new = mean_new + step_size*noise

grad_y = gradV{g_new)
mean_y = g_mew - stepsgrad_y

# acceptance rate
old_log_p = log prob(samples[-1]) + penp.dotlg_ _new,q_ new)
new_log p = log prob(g_new) + step*np.dot{samples[-1]-mean_y,samples[-1]-mean_y)

if np.log{np.random.rand()) < old_log p - new_log_p:
samples . append (q_new)
accepted.append(True}

else:
samples . append(np. copy (samplea[-111)
accepted.append(Falze)

return (np.array(samples[1:]},np.array(accepted),)
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The MALA algorithm

If o is chosen either too small or too large, the convergence can be
arbitrarily slow:

- o small
Many moves are likely to be accepted.
The chain visits the state-space very slowly.

- o large
Proposed moves often rejected.
The algorithm may be stuck for a long time.
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Challenge: scaling issues and high dimensionality

How to choose the scaling (o) of the algorithm to optimize efficiency ?

Scaling problem mainly studied for:

1. Random walk Metropolis-Hastings (RWM)

- Proposal mechanism of the form Yy 11 = X + oepy1.

- Acceptance rate:

m(y

() |.
7(x)

a(z,y) =1A

2. Metropolis-Adjusted Langevin Algorithm (MALA)

- Proposal mechanism of the form

h 2
Yir1 = X + %Vlog 7(Xg) + Vhoepy1 -
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Optimal scaling

- The influence of scaling is better understood with high dimensional
settings.
= Consider a state-space R% when d — +o0.

- Each component of the Markov chain converges weakly to a
diffusive limit.

- The choice of scaling can be obtained based on the behavior of this
diffusive limit

1. Target distribution: m4(z) = ngl f(zk).

2. RW proposal: gq(x) ~ N(0,021;/d).
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Optimal scaling
o4 is of the form o2 = ¢?/d.
Let (Z;)1>0 be the linear interpolation of the Markov chain (X,fJ)

k>0
after time rescaling. (Z;):>0 converge weakly to the diffusion process

(Zt)¢>0: X
dZ, = h(0)'2dB; + S MOV log(Z,)dt

with h(f) = 202 (—ﬁm).

By choosing the value ¢, of £ which maximizes 1(/), the asymptotic
acceptance rate is

A(L,) ~ 0.234|.

For the MALA algorithm, by choosing o2 = ¢/d'/?,
A(L,) ~ 0.574].

These MCMC algorithms, even optimally scaled, remain inefficient
in high dimensional settings.
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Other scaling results
- (Roberts et al., AAP, 2012)
7¢ is confined to the d-dimensional hypercube (0,1)¢ and twice
continuously differentiable on the hypercube with bounded
derivatives.

Scaling o, = (/d.

The asymptotic optimal acceptance rate obtained by maximizing the
speed of the limiting diffusion is then equal to 0.1353.

- (Jourdain et al., AAP & Bernoulli, 2015)
Initial distribution is not 7.
Same scaling using the weak formulation.

- (Durmus et al., JAP, 2017)
Same scaling using the weak differentiability assumptions.

- Fast MALA (Durmus et al. 2017, AAP): second order discretization of
the SDE: scaling of order 1/5.
These MCMC algorithms, even optimally scaled, remain inefficient

in high dimensional settings.
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Extensions

In practice the scale can be adapted on the fly to optimize the
acceptance rate. [Adaptive algorithms].

The MCMC algorithm can still have trouble capturing multimodality
(trapped in local modes).

[Parallel tempering] Design several target densities 77 with
T >Ty - >T,=1.

Swaps between states of adjacent levels are proposed to allow an
exchange of information.
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And for dynamical data 7

Population dynamics in a predator-prey system

Zit) 0

dZt = Oze(Zt)dt + ( 0 Zz(t)

)raw;

with
as(Z,) = Z1(t)(a10 — a11Z1(t) — a12Z5(t))
Y7\ Za(t) (—azo + a2 Z1(t) — azsZs(1))
The observation model is given by

(1)
c1 721 (tg)esr
th:<1 L (t) m)

Co Z2 (tk )eEk

Objectives: estimate the unknown parameters and sample from
Po(Ztgit, | Xegit,)
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Lotka-Volterra

Objectives:

Estimate the unknown parameters and sample from pg(Zi, ., | Xto:t,,)

Problems:

P6(Ztoitn | Xto:t, ) X Do (Ztg:t, )00 (Xto:t,, | Zto:t,, ) bUt Do(Zeyi,) is
unknown.

At iteration p, not easy to design a proposal distribution given Zt(f:)tn.

Possible to use Sequential Importance Sampling to propose a new state:

computationally intensive.
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300 time steps

The first 10000 samples are discarded, the mean over the next 10000

Synthetic data

samples is displayed.
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Bayesian setting

— Guess-and-check strategy of Random Walk Metropolis and the
approximation of the Langevin equation are doomed to fail in high
dimensional spaces.

— In high dimensional settings, the difficulty is to propose new states far
from the initial point, and use the geometry of the target density to
ensure a high acceptance probability.

— A move based on the gradient pulls the state away from the level set
towards the mode of the target density.

— Stability in the exploration may be ensured by adding a momentum
to counteract the " gravitational” (gradient) attraction.

A well tuned momentum balances the corresponding dynamics and leads
to conservative moves.
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Heuristic: why gradient moves may not be sufficient 7
For a function f : R? — R, define the level sets:

Co={z eR f(z)=c}.

e
T T T
-3 -2 -1 0 1 2 3

— The gradient is orthogonal to level sets. w0143



Bayesian setting

— Define a target joint distribution:

1(g,p) < exp (—H(g,p)) -
— In the case where H(q,p) = Ul(q) + K(p),

(g, p) o< exp (—U(q)) exp (—K(p)) -

— In Bayesian analysis, the position ¢ is understood as the parameter of
interest § and U is its log-posterior (unnormalized) distribution:

U(q) = —log(m(q)t(qlY)),

where 7 is the prior distribution of ¢ and £(:|Y") the conditional
distribution given the data.

If (¢«,p«) ~ i, then ¢ has the target distribution!
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Equations of motion

— The system is described by a d-dimensional position ¢ and a
d-dimensional momentum p.

— The Hamiltonian function H describes the system dynamics: for all
1<j<d,

de_aH
dt — ap;’
dp;  OH
At dg

This Hamiltonian dynamics generates a vector field oriented with
the level set of the joint distribution !
— This system can be written using matrix products: if z = (g, p) is joint

state,
dz _ 04 1
(_Id Od) VH(z).

=
— In most cases, the Hamiltonian is of the form H(q,p) = U(q) + K(p)
where U is the potential energy and K (p) = p” M ~'p/2 is the kinetic
energy with M a symmetric positive-definite matrix.
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Properties of the Hamiltonian dynamics

Reversibility
For all s > 0, the mapping T : (q(t),p(t)) — (q(t + s),p(t + s)), is
one-to-one: there exists a unique inverse transform.

Stationarity
Using the chain rule,

Ala.p) _ §~ (dWH dpjaH> _0

dt = dt 6(]j E 3pj B

Volume preservation (Liouville’s theorem)

The vector field defined by Hamiltonian dynamics is divergence free so
that the dynamics is volume preserving.
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Hamiltonian within MCMC implementation

— Define a target joint distribution:

1(g,p) < exp (—H(g,p)) -
where H(q,p) = U(q) + K(p) and U(q) = —logm(q|Y").

Solving the Hamiltonian dynamics defines a new proposal moves
for a MCMC approach.

Which time horizon to solve the system (efficient exploration of a
level set)?

How to perform the integration numerically ?

How to choose the kinetic energy K 7
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Euler discretization

— Starting at state (g¢, p:), provides an approximate value for
(Gt+8,Pi+6)-
In the case where H(q,p) = U(q) + K (p), Euler discretization is:

Pt+s =Pt — 5VU(Qt) )
Gi+5 = qt + OV K (p) .

And, if it is assumed that A (p) = p? M~ 1p/2,

pres =Pt — 0VU(q) ,
G5 = qr + M 'p; .
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Euler discretization

def euler_integrator(g, p, gradiemtV, T, step):

ELL

g: initial poasition

pr oinitial momentuwm

gradientVF: gradient of the velocity
T: time horizon

step: step size to discretize the ODE

q, p = np.copy(q}, np.copy(p)
pos, moms = [np.copyiql], [np.copy{pl]

vg = gradientVi{g)
mnb_steps = int(T / step)

for it in range{nb_stepa):
P=p - step * vg
q=4q* step * p
pos. append{np. copy (q)}
wg = gradientVig)
moms . append {np. copy {p}}

return q, -p, ap.array{pos}, np.array(momsz)
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Euler discretization

— H(q,p) = ¢*/2+p*/2.
— Initial state (¢,p) = (0,1), L = 20 steps.

2_ L J
/°/
1 4 f' R
/ ,a‘ -8
o ® ’ [
c | ' L
:42 04 ‘. 1 ] \
3 [y ’ [
a \\ L] L4 !
L ‘t. - /.
14 \‘. -"‘"----"‘. /.
\H‘“a _—*
e "
2 -
T T T T
-2 -1 0 1

position q
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Leapfrog integrator

— Starting at state (g, p:), provides an approximate value for
(Gt+5,Pe+vs)-
In the case where H(q,p)

U(q) + K (p), the leapfrog integrator is:

Pryss2 =Ppr —O0VU(qt)/2,
Qs = Q¢ + OV K (Diy5/2) »
DPt+s = Pt+5/2 — 5VU(Qt+6)/2 .

And, if it is assumed that K (p) = p/ M ~'p/2,

Pryss2 =Pe —O0VU(q)/2,
Qs = @+ M s,
Pi+s = DPirsy2 — OVU(q45)/2.
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Leapfrog discretization

def leapfrog_integrator(g, p, gradiemtV, T, step):

Inputs

g. initial position

F: oinitzel momentum

gradient V: gradient of the velocity
T: time horizen

step: step size to discretize the ODE

q, P = np.copy(g}, np.copy(p)
pos, moms = [np.copyiq)], [np.copyipl]

vq = gradientV{g)
nb_steps = int{T / step)

for it in range{nb_stepa):
P =p - 0.5#step * wq
q=q*step * p
pos. append{np. copy(q))
wq = gradientVi(g}
P=p - 0.5+step + vq
moms . append (np . copy (p) )

return g, -p, np.array(pos), np.array(moms)
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Leapfrog discretization

— H(q,p) = ¢*/2+ p?/2.
— Initial state (¢,p) = (0,1), L = 20 steps.

~ -
- - .r"‘.--“.h"
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position q

50 /143



Leapfrog discretization - multimodal setting
— U(q) is the logdensity of a mixture of 3 Gaussian distributions.

Several trajectories obtained from the leapfrog integrator - multimodal case

- Trajectory 0
- Trajectory 1
- Trajectory 2
- Trajectory 3
- Trajectory 4

Pt

T T T T
-2 [} 2 4
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-2

HMC - monomodal setting
— U(q) is the logdensity of a Gaussian distributions.

Number of steps in leapfrog: 1

Number of steps in leapfrog: 5

4
2
o
-2
-4
-4 -2 0 2 4 -4 -2 0 2
Number of steps in leapfrog: 10 Number of steps in leapfrog: 15
4
2
o

-2

61/143



HMC - multimodal setting
— U(q) is the logdensity of a mixture of 3 Gaussian distributions.

Number of steps in leapfrog: 1 Number of steps in leapfrog: 5

-2
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HMC - comparison with other MCMC

Length of the leapfrog: 1

Length of the leapfrag: 5

+ Hailtanian
Metropalis-Hastings
ALA
4 2
2
2
o
o
-2
-2
-
-4
-
o% -6
4 4
2
2
)
o
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Variational Autoencoders
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What we did yesterday

estimate a distribution mg.t, and sample new instances from mgaa.

introduce a parametric estimator my and sample new
instances from my.

sample a Markov chain invariant w.r.t. m even when 7y is
known up to a multiplicative constant
» Random Walk Metropolis Hastings: local perturbation of the state
at each iteration.
» Metropolis Adjusted Langevin: local perturbation using V, log mg(z)
of the state at each iteration.

» Hamiltoninan Monte Carlo: extended state space to move
approximately on level sets.
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Generative modeling - latent data

In some situations, observations are partial and do not contain some
variables of interest.

Given a generative process for the data, we might be interested in
reconstructing the distribution of the missing variables given the data.

We introduce a family of joint probability distributions (z,z) — ps(z, ),
€O on (ZxX,ZxX)where Z is a latent variable and X is the
observation.

In this setting, for all 6, z, z,
po(2, ) = po(2)po(z2)

and Tgats is estimated by the marginal

po(z) = / po(z,z)dz = / po(2)po(z]2)dz
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Generative modeling - latent data

Major drawback: py(x) is not available explicitly, nor the conditional
distribution of the latent data given the observation:

po(z)pe(x|2) _  po(2)pe(zl2)
po(x) [ po(2)pe(x|2)dz

po(z]r) =

~+ Challenging to train the model !

~~ Challenging to sample latent data given the observations !
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VAE

Variational Auto-Encoders (VAE) are very popular approaches to
introduce approximations of a target conditional distribution in the
context of latent data models.

Consider a family of joint probability distributions (z,z) — pe(z, ),
0 €0,on (ZxX,ZxX)where 7 is a latent variable and X is the
observation.

For all 8, z, z,
po(z,7) = pa(2)pe(|2)

and the conditional distribution py(z|z) is not availbale explicitly.

How to estimate # and sample approximately from py(z|z) ?
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VAE- learn disentangled representations

Common assumption in unsupervised representation learning:
low-dimensional latent variables generate observed data.

Knowledge of true latent variables useful in many tasks:
classification, transfer learning, causal inference etc.

Problem: models used usually unidentifiable (e.g. 5-VAE), thus
we cannot recover true data generating features.

General identifiable framework for principled disentanglement.
Deep leargning architectures for structured VAE. Some
theoretical guarantees for VI for state spaces.
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ELBO

. Considering a family
(z,2) = qp(2]z), ¢ € ® where ® is a parameter space.

Then, we can write, for all ¢, 0, z, z,

log po () = / log po (2)g, (z]2)dz

= Eq, (|x) [logpo(z)]

po(Z, x)
=K I E I .
v |08 S + B 106 225

The first term of the right-hand-side is the
, so that logpg(x) > L(0, p, x), where

p (Z,x)}

0
qp(Z]2)

L0, 0,7) =Eq,(|2) {log

is the ELBO in this setting.
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A schematic view

Prior distribution: pe(z)

Z-space

E

Encoder: qq(z|x)

Decoder: pa(x|z)

7y

Xx-space

Dataset: D
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An example with Gaussian distributions

GOr—usta 15— 2205 Lo o@D mtx | ) > Gula) |---o(x)

\—v—'/z = pg(x) +ou(x) © E\—v—"’

Encoder Decoder
£~ N(0,14,)

How to define ¢.7 ¢,(-|z) can be defined as a Gaussian with mean
tiy () and variance o2 ()14, -

20(x) =2
21(x) = o (Wizg—1(z) + br—1) , 1<k<L-1

zp(x) =L (Wrzp—1(x) +br-1) = (5%&2) '

Parameter to estimate ¢ = (W, by)1<k<r, functions (¢)1<k<r and
dimensions of (z;(z))1<k<r to be chosen.
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An example with Gaussian distributions

C—s{antz 10— :;zg; - o@D il | 2) > Gala) »@

M z = pg(x) +og(x) e ~

Encoder Decoder
£ N0, 1)

How to define py?7 py(-|z) can be defined as a Gaussian with mean
fio(z) and variance 53(2)Iq, .

x

Zo(z) =2z
Zk(2) = U, <V~Vk5k—1(z) + Bk—l) , 1<kE<L-1
Z(2) = Y1 (WLEL—1(Z) + 5L-1) = (g%gig) :

Parameter to estimate 6 = (Wk,l;k)lngL, functions (1l~)k)1§k§L and
dimensions of (Z;(z))1<k<r to be chosen.
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Stochastic optimization

Assuming that we have a dataset with i.i.d. data {z,},-,-,, VAE
propose to solve the optimization problem:

~ ~ 1
(@*,na 9*,71) € argmaxzp&@,@é@% Z ‘C(eﬁ @, xl)
i=1

This is approximately solved using Stochastic Gradient ascent.
> Initialize @0, .
» Draw (Xy,,...,Xk,,) randomly in the dataset.
>

Prt1 @k po(Zi, Xr,;)
~ + V.. log
(9k+1> (9 > Ve+1V 5, 0, ( ; 4o (Zi| X, ))
with Z; ~ qz, (+| Xk, ).
Adaptive step-sizes + ascent direction with (ADAGRAD, Duchi et
al., 2011) or (ADAM, Kingma & Ba, 2015)
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http://jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
http://jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
https://arxiv.org/pdf/1412.6980

After training

After the training phase VAE may be used for several objectives.
Loglikelihood estimation: logpy(z) = logE,_(.|o)[Pe(Z,v)/q,(Z|2)],

estimated by
1M
log MZP@(Zi,$)/Q¢(Zi|$)
i=1

with (Z;)1<i<a i.i.d. with distribution g, (-|z)

Reconstruction: for any x, we can encode x by sampling z ~ ¢, (-|z)
and decode z by sampling T ~ pg(+|2).

Sampling: we can sample new data by @ ~ py(+|2) with z ~ py.
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Some theoretical properties

Assumptions on the variational family (Lipschitz in ¢ and z) and on the
training loss (Lipschitz in all parameters)

(Tang & Yang, 2021) obtained an upper bound for the total variation
distance between the target distribution and the distribution

generated from a latent space model.

With probability at least 1 — cexp(—r(logn)'/®),

dio (ﬂdata,/ <%Zq¢"(2|$i)> Pén(-|2)>
i=1

< eming yEr,... [m(0, ¢, X)] + k% log(dn)
with

m(0, ¢, ) = log Maata(®) + KL (¢4 (-|2)) e (2)pe(z]2))
= log maata(z) — L(6, 0, x) .
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https://proceedings.mlr.press/v134/tang21a.html

Some theoretical properties

With probability at least 1 — cexp(—r(logn)'/®),

2
1 n
dio <7Tdataa/ (n ZQ¢n(Z|$i)> Pén(-z)>
i=1
. ds
< eming yEr,... [m(0, ¢, X)] + k;; log(d«n)

The estimation error (second term) scales as O(1/n) up to a logarithmic
term, which matches the rate of parametric density estimation.

If the model is well-specified, ie. 7o, = [ po. (2)po. (-
do(z|z) = Po (z|x),

z)dz and

minavﬂﬁE‘ﬂ'data [m(07 @, X)] =0
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Context: example of the gut microbiome

Microbiota:
» Bacteria, viruses, and parasites living in the gastrointestinal tract.

» Genetic clustering in a tree graph called a taxonomy on which we
annotate abundance values.

(a) Taxonomy of the microbiome of
Arions species (b) Taxa-abundance sample
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Context: example of the gut microbiome

Motivations:

» Biomarker for several diseases: prediction of Crohn's disease
complications through count data.

» Taxonomy not exploited yet despite the genetic correlations it yields.
Medical interpretability:

» The bacteria are forming an interaction network yielding biological
functions of interest.

Figure: Functional groups among an interaction network
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Context
Challenges:
» How to model hierarchical count data?
» Highly variable and sparse data, high dimensionality, low sample size.

> Hierarchical compositionality: the children abundance C (X}) of a
node should sum to the value of their parent X},

041 _ yl
E Xj =X;.
ject

(a) Tree graph (b) Hierarchical count data

80/143



Application to gut microbiota

Using the tree graph while ensuring flexibility?

Top-Down PLN-Tree:
> Latent Markov dynamic (top-down):

Zl NN(/"DEl) 5
Zé+1 NN(N9e+1(ZZ)aEGe+1(ZE)) .

» Constrained observed dynamic:
Xt ~p (eZl>

c(xp) ~P [ec%)

04+1 ¢
> Xt =Xx;
ject
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PLN-Tree: model inference

: Learning 6 through maximum likelihood is intractable.

: Variational inference introduces a learnable proxy to the
intractable quantity py(Z|X) denoted by ¢,(Z|X).

1. pp(Z|X) is a backward Markov Chain, then

L-1

41:1(2IX) = 4,0 (X0 [T ap 000 (21251, X)
(=1

: ELBO is not explicit but approximated using Monte Carlo
sampling.

11 Amortized backward variant
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PLN-Tree: model inference

Dataset: 650 microbiota from, patients with 7 diseases.

How to evaluate the performances?

Approach: learn the models, sample from them, and assess resemblance with
the original data given several criteria.
Perfomance criteria (non-taxonomic dependent):

» Alpha diversity distribution: compare ecosystems by estimating species
variety through richness and evenness (Shannon, Simpson, ...).

» Samples distribution: empirical Wasserstein.

Benchmarked models:
» PLN-Tree: backward and mean-field
» PLN per layer: yields non-valid hierarchical count data, just as a reference.

» PLN (fill): sample last layer, fill the rest using the hierarchical
compositionality constraint.
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Synthetic data

For individual i, if ps ; is the proportion of species 7,

Se

1
Shannon; y = — Zps’i logps; InvSimpson;, = ==
s=1 Zs:l ps,i

After parameter inference, we sample M = 25 times n = 2000
microbiota to be compared with the dataset.

Alpha diversity PLN-Tree PLN-Tree (MF) PLN (fill) ‘ PLN
Wasserstein Distance (= 10%)

Shannon £ = 1 1.57 (0.50) 11.23 (0.73) 1453 (2.37) | 2.61(0.85)

Shannon ¢ = 2 3.67 (1.33) 5.14 (1.20) 31.55(3.42) | 25.85(2.5T)

Shannon ¢/ = 3 5.82(1.51) 7.86 (1.47) 34.36 (3.68) | 34.36 (3.68)

Inverse Simpson £ = 1 0.62 (0.21) 2.69 (0.27) 4.91 (0.93) | 0.95(0.34)
Inverse Simpson £ = 2 .71 (0.24) 1.40 (0.31) 7.25 (0.98) | 5.92(0.69)
Inverse Simpson £ = 3 0.85 (0.24) 1.55 (0.34) 7.08 (0.96) | 7.08 (0.96)
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Public dataset
(Pasolli et al., 2016)

Label Nb of training samples  Nb of test samples | Total
IBD (Crohn) 20 5 25
Colorectal Cancer 38 10 48
Leaness 71 18 89
Liver Cirrhosis 94 24 118
IBD (UC) 118 30 148
Obesity 131 33 164
Type 2 Diabetes 178 45 223
Total 650 165 | 815
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https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004977

Public dataset

PLN-Tree  PLN-Tree (MF) PLN(fil) | PLN

Wasserstein distance (x10%)

V=

=2
£=3
=4

5.89 (0.29) 4.67 (0.25) 15.18 (0.70) | 8.52 (0.72)
§.83 (0.28) 7.55 (0.14) 2047 (0.70) | 15.80 (0.58)
9.27 (0.27) 7.76 (0.12) 20.72 (0.71) | 18.68 (0.66)
17.00(0.22)  15.59(0.13)  29.41(0.78) | 29.41 (0.78)
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Public dataset

Alpha diversity

PLN-Tree PLN-Tree (MF)  PLN (fill) | PLN

Wasserstein distance (< 10%)

Shannon ¢ = 1

Shannon £ = 2
Shannon ¢ = 3
Shannon ¢ = 4

Inverse Simpson £ = 1
Inverse Simpson £ = 2
Inverse Simpson £ = 3
Inverse Simpson £ = 4

1.73 (0.44) 3.00 (0.44) 1648 (1.37) | 4.22(1.44)
2.22(0.73) 5.70 (0.97) 22.94(2.29) | 8.28(1.89)
2.29 (0.63) 6.58 (1.02) 2376 (2.29) | 9.13(2.24)
208 (0.62)  2039(1.08)  54.55(2.98) | 54.55 (2.98)
0.84 (0.14) 0.71 (0.12) 7.18 (0.56) | 1.75(0.59)
0.92 (0.24) 0.73 (0.19) 754 (0.79) | 2.64 (0.44)
0.91 (0.23) 0.72 (0.19) 753(0.79) | 2.93(0.50)
0.53 (0.13) 241 (0.21) 12.83 (0.89) | 12.83 (0.89)

87/143



Public dataset - classification

Use a VAE as preprocessing techniques to solve other tasks

In the PLN-Tree framework, the first layer's latent variable models the
total count, while the next variables account for how the counts
progressively distribute over the layers in the observed space.

Consider a feature-engineered latent feature called Latent Tree Counts
(LTO)

V! =exp(Z'),
V<L k<K, Vj=o0(Z)xV.

Use the latent features as input of any classification procedure
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Public dataset - classification

Raw data log-LTC (PLN-Tree) log-LTC (MF) PLN
Logistic Regression
Balanced Accuracy 0.632 (0.042) 0.734 (0.039) 0.742 (0.034)  0.716 (0.037)
Precision 0.701 (0.032) 0.778 (0.030) 0.785 (0.026)  0.765 (0.028)
Recall 0.645 (0.039) 0.747 (0.033) 0.750 (0.028)  0.727 (0.032)
F1 score 0.661 (0.036) 0.756 (0.031) 0.759 (0.026)  0.738 (0.030)
ROC AUC 0.677 (0.045) 0.790 (0.036) 0.785(0.037)  0.791 (0.037)
ROC Precision-Recall  0.438 (0.061) 0.559 (0.060) 0.559 (0.057)  0.601 (0.069)
Linear SVM
Balanced Accuracy 0.586 (0.042) 0.733 (0.040) 0.738 (0.034)  0.714 (0.033)
Precision 0.673 (0.035) 0.777 (0.030) 0.781 (0.026)  0.763 (0.025)
Recall 0.584 (0.061) 0.746 (0.035) 0.743 (0.031) 0.72 (0.031)
F1 score 0.598 (0.062) 0.755 (0.033) 0.753 (0.029)  0.732 (0.029)
ROC AUC 0.545(0.127) 0.793 (0.033) 0.787 (0.035)  0.791 (0.036)
ROC Precision-Recall  0.336 (0.085) 0.562 (0.061) 0.551 (0.059)  0.597 (0.067)
Neural Network
Balanced Accuracy 0.704 (0.036) 0.737 (0.030) 0.704 (0.041)  0.727 (0.034)
Precision 0.773 (0.026) 0.799 (0.024) 0.778 (0.029)  0.795 (0.026)
Recall 0.777 (0.028) 0.804 (0.023) 0.778 (0.035)  0.802 (0.025)
Fl score 0.772 (0.027) 0.800 (0.023) 0.772 (0.032)  0.795 (0.026)
ROC AUC 0.782 (0.036) 0.827 (0.026) 0.792 (0.041)  0.854 (0.024)
ROC Precision-Recall ~ 0.62 (0.062) 0.658 (0.056) 0.634 (0.065)  0.692 (0.051)
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Reconstruction guarantees

State space models

0h1 b =Eg [(Z0.4)| Xo:]
~~

Zo.t+ given Xo.¢
» Zy.t is a Markov chain with transition density mg.

» Conditionally on Zj.;, the observations are independent with
emission densities go(Zt, -).

Additive state functionals
t
hO:t 120t Z hs(zs—la Zs)
s=1

~ @b hos crucial in both inference and parameter learning.

90/143



Variational family
In practice the model is often estimated by maximizing the ELBO:

Po(Z1:4,X1:1) }

LO,p)=E,_,. {log
( ’ ) o0t q¢,0:t(zlzt|xl:t)
where gy, 0.¢(Z1:¢|%1:¢) is the variational distribution.

Traditional assumption on the variational family

Gip,0:¢ (Z1:¢|X1:4) = qus Zs[X1:t) -

— No theoretical results and does not fit classical posterior distributions
(for instance in HMMs).
New framework: backward decomposition

t

Q<p,0:t(Z1:t|X1:t) = Q<p,t(zt|x1:t) H QLp,sfl\s(Zs—l'Zs:xl:t) .
s=2

— Some theoretical guarantees and well designed for online learning.
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Goal - bias control

Theoretically validate backward variational smoothing as a valid
approximation.

» Variational inference is not consistent.
> Bias depends on implementation / optimization.

~ Ensure that the bias is controlled w.r.t time.

Quantities of interest: ¢§.,ho.t = Eg [ho.t(Zo.t)| Xo:¢]

hg.; additive state functional.
0
|Q¢,O:th0:t - ¢0:th0:t| S ?

~> Marginal smoothing as a byproduct.
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An insightful result

Assumptions

> llaoe = ol <=

> Hq%s_l‘s(zs, = bg_lls(zs, ) ) <egforall s<t, zs €X

t
Additive bound
‘Qw,O:thO:t - d)g:tho:t’ < cle

Questions
Quantitative bounds without strong mixing ?

Does minimizing the ELBO ensure that the true and variational kernels
are close ?7
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To obtain excess risk bound

Assumptions

> KL(gp¢!) < <.
> KL(gyp,s—1)5(2s ')’bzfus(zs’ ) < e forall s <t

» Additional moment and Lipschitz assumptions.

There exist constants cg, c¢1, c2, D such that with probability at least
1 — coexp(—cy {logn}1"*=), for any v > 0,

KL (ﬂ'data

X
P§n,T)
3
*

Dd.T
<A+NT+De+ca(1+771

log(d,n)(logn)*/
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To obtain excess risk bound

There exist constants cg, ¢1, ca, D such that with probability at least
1 — copexp(—cy{d. logn}1"*+), for any v > 0,

7)

<A 4+)T +1)e+c2(1+~47Y)

KL (Taata

Dd, T3

Questions
Improving the dependency with respect to 7" 7

Specific results (constants) for specific deep architectures ?

log(d,n)(logn)'/ =
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Estimating 4., with diffusion models
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What we already know

In some situations, observations are partial and do not contain some
variables of interest.

Given a generative process for the data, we might be interested in
reconstructing the distribution of the missing variables given the data.

We introduce a family of joint probability distributions (z,z) — ps(z, ),
€O on (ZxX,ZxX)where Z is a latent variable and X is the
observation.

In this setting, for all 6, z, z,
po(2, ) = po(2)po(z2)

and Tgats is estimated by the marginal

po(z) = / po(z,z)dz = / po(2)po(z]2)dz
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What we already know

sample a Markov chain invariant w.r.t. pg(z|x) even if
po(z|x) o po(z)pg(x|2) is known up to a multiplicative constant.

» Random Walk Metropolis Hastings: local perturbation of the state
at each iteration.

» Metropolis Adjusted Langevin: local perturbation using
V. log pe(z|x) of the state at each iteration.

» Hamiltoninan Monte Carlo: extended state space to move
approximately on level sets.

to approximate pg(z|x) with variational family ¢, (z|z).
» Easy optimization and large variety of choices for g, (z|z).

v

Latent space: useful to encode data, solve classification tasks.

» Challenge: design problem-tailored ¢, (z|x).
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Score-Based Generative Models (SGMs)

What: generate synthetic instances of a target distribution 7qata

How: instead of providing a model for mq,:a, we model the score
Vm IOg Tdata

Key idea: perturb data with a sequence of intensifying Gaussian noise
and jointly estimate the score functions for all noisy data distributions
(Song & Ermon, 2019)
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Why using the score function ?

Consider the Langevin SDE

dX, = V, log Tgaea (X, )dt + V2d B,

Markov semigroup associated with the Langevin diffusion (X;);>0 is
reversible w.r.t. Tqata

Euler—Maruyama discretization scheme associated with the Langevin
diffusion

Xit1 = Xk + Vo1 Ve 108 Tdata(Xi) + /2Vk41 2541

If (vk)r>0 decreases to 0, the marginal distribution of this chain
converges to Tyata
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Score-Based Generative Models (SGMs)

What: generate synthetic instances of a target distribution 7qata

How: instead of providing a model for my,ta, we model the score
vac log Tdata

Let o1 < ... < o7 be a sequence of noise levels and write
Xt = Xo + 0i64,
with X ~ Tgata and g ~ N(0, 1).

The conditional distribution of X; given Xy g0(X¢|Xo) is known and
Gaussian but the marginal density ¢; of X; is unknown.
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Score-Based Generative Models (SGMs)

Xt = Xo + o1&,
with X ~ 7gata and &; NN(O,Id)

Let sp(x,t) be a parametric approximation of V log ¢;(x).

The parameter 6 can be estimated by minimizing a score matching loss:
£(0) = E [A®)0? IV log a0(X0) — so(X1, DI

= E[M0)0? ||V log o (XelXo) — s0(Xe1)][7] +©

X — Xo 2

— X, t
p ots9(X¢,t)

_E -)\(t)H e

=K |\(t)o? || + UtSG(Xtvt)”Q] +C
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Score-Based Generative Models (SGMs)

The parameter 6 can be estimated by minimizing a score matching loss:

£(0) = E [M8)o? |le + ouso (X, 0)|*] + €

Then , sampling can be performed with annealed Langevin

dynamics
> Start with 2, ~ N(0, I).
> Fort=Ttot=1
Set xf})) = xﬁf}
Fori=1toi=N—-1
xﬁ”l) = xil) + sesg(ah, t)/2 + s}/zsi
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Score-Based Generative Models (SGMs)

generate synthetic instances of a target distribution 7gata

challenges in modeling the complexity of real data, preventing
conventional parametric modeling or traditional maximum likelihood
methods.

Creating noise from data is easy; creating data from noise is
generative mode/ing. (Song et al., Score-Based Generative Modeling through
Stochastic Differential Equations)

Who: SGMs address this by
1. (forward phase) introducing progressively noise into the samples,

2. (backward phase) reversing the noising dynamics, with the help of a
score function usually learned using deep neural networks.
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Diffusion models: the forward process - DbPM (Ho et al., 2020)

Consider the forward noising process

X =1 =Bk Xim1 +VBiZi, Brel0,1], Xo~ Tata,
where Z ~ N (04,,14,).

Figure: One sample Xo.p,.

X} ~ 7 where 12 1 (dxy,) = [ aata(dzo)N (dag; /oo, (1 — )y, ).

(Xk)k>0 is a discrete-time OU process.

125% = H?:l(l - 5j)-
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Diffusion models: the backward process
Note that

n

7T1:n|0(l‘1:n\1‘0) = 7Tn|o(33n|ﬂ?0) H 7Tk—1|0,k(xk—1|x07xk)
k=2

where m,0(2n|T0) = N (2n; ar a0, (1 —ay)I) and

7Tk—1|0,k(xk71|x07 xk) X 7Tk—1|0(1'k71|1'0)7rk\0(xk|1'O)

=N (zh—1; (o, 21), 07 1a)
with

[J,k(ibo,l'k) = 54]16/_21$0 + (1 — Qg1 — 02)1/2(;1% — dllc/Q.’Eo)/(]. — @k)l/Q.

~> We know how to write the joint distribution of Xy.,, given Xj.

~~ Use this decomposition to turn noise into samples from 7.

n—1
pg:n(d"TO:n) = pn(dffn) H pZ(dmk|xk+1) .
k=0
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Diffusion models: the backward process

~> Use this decomposition to turn noise into samples from ...

n—1
Pl (d20.0) = prldes) [ P (danlans) .
k=0
where p,, is a std Gaussian and

ph(day|zrs1) = N (doy; 1y (1), Bes1la,)

with pf | (z41) obtained by replacing xo in pi41(20, Tp4+1) with a
prediction

Fopro (T 1) = Gg ) ($k+1 — (1= 1) e (wppn, b+ 1)) :
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Diffusion models: the backward process

We use
ph(day|egy1) = N(dwgs 1l (2101), Brsala,)

with ﬂz+1(xk+1) obtained by replacing xg in pgt1(20, Tgr1) with a
prediction

. _—1/2 _

Fop (Tre1) = Gp ) <$k+1 — (1= apy) %€’ (wpp, ki + 1)) ~
e’ (X,.t) might be seen as the predictor of the noise added to X to
obtain X; (in the forward pass) and justifies the prediction terminology.

The parameter 6 is obtained by minimizing a variational loss between
the forward and backward joint distributions.
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Diffusion models: an illustration

Data distribution mgata
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Diffusion models: an illustration
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Diffusion models: an

Data distribution mgata
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Diffusion models: an illustration
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Diffusion models: an illustration

Data distribution mgata
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Diffusion models: an
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Diffusion models: an illustration

Data distribution mgata
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Diffusion models: an illustration
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Diffusion models: an illustration

Data distribution mgata
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(Shibata et al., 2024)

(@) (6) (c)

¢ Gaussian Noise Addition

(d) (e) (U]

¢ Denoising
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https://www.mdpi.com/2076-3417/14/8/3489

Why it works ? (Ronneberger et al., 2015)

[ a4
128 64 64 2
input output
im .
at%: > | et et : segmentation
& & map
~| of @ = o
HE E B E
i B
glele
HE E
‘LZE 128
256 128
= Sl B
SHE A5
B H E
' 256 256 512 256 t
B ka3t El k1 b =>conv 3x3, ReLU
HE E Sl 2o d
ol S 3 - nd cri
¥ s s 1004 512 copy e ICOD
Mool i [eiiem # max pool 22
el — e,
1024 S 4 up-conv 2x2
%-*E,_ '33_ = conv 1x1
) 3

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the different operations.
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https://arxiv.org/abs/1505.04597

(d) FFDNet(26.92dB) () RNAN(27.18dB) (f) RatUNet(27.22dB)
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https://peerj.com/articles/cs-970/

Guarantees on the approximation of 7.,
Score-based training procedures
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SGM - Forward phase

Data noised using the Ornstein—Uhlenbeck (OU) process:
t
d?t - _@Ytdt + ﬂl/g(t)dBt7 ?0 ~ Tdata -

Fix T' > 0, then,
KL ([, (?T) ,71'00) <exp <
KL (p,v) := /log <3'Z§z;) w(dx) .

Fokker-Planck for (p:)o<t<7 + logarithmic Sobolev inequality +
Gronwall’s inequality

T
/ )’(,s')(l.s)KL (Tdata, Too)

DO =

with

115 /143



Time reversal

For p; := E(Yt), (t,z) — Vlogpi(x) is the score function. We
consider the time reversal of the forward process, i.e., the process
satisfying

4% = < Xﬁ + B(t)Vlogpr—, (Xj) dt+3"2(1)dB;, X~ pr,

with 3(t) := B(T —t). It satisfies

<?t)t€[0,T] B (yT_t)te[O,T] '

In our setting,

c (YT) .y (?0) ~re, L (?T) .y (?0) 2 Taata
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Score matching in theory

The backward dynamics is

2

dir = < (t) §r + B(t)V log pr—+ <§¢>> dt + 2(‘/)<,1/))fi Y() ~ pr.

If the score is known, we can (in theory) simulate the backward
process and get data from noise.

Let s¢ : [0, 7] x RY — R? be such that

Lscore(0) =E {Hsa (T, YT) — Vlogp- (?T)

1

with 7 ~ (0, T') independent of the forward process (Yt)tzo-
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Score matching in practice

As the linear part can be simulated exactly, we consider the Exponential
Integrator scheme:

Let 0 =:tg <t1 <.-- <ty :=T. Consider
a0 = Bt) (%0 + 50 ( — 1, X0, ) dt + B'*(t)dB
202
fort € [tk;tk+1), with ?8 ~ oo
We denote %Aﬁ\‘f»”‘) the marginal probability density of i{;
The loss function is built using the conditional score:

£(6) = E [ar |V 10g prio(X,1Xo) = so(7, X,)°] -
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Diffusion models: convergence

In early works: strong assumptions on the data distribution (polynomial
growth of the score), (de Bortoli et al., 2021):
_ ~(8.,9) < oM T —1 —1/2
Tdata — T WS coMexp(erT)+cx (T +T ,

where M quantifies the quality of the score approximation.

In most recent works, we only require Tqats to have a finite relative
Fisher information w.r.t the standard Gaussian distribution, (Conforti et
al., 2023):

KL (7data, 700 ") < exp(—coT)KL(N (0, 1), Taata) + MT + c1h,

Assuming that B, [||Vlog(d7Tgata/dva) %] < oo.
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https://arxiv.org/pdf/2106.01357.pdf
https://arxiv.org/abs/2308.12240
https://arxiv.org/abs/2308.12240

Diffusion models: convergence

In more recent works, assuming that 7., is smooth and strongly
log-concave, (Lee et al., 2022), (Gao et al., 2023) : explicit upper
bounds in Wasserstein distance.

Under similar assumptions, (Strasman et al., 2024) proposed a unified
framework for time-inhomogeneous SGMs, with joint theoretical
analyses in KL and Wasserstein metrics.

KL (maaa| [ ") < EF2(8) + 5760, 8) + £57(8).

g{(L(ﬁ) KL (ﬂ-data| ‘7700 eXP / ﬁ dS

Tk

Th+1

£XL(9, 8) = Ifm {HV]ongk ()_5%) — sp (Tk, YTk) HQ} B(t)dt
k=0

E?E(L(ﬁ) = 2hB(T)Z(TdatalToo) ,

120/ 143


https://arxiv.org/pdf/2209.12381
https://arxiv.org/pdf/2311.11003
https://arxiv.org/abs/2402.04650

Gaussian case

Let the true distribution be Gaussian in dimension d = 50 with mean 14
and different choices of covariance structure.

1 $(is0) — 0.51,.
2. y(heterose) ¢ Rdxd is 5 diagonal matrix such that
2 (heteros) — 10 for 1 < j < 5, and ) = 0.1 otherwise.

3. (Correlated) x(co™) € R¥*4 is 3 full matrix whose diagonal entries
are equal to one and the off-diagonal terms are

sl =1//[j = 7l for 1 <j#j <d.
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Comparison with existing literature

0.15 A VPSDE 04 A VPSDE A VPSDE
# Cosine schedule A 7| ~x- cosine schedule A 0.5/ “* Cosine schedule L
o 0~ KL(Mgata, 1) with a* o 0 KL(Mgata, 1) with a* o 0 KL(Maata, 1) with a*
g & £203 g >
0.10 . g a g
e e ° 20.10
2 202 * 2
3 3 3
20.05 o < 5 <
< < 20.05 %
= 0.1 8 8
0.00{ ¢ 0.0/ 68 0.00{ @@
5 10 25 50 5 10 25 50 5 10 25 50

(a) Isotropic setting (b) Heteroscedastic setting (c) Correlated setting

Comparison of the empirical KL divergence between mgata and the

Figure:
and the

generative distribution %E\f’g) w.r.t. SGM for .+, the
one with a cosine schedule, presented in Chen et al. (2023).

» Optimizing the noise schedule has an impact even with simple
parametrization of the 3 scheduling.
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Upper bound (KL)

Upper bound (W2)
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Bayesian inverse problem
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Original problem

Bayesian inverse problem:

Y = f(X)+oe, where £~N(0g,,14,), X ~ Tdata, 0>0.

Objective: Sample the distribution of X given Y.

Posterior
samples

Sample from .
P Observation Y
Tdata,

AX+oe

Sample from the W2S dataset [Zhou et al., 2020].
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Proposed framework
Objective: Sample the distribution of X given a realisation of Y.
We only have access to
~~ Step 1: train a diffusion model to estimate Tqata.
~> Step 2: consider the approximate Bayesian inverse problem:
Y = AX 4+ 0e, where &~N(0g,,15,), X~ por, o >0.
A specific application (in-painting):
Y =X +oe, where e~N(04,14), X~ pr, 0>0,

where X are the top d,, coordinates of X.

~~ Step 3: extend to settings where the conditional distribution of Y
given X has probability density = — g3 (z).
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Proposed framework

For all y, draw approximate samples from the posteriors
0.
g (dx) o< gg (x)py” (dw)

where g§(z) x N (y,T, 0%, ).

— Classical setting where the target distribution is known up to a
multiplicative constant (MCMC, Self-Normalized Importance Sampling, etc.).

— We do not know how to evaluate pg*, only sample from it.

— Upper bound the error between ¢g(dz) and the true posterior ?
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[llustration of the posterior distribution
Assume d; = 2, d, = 1. Inverse problem:

Y =X, (Xi1,X3)~ GaussianMixture.
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[llustration of the posterior distribution

Assume d; = 2, d, = 1. Inverse problem:

Y = Xl,
Po

°

§
o

e
10 o;i*;’ {jﬁy . R K
s o gﬁ% sS4

=20 —10 0 10

(X1, X2) ~ GaussianMixture .

po and ¢

N
- i
° °g
S0P 0 % Dog o
Y
) ° o Ll

& » LE
%

y
S 8%

. ®

20 —10 0 10 Yy

Figure: Left plot: prior in blue and green vertical line of points with first
coordinate equal to y. Right plot: samples from ¢ are shown in green.
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Posterior sampling problem

The target ¢ is approximated by our parametric posterior distribution:

o4 (x0) = ph(woly) o p(20) gl (x0) ,

/pn Tn {Hpt (zt|ze41) }pg(xolxl)gé’(:vo)dxm-

The integral is not tractable!

Consider a sequence of positive potential functions (¢,); -, and the
sequence of probability distributions defined by

¢7yz(xn) X g%(xn)pn(xn)
and for 1 <k <n-—1,

Y

9 (k)

o (k) OC/QZ ]I(ka)pz(x’“|x’““)¢%“(m’““)dx’““’
+

so that for all k > 1, &/ () o g/ (2 )4 ().
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Posterior sampling proposal: recursion

Recall that ¢}/ (dxy,) oc g/ (2 )pr(dzy). We cannot sample from it in all
but trivial cases.

Using pr(dzr) = [ py(dak|zr41)prs1 (dzir1),

Y
¢y (day) o /%pk(dxk|xk+l)¢z+l(dxk+l)

/fglc )Py (d2k [ Th 1)

9k+1 (T+1)

pr(dager ) dp g (deggr)

=Wy (Th+1)

where p¥ (day|zks1) = py, (dzk|@r1) gy (zr) is available in closed form in
the linear and Gaussian setting.
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Posterior sampling proposal

Construct a sequence of distributions {¢? }?_; that bridge between
N(04,,14,) and ¢§ by leveraging the diffusion marginals {p;}7-;.

Intuitive choice
> ¢ (dzn) o< g4 (@n)pn(dan) with gl () = N (@ @ *y, (1 = @n)1).
» Proposal distribution.

pi(dzg|ogy1) o py(doslerg1)g) (zr)

o py(dag |z )N (Tn; @ 2y, (1 — ap)l).

As p (dzg|zrs1) = N(dok; /1§f,+, (2k+1), Be+1la, ). the proposal
distribution is available explicitly.
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Posterior sampling proposal

~ {7}, is available in closed form for the Gaussian mixture example.
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Posterior sampling proposal

~ {7}, is available in closed form for the Gaussian mixture example.

o and ¢f Posterior ¢¥
0 0 450
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#

Figure: Left plot: samples from the prior 7o and posterior ¢§. Right plot:
samples from the posterior proposals ¢¢ for time steps ranging from n := 500
to 0.
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Posterior sampling proposal

~ {@¥ 1}, is available in closed form for the Gaussian mixture example.
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Figure: Left plot: samples from the prior 7o and posterior ¢§. Right plot:

samples from the posterior proposals ¢¢ for time steps ranging from n := 500
to 0.

132 /143



Posterior sampling proposal

~ {@¥ 1}, is available in closed form for the Gaussian mixture example.
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Figure: Left plot: samples from the prior 7o and posterior ¢§. Right plot:

samples from the posterior proposals ¢¢ for time steps ranging from n := 500
to 0.
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Posterior sampling proposal

~ {@¥ 1}, is available in closed form for the Gaussian mixture example.
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Figure: Left plot: samples from the prior 7o and posterior ¢§. Right plot:

samples from the posterior proposals ¢¢ for time steps ranging from n := 500
to 0.
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Posterior sampling proposal

~ {@¥ 1}, is available in closed form for the Gaussian mixture example.

7o and ¢ Posterior ¢,

¥
i

*
%’

@ g
$°
- * & %t
. o
b

+

Figure: Left plot: samples from the prior 7o and posterior ¢j. Right plot:

samples from the posterior proposals ¢¢ for time steps ranging from n := 500
to 0.
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Posterior sampling proposal

~ {@¥ 1}, is available in closed form for the Gaussian mixture example.
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Posterior sampling proposal

~ {@¥ 1}, is available in closed form for the Gaussian mixture example.
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Posterior sampling proposal

~ {@¥ 1}, is available in closed form for the Gaussian mixture example.
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Posterior sampling proposal

~ {@¥ 1}, is available in closed form for the Gaussian mixture example.
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Figure: Left plot: samples from the prior 7o and posterior ¢j. Right plot:

samples from the posterior proposals ¢¢ for time steps ranging from n := 500
to 0.
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Posterior sampling proposal

~ {@¥ 1}, is available in closed form for the Gaussian mixture example.
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Figure: Left plot: samples from the prior 7o and posterior ¢§. Right plot:
samples from the posterior proposals ¢¢ for time steps ranging from n := 500
to 0.
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Posterior sampling proposal

~ {@¥ 1}, is available in closed form for the Gaussian mixture example.
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Figure: Left plot: samples from the prior 7o and posterior ¢§. Right plot:
samples from the posterior proposals ¢¢ for time steps ranging from n := 500
to 0.
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Posterior sampling proposal: SMC approximation

N 1 N - . . . . Y
Assume that 0" | — > (){;71 is a particle approximation of ¢} ;.

Wf(Ierl)(Jf 1((1]f+1)
Yy —
¢t (dl’t) _/pt (dl’t|zt+1).] < /+1>()/+l<d/’/+l>

~> Weight:
N

@y (Ei1) ;
G (dr) = Y YAl
)= 2 Sor 5 el

~~ Resample: Draw A/} o Cateuon(al({wf} ,) where w] o< @, (&l4).

~+ Mutate: Sample & NP?(‘K;H ) forie[1:N].

N (dxy) = Zag, (dzy) .
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Particle cloud of the 4 first observed coordinates in the case
(dg,dy) = (4,800).

Red points: particle cloud, Purple points at the origin: true posterior
samples.

The blue curve is the mean of the artificial taget at each time.
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Posterior sampling proposal: SMC approximation

The final particle approximation is
N

: 1 . .
oY (dxg) = N Z oy (dzo)dg; (dzo) -

=1

~> By standard SMC convergence results and under the assumption

that sup,, , cpa. Wy (z¢+1) < oo forallt € [0:n—1],
y N2 1
- b lls L.

~» Standard inequalities for SMC filters. There exist constants
Cim,C2n € (0,00) such that, for all N € N, ¢ > 0 and bounded
function h : R% — R,

P [|¢d (h) — ¢¥ (h)] > €] < c1,exp(—conNe®/|h[2) .
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Posterior sampling proposal: SMC approximation

The final particle approximation is

()() l(, = E ()1/ J(] ()é I())
1=1

There exist C¥ and DY such that

Dy

KLy I B[6]) < S+ P8

Results non explicit in n without additional assumptions.
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Synthetic example

25 component Gaussian mixture

~~ Gaussian random variables with mean
wi o= (84,84,---,8i,8j) € R4 for (i,5) € {-2,-1,0,1,2}? and
unit variance.
20 component Funnel mixture

~~ A funnel distribution is defined by the following density

d
N(xl; 0, 1) HN(.T“ O,exp(ml/Q)) .

i=1

~ Sampling (p1;, R;)?2, uniformly in ([—20,20]¢ x SO(R?))*?0. The
mixture consists of 20 Funnel random variables translated by i, and
rotated by R;.

Observation model

For a pair of dimensions (d,, d,) the measurement model is
Y = AX + o¢ where A and o are drawn randomly.
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Synthetic example
First two dimensions for the GMM case with d,. = 8. The rows represent

dy =1,2,4.
MCGdiff DDRM DPS RNVP
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«@ T 2. e - @
‘@ |, B | - @ -8
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represent dy, = 1,2, 4.

]

T2

T2

Synthetic example
First two dimensions for the GMM case with d, = 80. The rows

MCGdiff DDRM DPS RNVP
LR R J ) X
S Bede . @Heoo @
", | TRt it
v ‘
*30 * "‘gO - . ';0 “30
@ L X Beo o ®
'R 1 Rl I :
g 1020“ -.g. :
& $ 208 - 2000 &
® rBOR- | “Beoe ]
A X K]
o X » oo zis
' 'E: T X e 8 8 ¢
LR B K J » & @ 4
EE X X I ¢ e @&

139 /143



)

I

€2

Synthetic example

First two dimensions for the GMM case with d, = 800. The rows
represent dy, = 1,2, 4.

MCGdiff DDRM DPS RNVP
@ - @ - @ @
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boPeP® | v rBee ®
& > OB & o e D ® e b &
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I I N B ¢ 0 pw
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o % € & 2 . @ ° @ 3
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i )

& s G Paé B R EW &
‘ 1\:.‘,{ @‘i - ’
*® O ¥ ¥ = @ 8 @ 4 -
£ @& ¢ ©
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(1) 25 component Gaussian mixture (2) 20 component Funnel mixture.

Synthetic example

A € R%*? and ¢ are drawn randomly.

d |dy | MCGdiff DDRM DPS RNVP
80 [ 1 [1.39+0.45 | 564+1.10 | 498+1.14 | 6.86 £ 0.88
80 | 2 | 0.67+0.24 | 7.07+1.35 | 510123 | 7.79 £ 1.50
80 | 4 | 028+0.14 | 7.81£1.48 | 428126 | 795161
800 | 1 |240+1.00 | 744+1.15 | 6.49+1.16 | 7.74+1.34
800 | 2 | 1.31+0.60 | 895+1.12 | 6.88+1.01 | 8.75+1.02
800 | 4 | 047019 | 839+1.48 | 551+1.18 | 7.81+1.63
d | d, | MCGdiff DDRM DPS RNVP

6 [ 1 [1.95+£043 |420+0.78 [ 543£1.05 | 6.16+0.65
6 | 3 [073+£033 220067 | 3.47x0.78 | 470 +0.90
6 | 5 |041£012 | 091£043 | 2.07£0.63 | 3.52+0.93
10 | 1 |245+042 | 3.82+£0.64 | 430091 | 6.04+0.38
10 | 3 | 1.07£0.26 | 494087 | 5.38+0.84 | 591 £0.64
10 ] 5 | 071£0.12 | 232+£0.74 | 3.74+0.77 | 5.11 £0.69

Figure: Sliced Wasserstein between samples of the target posterior and the
empirical measure returned by each method. Top: Gaussian mixture. Bottom:

Funnel mixture. We show the 95% CLT interval over 20 seeds.
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Super-resolution example

CIFAR-10 Flowers
e .

sample

DDRM

MCGdiff

MCGdiff

Church

CelebaHQ
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Deblurring example

CIFAR 10 Flowers Cats _ Bedroom Church

sample

DDRM

DDRM

MCGdiff

MCGdiff

CelebaHQ
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Many problems ahead

~~ Not so many solutions proposed to adapt such methods to data
from ecosystems abundancy, population dynamics, time series data.

~~ Generic methods that can be used so sample form distribution or
conditional distribution but choice of the proposal distribution

(MCMC), variational family (VAE), score network (SBGM) is crucial.

~~ Theoretical results under realistic assumptions.
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